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Scissors modes of a Bose-Einstein condensate in a synthetic magnetic field
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We study the scissors modes of a harmonically trapped Bose-Einstein condensate under the influence of a
synthetic magnetic field, which induces rigid rotational components in the velocity field. Our investigation
reveals that the scissors mode, excited in the plane perpendicular to the synthetic magnetic field, becomes
coupled to the quadrupole modes of the condensate, giving rise to typical beating effects. Moreover, the two
scissors modes excited in the vertical planes are also coupled together by the synthetic magnetic field, resulting
in intriguing gyroscope dynamics. Our analytical results, derived from a spinor hydrodynamic theory, are further
validated through numerical simulations of the three-dimensional Gross-Pitaevskii equation. These predictions
for the condensates subject to a synthetic magnetic field are experimentally accessible with current cold-atom
setups and hold promise for potential applications in quantum sensing.
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I. INTRODUCTION

Superfluidity is one of the most extraordinary conse-
quences of Bose-Einstein condensation (BEC). In the usual
condensates, superfluidity is manifested in various remarkable
rotational phenomena such as a reduced moment of inertia
relative to the rigid-body value and the vanishing of angular
momentum in the absence of quantized vortices and in the
presence of isotropic trapping [1,2]. Both effects are directly
linked to the constraint of irrotationality, a peculiar feature
of the usual superfluids. In vortex-free BECs, superfluidity is
often probed by exciting the so-called scissors mode, which
corresponds to an angular rotation around the symmetry axis
of an anisotropic trap [3]. This technique has proved invalu-
able in discerning the superfluid nature of diverse systems,
including Bose [4] and Fermi gases [5] as well as elongated
dipolar atomic gases [6,7].

The experimental realization of synthetic spin-orbit cou-
pling (SOC) has offered novel opportunities for exploring
topological condensed matter physics with ultracold neutral
atoms [8–10]. Synthetic SOC substantially impacts the super-
fluid properties of condensates due to the breaking of Galilean
invariance and irrotationality [11–23]. For instance, in BECs
with an equal superposition of Rashba and Dresselhaus SOC,
the superfluid fraction associated with the flow along the SOC
direction vanishes near the transition point between the plane-
wave phase and the zero-momentum phase [21]. Furthermore,
introducing a position-dependent detuning along the direction
orthogonal to the SOC direction generates new intriguing
features in the phase diagram [15]. Figure 1 shows that, as
a function of the position-dependent detuning, the two spin
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components of spin-orbit-coupled BEC can overlap, exhibit
vortices, or be fully separated. Vortices have been actually
observed experimentally for values of the detuning gradient
larger than a critical value [11]. While there exist many works
relating to the superfluid properties of spin-orbit-coupled con-
densates (see, for example, the review articles [24,25]), the
effects of the synthetic magnetic field on the superfluid dy-
namics have been vastly unexplored [26]. Recently, it was
found that a vortex-free BEC, in the presence of position-
dependent detuning, exhibits a rigid-like rotational velocity
field and possesses a finite angular momentum even when the
system is confined in an isotropic harmonic trap [22]. Due
to spin-orbit coupling the position-dependent detuning actu-
ally brings the system into an effective noninertial rotational
frame, leading to the Foucault-like precession of two dipole
modes in the rotating plane [23].

In this paper, we extend the spinor hydrodynamic theory
developed in [22] and [23], accounting for position-dependent
tuning effects to investigate the precession of the scissors
modes of a BEC subject to a rotational velocity field in-
duced by a synthetic magnetic field. Our findings indicate that
the synthetic magnetic field induces a coupling between the
scissors modes and the other collective modes of quadrupole
nature. Specifically, the scissors mode in the horizontal plane
perpendicular to the synthetic magnetic field becomes coupled
to the three quadrupole modes related to the shape oscillation
of the condensate. Moreover, the two scissors modes in the
vertical planes are coupled together, giving rise to intriguing
gyroscope dynamics.

II. SPINOR HYDRODYNAMIC THEORY

We begin by considering a BEC with a Raman transition
induced equal-Rashba-Dresselhaus synthetic SOC along the x
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FIG. 1. (a) Phase diagram of the condensate in a synthetic mag-
netic field as a function of the atom number N and the relevant
parameter η fixing the position dependence of the detuning (see
text). The two spin components can be overlapped, exhibit vortices,
or be separated, depending on the value of the relevant η and N .
(b) A typical distribution of the condensate obtained by numerically
solving the GP equation for η = 0.005, 0.01, 0.013Er at N = 105.
Note that there are two vortices at y = 0 for η = 0.01Er .

direction. In the spin-rotated frame, the single-particle Hamil-
tonian is given by

H0 = 1

2m
(p̂ − h̄k0σzêx )2 + Vtrap − h̄�

2
σx − ηk0yσz, (1)

where m is the atomic mass, h̄k0 is the recoil momen-
tum, � represents the Raman coupling strength, Vtrap =
m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2 denotes the harmonic trapping po-
tential with angular frequencies ωx,y,z, and η is the coefficient
of the y-position-dependent detuning. The mean-field inter-
action energy of the condensate is characterized by Vint =∫

dr
∑

αβ gαβnαnβ/2 where nα is the particle density of the

αth component and gαβ = 4π h̄2aαβ/m are the interaction
constants in different spin channels with aαβ the correspond-
ing s-wave scattering lengths. In this work, we focus on
isotropic interactions by assuming gαβ = g. The last term
in Eq. (1) induces a synthetic magnetic field Bsyn along the
vertical z direction [Fig. 2(a)]. When η is larger than a critical
value ηc, vortices will appear which has been demonstrated in
the pioneering experiment [11].

For simplicity, we shall focus on the zero-momentum
phase where h̄� > h̄�c ≡ 4Er , with Er = h̄2k2

0/2m repre-
senting the recoil energy. When the detuning gradient η is
small, vortices do not appear, and the total density of the con-
densate can be approximated using the Thomas-Fermi (TF)
distribution. Under this condition, the quantum pressure term
can be ignored in the application of the hydrodynamic theory.
Additionally, due to the large Raman energy gap, the relative
phase between the two spin components is locked in the
low-frequency oscillations. In this regime the hydrodynamic
equations for the two spin components can be simply reduced
to the following equations:

∂n

∂t
+ ∇ · (nv) = 0, (2)

∂φ

∂t
+ 1

2
m∗v2

x + 1

2
mv2

y + 1

2
mv2

z + μ − �

2
= 0, (3)

for the total density n, and the the absolute phase φ, with

v =
(

h̄

m∗ ∇xφ − η

h̄

�c

�
y,

h̄

m
∇yφ,

h̄

m
∇zφ

)
, (4)
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FIG. 2. (a) Illustration of a spin-orbit-coupled BEC in the pres-
ence of a position-dependent detuning δ(y) = ηk0y, which induces
a synthetic magnetic field Bsyn along the z direction and a rota-
tional velocity field in the horizontal plane. (b) Dependence of the
quadrupole modes eigenfrequencies on the Raman coupling strength
for η = 0. The three red curves are the eigenfrequencies correspond-
ing to the width oscillation of the condensate [Eq. (5)] and the
blue curve corresponds to the oscillation frequency ωxy/2π of the
scissors mode in the horizontal plane. The trapping frequencies are
(ωx, ωy, ωz )/2π = (50

√
3, 50, 35)Hz. At the two points indicated by

the green star and cyan dot, the scissors mode frequency ωxy and
one of the three hybrid quadrupole modes are degenerate. In this
work, we shall focus on the green star point at � = 6Er where the
degeneracy condition Eq. (6) is satisfied.

denoting the physical superfluid velocity and m∗ = m(1 −
�c/�)−1 the effective mass in the zero-momentum phase. It
is worth pointing out that the second term of vx arises from
the spin density sz/n which becomes nonzero for finite η.
This term plays an important role in generating the rotational
velocity field, the finite angular momentum, and the coupling
among different collective modes. In Eq. (3), we introduce the
chemical potential μ = ng + Vtrap − 1

2 m∗η2�2
cy2/h̄2�2 where

the last term results from the antitrap effect of the synthetic
magnetic field and renormalizes the trapping frequency along
the y direction. Since it is proportional to η2, this term is
neglected in the following analysis.

At equilibrium, the total density and absolute phase are
determined as n0 = (μ − Vtrap)/g and φ0 = αxy, respectively,

with α = 2ηk2
0ω

2
x/�ω2

xy where ωxy =
√

ω2
x m/m∗ + ω2

y is the
frequency of the scissors mode in the horizontal plane in
the absence of detuning gradient. Consequently, the ve-
locity field becomes v0 = (−ωeffy, ω′

effx, 0) where ωeff =
η�c/h̄� − h̄α/m∗, ω′

eff = h̄α/m. Such a rigid-like rotational
velocity field causes a coupling of various collective modes,
including the two dipole modes in the horizontal plane [23]
and the quadrupole modes discussed in this work.

A. Without synthetic magnetic field (η = 0)

In this case the quadrupole modes of a trapped BEC in-
clude three scissors modes excited by the operators xy, xz,
and yz and corresponding, respectively, to the angular rotation
of the condensate around the z, y, and x axes, and other
three modes excited by the operators x2, y2, and z2, which
correspond to the shape oscillations of the condensate. The
oscillation frequencies of the three scissors modes are given
by ωxy =

√
ω2

x (m/m∗) + ω2
y , ωxz =

√
ω2

x (m/m∗) + ω2
z , ωyz =√

ω2
y + ω2

z , respectively.
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The frequencies of the quadrupole modes related to the
shape oscillations are instead given by the solution of the
equation [2]

ω6 − 3ω4

(
m

m∗ ω2
x + ω2

y + ω2
z

)
+ 8ω2

(
m

m∗ ω2
xω

2
y + m

m∗ ω2
xω

2
z

+ ω2
yω

2
z

)
− 20

m

m∗ ω2
xω

2
yω

2
z = 0. (5)

Figure 2(b) illustrates how the three eigenfrequencies related
to the shape oscillations and the scissors mode oscillation
frequency ωxy depend on the Raman coupling strength. It
shows that the degeneracy between the scissors mode xy and
one of the shape oscillation quadrupole modes takes place
for two values of the Raman coupling. In the following we
will focus on the case indicated with the green star point
at � = 6Er , corresponding to the degeneracy condition [27]
(for the more general case, and detailed information on the
derivation of the equations of motion for the collective modes,
see the Appendixes) √

m

m∗ ωx = ωy, (6)

which actually coincides with the condition that the two dipole
modes in the horizontal x-y plane be degenerate.

B. With synthetic magnetic field (η �= 0)

In the presence of a position-dependent detuning, the six
quadrupole modes discussed above are further coupled to-
gether by the synthetic magnetic field, leading to interesting
beating phenomena that can be induced through distinct exci-
tation methods.

1. Sudden rotation of the harmonic trap by a small
angle ϕ0 in the x-y plane.

This excites the scissors mode in the horizontal plane,
characterized by the operator xy. Due to the influence of the
synthetic magnetic field, this scissors mode becomes coupled
to the three quadrupole modes x2, y2, and z2, related to the
shape oscillations of the condensate. The ansatz for the fluc-
tuation of the total density and absolute phase can be written
as

δn ∼ ε1xy + ε2x2 + ε3y2 + ε4z2, (7)

δφ ∼ α1xy + α2x2 + α3y2 + α4z2. (8)

Substituting them into the linearized spinor hydrodynamic
Eqs. (2) and (3), we obtain the coupled differential equa-
tions for the variables ε j and α j ( j = 1, . . . , 4) (see the
Appendix). By seeking solutions of the form ε j (t ) ∼ e−iωt and
α j (t ) ∼ e−iωt , the collective frequencies are found to satisfy
an equation of the form ω8 + c3ω

6 + c2ω
4 + c1ω

2 + c0 = 0.
Under the degeneracy condition [Eq. (6)], these coupled

differential equations can be further simplified as the scis-
sors mode xy is only coupled to a mode associated with
condensate deformation in the horizontal plane, excited by
the operator Q = ωx

ωy
x2 − ωy

ωx
y2. Introducing the convenient

variables
√ m

m∗ ωx = ωy ≡ ω0 and ωeff
ωx
ωy

= ω′
eff

ωy

ωx
≡ ωη, a

FIG. 3. (a), (b) Time evolution of the scissors mode xy in
the horizontal plane and the quadrupole mode characterized by
the operator Q = (ω2

x/ω
2
y )x2 − y2 in the presence of a detuning

gradient η = 0.001Er . The trapping frequencies are ( fx, fy, fz ) =
(50

√
3, 50, 35) Hz and the Raman coupling strength is � = 6Er to

meet the degeneracy condition Eq. (6). The dynamics is excited by a
sudden rotation of the harmonic trap by a small angle ϕ0 = 3◦ in the
x-y plane.

straightforward calculation, which includes only effects linear
in η, yields (see the Appendix)

d2

dt2
〈xy〉 + (

2ω2
0 − 4ω2

η

)〈xy〉 − 2ωη

d

dt
〈Q〉 = 0, (9)

d2

dt2
〈Q〉 + (

2ω2
0 − 4ω2

η

)〈Q〉 + 8ωη

d

dt
〈xy〉 = 0. (10)

Consequently, the two modes excited by the operators xy
and Q exhibit a beating effect with a frequency splitting
�ω = 4ωη. The other two modes, excited by the operators
ωx
ωy

x2 + ωy

ωx
y2 and z2, remain coupled but they do not depend

on the detuning gradient (see the Appendix). A representative
numerical solution of the beating effect exhibited by the xy
and Q modes is shown in Figs. 3(a) and 3(b).

To validate our theoretical hydrodynamic analysis, we
perform a numerical simulation of the time-dependent three-
dimensional Gross-Pitaevskii (GP) equation. For our numer-
ics, we chose a total particle number of N = 105 and a recoil
momentum k0 = 2π/λ with λ = 782 nm. Our results reveal
excellent agreement between the hydrodynamic predictions
and numerical GP results. We note that the coupling between
the scissors mode in the horizontal plane and the quadrupole
modes was experimentally demonstrated in the context of a
superfluid Hall effect by LeBlanc et al. [26]. Our theoretical
framework enables a detailed discussion of the consequence
of the rotational velocity field and an explicit demonstration
of the beating effect on the coupling between these collective
modes.

2. Sudden rotation of the harmonic trap by a small
angle θ0 in the x-z plane

This excites the scissors mode in the vertical plane, associ-
ated with the operator xz. Due to the presence of the synthetic
magnetic field, this mode couples to the other scissors mode
yz. In this case the ansatz for the variations of the total density
and absolute phase are

δn ∼ ε5xz + ε6yz, (11)

δφ ∼ α5xz + α6yz. (12)
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FIG. 4. Time evolution of the scissors modes in the vertical
planes 〈xz〉 and 〈yz〉. The trapping frequencies are ( fx, fy, fz ) =
(50

√
3, 50, 35) Hz, � = 6Er . Thus,

√
m/m∗ωx = ωy, a beat appears

for the two coupled modes. The detuning gradient η = 0.001Er . The
dynamics is excited by a sudden rotation of the harmonic trap by a
small angle θ0 = 3◦ in the x-z plane.

Under the same degeneracy condition Eq. (6), the two scis-
sors modes share the same oscillation frequency when η = 0.
Substituting Eqs. (11) and (12) into the linearized spinor hy-
drodynamic Eqs. (2) and (3), we obtain the following coupled
second-order differential equations

d2〈xz〉
dt2

+ (
ω2

0 + ω2
z − ω2

η

)〈xz〉 + 2ωη

ωy

ωx

d〈yz〉
dt

= 0,

d2〈yz〉
dt2

+ (
ω2

0 + ω2
z − ω2

η

)〈yz〉 − 2ωη

ωx

ωy

d〈xz〉
dt

= 0,

which clearly reveals that the two scissors modes exhibit a
beating effect, with frequency splitting �ω = 2ωη (Fig. 4).

The coupling between the two scissors modes in the verti-
cal planes gives rise to a typical gyroscopic effect associated
with the precession of angular momentum. A sudden rota-
tion of the trap in the x-z plane, in fact, causes the angular
momentum to deviate from the vertical axis. As shown in
Fig. 5, this results in two simultaneous dynamical effects: a
rapid oscillation of angular momentum around the vertical
axis due to the restoring force of the trapping potential (the
scissors mode), and a slower precession of angular momen-
tum around the vertical axis due to the synthetic magnetic
field.

In the linear regime, it is easy to find the relation between
the azimuthal angle ϕ that characterizes the gyroscope pre-
cession and the polar angle θ that characterizes the scissors
modes in the vertical planes

〈xz〉 = RxRz

7

ω2
x − ω2

z

ωxωz
θ (t ) cos ϕ(t ), (13)

〈yz〉 = RyRz

7

ω2
y − ω2

z

ωyωz
θ (t ) sin ϕ(t ), (14)

where we assume that the polar angle θ (t ) is small. A similar
gyroscopic effect was previously investigated in the case of
a single-component Bose-Einstein condensate in the presence
of a quantized vortex [28,29]. In the present case, the effect
is caused by the synthetic magnetic field which gives rise to
angular momentum even in the absence of quantized vortices
and to a precession rate dϕ/dt of the azimuthal angle propor-
tional to ωη.

x

y

z

FIG. 5. Illustration of a BEC gyroscope realized via a synthetic
magnetic field. The polar angle θ (t ) corresponds to a fast scissors
mode oscillation in the vertical plane and the azimuthal angle ϕ(t )
corresponds to a slower precession around the symmetry axis z due
to the synthetic magnetic field.

For larger values of the position-dependent detuning gradi-
ent η, and hence larger synthetic magnetic fields, additional
effects take place, like bifurcation dynamics [30] and the
occurrence of quantized vortices [11], whose consequences
on the dynamic behavior of the scissors mode, are, however,
beyond the purpose of the present work.

III. CONCLLUSION

In conclusion, we presented a comprehensive investiga-
tion of the scissors modes and other quadrupole modes of
a spin-orbit-coupled BEC under the influence of a position-
dependent detuning. Due to the existence of a synthetic
magnetic field, these collective modes are coupled together,
giving rise to interesting beating effects and gyroscope dy-
namics. Our framework can be naturally extended to the case
of the plane-wave phase or the application of a position-
dependent Raman coupling. Our results offer valuable insights
pertinent to the understanding of a recent experimental work
carried out at Purdue University where the scissors mode of
a spin-orbit-coupled BEC with a position-dependent Raman
coupling was directly observed [31]. Different from the zero-
momentum phase, it was found that, in the plane-wave phase,
the scissors mode is further coupled to the dipole mode.
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APPENDIX A: HYDRODYNAMIC FORMALISM

In this section and in the following ones we provide
a detailed derivation of the analytical results mentioned in
the main text. Starting from the spinor hydrodynamic equa-
tions presented in [23]

∂n

∂t
+ h̄

m∗ ∇x(n∇xφ) + h̄

m
∇y(n∇yφ) + h̄

m
∇z(n∇zφ)

− ηy
�c

h̄�
∇xn = 0, (A1)

h̄
∂φ

∂t
+ h̄2

2m∗ (∇xφ)2 + h̄2

2m
(∇yφ)2 − ηy

�c

�
∇xφ − �

2

+ ng + Vtrap = 0. (A2)

The total density and phase of the condensate can be written
as n = n0 + δn and φ = φ0 + δφ where n0 and φ0 are the
ground-state density and phase of the condensate. At equi-
librium, substituting the Thomas-Fermi (TF) distribution for
the density n0 and the ansatz for the phase φ0 = αxy into
Eqs. (A1) and (A2), after ignoring terms proportional to η2,
we find the chemical potential μ as presented in the main text
and the coefficient α has the following form:

α = 2ηk2
0ω

2
x

�
(
mω2

x/m∗ + ω2
y

) . (A3)

The linearized hydrodynamic equations for the density and
phase perturbations can be obtained as

∂δn

∂t
+ h̄

m∗ ∇x[n0∇x(δφ)] + h̄

m
∇y[n0∇y(δφ)]

+ h̄

m
∇z[n0∇z(δφ)] − ωeffy∇x(δn) + ω′

effx∇y(δn) = 0, (A4)

∂δφ

∂t
+ g

h̄
δn − ωeffy∇xδφ + ω′

effx∇yδφ = 0, (A5)

where we introduce ωeff = η�c/(h̄�) − h̄α/m∗, ω′
eff =

h̄α/m.

APPENDIX B: COUPLING OF THE QUADRUPOLE MODES
x2, y2, z2 AND THE SCISSORS MODE xy

In this case the ansatz for the density and phase fluctuations
can be written as

δn = ε1
xy

RxRy
+ ε2

x2

R2
x

+ ε3
y2

R2
y

+ ε4
z2

R2
z

, (B1)

δφ = g

h̄

(
α1

xy

RxRy
+ α2

x2

R2
x

+ α3
y2

R2
y

+ α4
z2

R2
z

)
, (B2)

where Rν = √
2μ0/mω2

ν represents the TF radius along
the ν direction with μ0 = n0g + Vtrap. Substituting them into
the linearized spinor hydrodynamic Eqs. (A4) and (A5), we
obtain the coupled differential equations for the variables ε j

and α j ( j = 1, . . . , 4),

dε1

dt
− ω2

xyα1 − 2ωeff
ωx

ωy
ε2 + 2ω′

eff
ωy

ωx
ε3 = 0,

dε2

dt
− 3

m

m∗ ω2
xα2 − ω2

yα3 − ω2
z α4 + ω′

eff
ωy

ωx
ε1 = 0,

dε3

dt
− m

m∗ ω2
xα2 − 3ω2

yα3 − ω2
z α4 − ωeff

ωx

ωy
ε1 = 0,

dε4

dt
− m

m∗ ω2
xα2 − ω2

yα3 − 3ω2
z α4 = 0,

dα1

dt
− 2ωeff

ωx

ωy
α2 + 2ω′

eff
ωy

ωx
α3 + ε1 = 0,

dα2

dt
+ ω′

eff
ωy

ωx
α1 + ε2 = 0,

dα3

dt
− ωeff

ωx

ωy
α1 + ε3 = 0,

dα4

dt
+ ε4 = 0.

Under the degeneracy condition

√
m

m∗ ωx = ωy ≡ ω0, (B3)

we have

ωeff
ωx

ωy
= ω′

eff
ωy

ωx
≡ ωη, (B4)

ωxy =
√

2ω0. (B5)

Thus, the above coupled differential equations can be further
simplified to

dε1

dt
− 2ω2

0α1 − 2ωηε2 + 2ωηε3 = 0,

dε2

dt
− 3ω2

0α2 − ω2
0α3 − ω2

z α4 + ωηε1 = 0,

dε3

dt
− ω2

0α2 − 3ω2
0α3 − ω2

z α4 − ωηε1 = 0,

dε4

dt
− ω2

0α2 − ω2
0α3 − 3ω2

z α4 = 0,

dα1

dt
− 2ωηα2 + 2ωηα3 + ε1 = 0,

dα2

dt
+ ωηα1 + ε2 = 0,

dα3

dt
− ωηα1 + ε3 = 0,

dα4

dt
+ ε4 = 0.

We can regroup these equations as

dε1

dt
− 2ω2

0α1 − 2ωη(ε2 − ε3) = 0,

d (ε2 − ε3)

dt
− 2ω2

0(α2 − α3) + 2ωηε1 = 0,

dα1

dt
+ ε1 − 2ωη(α2 − α3) = 0,

d (α2 − α3)

dt
+ (ε2 − ε3) + 2ωηα1 = 0,
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and

d (ε2 + ε3)

dt
− 4ω2

0(α2 + α3) − 2ω2
z α4 = 0,

dε4

dt
− ω2

0(α2 + α3) − 3ω2
z α4 = 0,

d (α2 + α3)

dt
+ (ε2 + ε3) = 0,

dα4

dt
+ ε4 = 0.

A further reformulation gives the following coupled second-
order differential equations:

d2ε1

dt2
+ (

2ω2
0 − 4ω2

η

)
ε1 − 4ωη

d (ε2 − ε3)

dt
= 0, (B6)

d2(ε2 − ε3)

dt2
+ (

2ω2
0 − 4ω2

η

)
(ε2 − ε3) + 4ωη

dε1

dt
= 0, (B7)

and

d2(ε2 + ε3)

dt2
+ 4ω2

0(ε2 + ε3) + 2ω2
z ε4 = 0, (B8)

d2ε4

dt2
+ 3ω2

z ε4 + ω2
0(ε2 + ε3) = 0. (B9)

The coupling of (ε2 + ε3) and ε4 is due to the trap geometry
whereas the coupling of ε1 and (ε2 − ε3) is due to the synthetic
magnetic field.

The variables εi are related to several important experimen-
tally measurable quantities

〈xy〉 = 4

105
πR2

xR2
yRzε1, (B10)

〈x2〉 = 4

105
πR3

xRyRz(3ε2 + ε3 + ε4), (B11)

〈y2〉 = 4

105
πRxR3

yRz(ε2 + 3ε3 + ε4), (B12)

〈z2〉 = 4

105
πRxRyR3

z (ε2 + ε3 + 3ε4), (B13)

where 〈.〉 represents an average with respect to the density
variation δn. Introducing the excitation operator

Q = ωx

ωy
x2 − ωy

ωx
y2, (B14)

we obtain

d2

dt2
〈xy〉 + (

2ω2
0 − 4ω2

η

)〈xy〉 − 2ωη

d

dt
〈Q〉 = 0, (B15)

d2

dt2
〈Q〉 + (

2ω2
0 − 4ω2

η

)〈Q〉 + 8ωη

d

dt
〈xy〉 = 0. (B16)

The normal mode frequencies can be determined with[− ω2 + (
2ω2

0 − 4ω2
η

)]2 = 16ω2ω2
η. (B17)

Therefore, we find

ω± =
√

2ω0 ± 2ωη. (B18)

Under the same condition, the collective oscillation frequen-
cies for the other two coupled quadrupole modes (which

involve z2) can be found as

ω′
± =

√
2ω2

0 + 3

2
ω2

z ±
√

4ω4
0 − 4ω2

0ω
2
z + 9

4
ω4

z , (B19)

which do not depend on the detuning gradient η.

APPENDIX C: COUPLING OF THE SCISSORS
MODES yz AND xz

Substituting the ansatz for the density and phase
fluctuations

δn = ε5
xz

RxRz
+ ε6

yz

RyRz
, (C1)

δφ = g

h̄

(
α5

xz

RxRz
+ α6

yz

RyRz

)
, (C2)

into the linearized spinor hydrodynamic Eqs. (A4) and (A5),
we find the following coupled differential equations:

ε̇5 − ω2
xzα5 + ω′

eff
ωy

ωx
ε6 = 0, (C3)

ε̇6 − ω2
yzα6 − ωe f f

ωx

ωy
ε5 = 0, (C4)

α̇5 + ω′
eff

ωy

ωx
α6 + ε5 = 0, (C5)

α̇6 − ωeff
ωx

ωy
α5 + ε6 = 0. (C6)

They can be further combined into the following coupled
second-order differential equations:

d2ε5

dt2
+ ω2

xz

(
1 − ωeffω

′
eff

ω2
yz

)
ε5 + ω′

eff
ωy

ωx

(
1 + ω2

xz

ω2
yz

)
dε6

dt
= 0,

d2ε6

dt2
+ ω2

yz

(
1 − ωeffω

′
eff

ω2
xz

)
ε6 − ωeff

ωx

ωy

(
1 + ω2

yz

ω2
xz

)
dε5

dt
= 0.

Using the relations

〈xz〉 = 4

105
πR2

xRyR2
z ε5, (C7)

〈yz〉 = 4

105
πRxR2

yR2
z ε6, (C8)

we find

d2〈xz〉
dt2

+ ω2
xz

(
1 − ωeffω

′
eff

ω2
yz

)
〈xz〉

+ ω′
eff

ω2
y

ω2
x

(
1 + ω2

xz

ω2
yz

)
d〈yz〉

dt
= 0,

d2〈yz〉
dt2

+ ω2
yz

(
1 − ωeffω

′
eff

ω2
xz

)
〈yz〉

− ωeff
ω2

x

ω2
y

(
1 + ω2

yz

ω2
xz

)
d〈xz〉

dt
= 0.

Under the same degeneracy condition, Eq. (B3), we have

ωxz = ωyz ≡
√

ω2
0 + ω2

z , ωeff
ωx
ωy

= ω′
eff

ωy

ωx
≡ ωη. Therefore,
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the above coupled differential equations become

d2ε5

dt2
+ (

ω2
0 + ω2

z − ω2
η

)
ε5 + 2ωη

dε6

dt
= 0,

d2ε6

dt2
+ (

ω2
0 + ω2

z − ω2
η

)
ε6 − 2ωη

dε5

dt
= 0,

and

d2〈xz〉
dt2

+ (
ω2

0 + ω2
z − ω2

η

)〈xz〉 + 2ωη

ωy

ωx

d〈yz〉
dt

= 0,

d2〈yz〉
dt2

+ (
ω2

0 + ω2
z − ω2

η

)〈yz〉 − 2ωη

ωx

ωy

d〈xz〉
dt

= 0,

respectively. The normal mode frequencies can be determined
by [− ω2 + (

ω2
0 + ω2

z − ω2
η

)]2 = 4ω2ω2
η, (C9)

yielding the relevant result

ω± =
√

ω2
0 + ω2

z ± ωη, (C10)

for the effect of the synthetic magnetic field on the frequency
of the two scissors modes.

APPENDIX D: RELATION BETWEEN ROTATION ANGLE
φ AND AVERAGE 〈xy〉

At equilibrium, the TF density is given by

n(x, y, z) = n0

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)
. (D1)

Direct normalization (normalize to 1) gives

n0 = 15

8πRxRyRz
. (D2)

It is easy to find, at equilibrium,

〈xy〉0 = 0, (D3)

〈x2〉0 = R2
x

7
, (D4)

〈y2〉0 = R2
y

7
, (D5)

〈z2〉0 = R2
z

7
. (D6)

To find the relation between the rotation angle φ of the con-
densate in the x-y plane and the average value of the operator
xy that excites the scissors mode, we consider a condensate
that rotates by a small angle φ. Since in the rotated coordinate
system one has

x′ = x cos φ + y sin φ, (D7)

y′ = −x sin φ + y cos φ, (D8)

it is immediate to find the identity

〈xy〉 = R2
y − R2

x

14
sin(2φ). (D9)

Therefore, for small angle φ, we have

〈xy〉 ≈ R2
y − R2

x

7
φ = 1

7

(
2μ0

mω2
y

− 2μ0

mω2
x

)
φ

= 2μ0

7m

ω2
x − ω2

y

ω2
xω

2
y

φ. (D10)

On the other hand, since μ0 = 1
2 mω2

x R2
x = 1

2 mω2
y R2

y , the above
expression can be rewritten in the useful form

〈xy〉 ≈ RxRy

7

ω2
x − ω2

y

ωxωy
φ. (D11)
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