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Enhanced ferromagnetism in an artificially stretched lattice in quasi-two-dimensional Cr2Ge2Te6
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Crystal lattice is key in understanding magnetic interactions between atoms in solids. As the effective control
of the lattice via tensile stress is limited, there are only a few demonstrations of controlling magnetic properties
by expanding the lattice. This study reveals a clear correlation between enhanced magnetism, where Curie
temperature (TC) is doubled from ∼60 to ∼120 K, and lattice expansion in prototypical van der Waals magnet
Cr2Ge2Te6 with sputtered dielectric overlayers NiO and MgO. We ascribe the mechanism of this TC increase to
a change in exchange interactions induced by strain, studied by several experimental probes and computational
approaches.
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Magnetic interactions at the atomic level play a central role
in magnetism. The recent rise of two-dimensional van der
Waals (vdW) magnetic materials offers the possibility to study
magnetic interactions thanks to their high crystallinity, tun-
ability, and the possibility to study various thicknesses [1,2],
where the lattice characteristics can be easily accessed by
several probes with spatial resolution such as scanning probes
and Raman spectroscopy [3–5]. One of the most important
indications of magnetic interactions is the Curie temperature
(TC). With the practical motivation to increase TC, the relation
between magnetic interactions and TC has been widely studied
in vdW magnets. For example, the change in magnetic inter-
actions with the electronic structure and carrier concentration
was studied by electric gating (in particular in the structure of
a field-effect transistor), which changes the hysteresis curve
for a localized magnetic system of Cr2Ge2Te6 without any
significant change in TC, whereas the TC increases from 205 K
to above room temperature in the case of an itinerant magnetic
system of Fe3GeTe2 in a similar structure [6,7]. Historically,
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external pressure has been used for tailoring the lattice param-
eter of magnetic systems. This approach was applied to both
itinerant and localized magnetic systems, but it was found that
TC of prototypical ferromagnet CrI3 only slightly increased
from 44 to 48 K [8]. While an external pressure could be used
for shrinking the lattice, it cannot be used for an expansion
of the lattice and the studies in small-size samples are rather
limited [9]. Previously, some of us reported an increased TC in
Cr2Ge2Te6/NiO heterostructure but its mechanism including
the effect of the strain was left unclear [10]. In this Letter,
we present a clear correlation between enhanced magnetism
in Cr2Ge2Te6/NiO and Cr2Ge2Te6/MgO heterostructures and
the tensile strain from wrinkle formation, where we can
achieve nearly twice the TC of bulk and as-cleaved Cr2Ge2Te6.
Such a heterointerface provides a different tuning knob for
controlling the order parameters by expanding the lattice,
which cannot be accessed by conventional schemes such as
frequently used pressure cells.

When an in-plane tensile force is applied to some but
not all layers of a multilayer system [Fig. 1(a)], a wrinkle
can form in the stretched part to conserve the total number
of atoms [Fig. 1(b)]. Previous research indicates that biaxial
strain can be induced in two-dimensional (2D) materials upon
depositing oxide thin films, where the strain originates from
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FIG. 1. Wrinkle formation in Cr2Ge2Te6/NiO and impact on
magnetic TC. (a) Schematic mechanism to form wrinkle in 2D layers
(focusing on two representative layers represented by red and black
shaded regions). Each circle represents an atom. In the top layer, an
in-plane tensile force f is applied and results in a lateral displacement
of atoms from the original positions (indicated in the bottom layer
in black). (b) In regions other than the part shown in (a), such as
the right portion of this figure, accommodating the stretched lattice
may induce a deformation of the layer (such as wrinkles), especially
when the coupling to the adjacent layers is weak, which is the case
in 2D materials. (c) Optical micrograph of a Cr2Ge2Te6 flake with a
50-nm-thick NiO overlayer. Wrinkles appear as wavy patterns near
the center of the flake. Several representative positions ae marked as
circles (A, B, C, and D). (d) Curie temperatures of Cr2Ge2Te6 flakes
of different thicknesses (bottom axis), with (data in red and black)
and without (blue) NiO layer. The results for flakes with (without)
wrinkles are indicated by closed red (open black) symbols. The
symbols reflect the NiO thickness: 20 nm (circle), 35 nm (diamond),
50 nm (rectangle), and 100 nm (triangle).

the attempt to relax the residual stress of the oxide film [11],
suggesting that wrinkle formation or buckling delamination
[Fig. 1(b)] may form with sufficiently strong strain. Such
strain-induced deformations are observed in our 2D mag-
net Cr2Ge2Te6 after sputtering NiO [a representative image
is shown in Fig. 1(c), with more detailed characterizations
shown in the Supplemental Material [12]]. We prepared our
samples by mechanical exfoliation from a single crystal of
Cr2Ge2Te6 on a silicon substrate (with 285-nm SiO2). A NiO
layer with a thickness of 20–100 nm was sputtered onto the
substrate containing the exfoliated Cr2Ge2Te6 flakes. Details
of the sample preparation are described in the previous report
[10]. The formation of wrinkles was commonly observed on
Cr2Ge2Te6 flakes [10]. For thick Cr2Ge2Te6 samples, the
portion close to the Cr2Ge2Te6/NiO interface deforms and
delaminates from the rest of the sample. We note that graphite
and MoS2 [23,24] are just a few examples of other 2D/vdW
materials in which wrinkle structures (formed during growth
or other processes) have been noted. In contrast to the method

to strain an entire flake on a flexible substrate by deforming
the substrate [25], our method involved an overlayer (NiO)
that induces strain (a change in lattice spacing) particularly
when the sample showed a wrinkled structure. We note that
such a wrinkled structure resulting in a curved section of
the 2D ferromagnet can break the inversion symmetry and
possibly lead to a strong Dzyaloshinskii-Moriya interaction
and noncollinear spin configurations [26].

The magnetic properties of the Cr2Ge2Te6/NiO het-
erostructure were characterized by the magneto-optical Kerr
effect (MOKE) measurements [12], which we used previously
to report an enhanced ferromagnetic transition (Curie) temper-
ature TC. Figure 1(d) shows the TC for three typical cases: two
types of Cr2Ge2Te6/NiO (flakes with and without wrinkles)
and Cr2Ge2Te6 without NiO layer. Flakes of Cr2Ge2Te6/NiO
with wrinkles exhibit higher TC for various thicknesses, up
to nearly twice the TC of bare Cr2Ge2Te6 without the NiO
layer, while flakes of Cr2Ge2Te6/NiO with no wrinkles tend to
exhibit a TC similar to the bare Cr2Ge2Te6. While the increase
in TC for wrinkled Cr2Ge2Te6/NiO has been reported in our
previous work, the underlying mechanism and the physical
effects of the wrinkle structure were unknown at that time
[10]. This will be the focus of this work.

First, the spatial variation of Raman and MOKE character-
istics near the wrinkles are examined. Figures 2(a) and 2(b)
show the Raman spectra with five characteristic peaks in the
80–320 cm−1 range measured at room temperature [4] at four
different positions of a representative flake [optical micro-
graph and the positions are shown in Fig. 1(c)]. The positions
of the peaks in the Raman spectrum change with the position
in the flake, even with the same Cr2Ge2Te6 thickness, and
this can be explained by a position-dependent strain. Note that
we have discussed the hysteresis at the same position before
and after forming NiO in the previous report [10]. The peak
near 235 cm−1 (110 cm−1) is ascribed to an (two) in-plane
vibration mode(s), whereas the other three peaks are assigned
to other types of vibrations, i.e., an out-of-plane mode and a
combination of the two modes [27]. The MOKE measurement
at the same positions [Fig. 2(c)] indicates that ferromagnetic
TC also varies with the position. The Raman-peak position
map [Fig. 2(d)] shows that the peak position varies with the
distance from a wrinkle in the flake. A correlation between the
Raman peak position and TC indicates that TC becomes higher
when the Raman peak shifts to lower wave numbers. Such
a Raman peak shift towards lower wave numbers indicates
tensile strain, as reported in the pressure experiments [28,29]
and in our bending experiments where a tensile force was
applied by deforming the flexible substrate onto which the
flake was placed [12].

Next, we address the general trend in the correlation be-
tween wrinkles, strain, and magnetism based on observations
from many samples. We noticed that the wrinkle forma-
tion, while it does not always happen in every exfoliated
Cr2Ge2Te6 flake, can occur for flakes with all ranges of
thicknesses up to the bulk limit [12]. The wrinkle formation
was also occasionally observed in flakes during the cooling
process. Despite such a varied wrinkle behavior, the strain
was examined by studying 57 positions on 27 flakes with
and without NiO overlayer, focusing on thin flakes (<15 nm)
for the Raman to properly characterize the strained top layers
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FIG. 2. Raman spectra and magnetic properties of a wrinkled
flake. (a) Raman spectra of the flake at positions A (red), B (blue), C
(purple), and D (green) shown in Fig. 1(c), in the 80–320 cm−1 range.
According to theoretical calculations, five peaks, E 1

g , E 3
g , E 4

g , (A2
1g,

A5
1g), are expected in this frequency range, three (two) of which are

nearly doubly degenerated (nondegenerated) modes. (b) Zoomed-in
spectra from (a) around the E 1

g (left) and E 4
g (right) peaks (vertical

dotted lines mark the Raman peak for position D). The solid lines
connecting the data points represent fitted curves. (c) Kerr rotation
at positions A (red), B (blue), C (purple), and D (green), from left to
right. The hysteresis curves for magnetic fields (applied perpendic-
ular to the sample plane) are presented for several temperatures (8,
65, 75, 85, and 95 K). The curves are shifted vertically for clarity.
Sweeps from positive to negative fields (or reverse) are indicated
by dotted or black (or solid) lines. The vertical scale bar indicates
10 mrad. (d) Spatial distribution of the Raman E 4

g peak position
(plotted as color, except the green background color outside the
flake). The color and contour plot were generated by interpolating
values measured every 0.8 µm.

[12]. The Raman peak position is distinctively lower, indicat-
ing tensile strain, for the flakes with wrinkles than for those
without wrinkles regardless of the presence of a NiO layer
[Fig. 3(a)]. The strain-induced shifts of two Raman modes
should correlate, which is clearly seen in Fig. 3(a) for E1

g

(∼111–112 cm−1) and E4
g (∼234–235 cm−1) peaks [see Fig.

S4 of the Supplemental Material for the A2
1g (∼137 cm−1)

mode [12]]. To estimate the strain (lattice constant change)
from the Raman shift, we note that a 1% lattice constant
shrinkage, based on pressure cell experiment, reportedly gives
a shift of about ∼−4 cm−1 for the E1

g peak around 110 cm−1

[29]. The Raman peak shift per strain, assuming isotropic
shrinking and therefore triaxial strain, for such a peak was
extracted to be ∼−1.3 cm−1/%, which is also consistent with
our bending experiment. The negative sign between wave
number and strain (meaning lattice expansion gives redshift
of Raman peak) is consistent with the results obtained from
first-principles studies on monolayer Cr2Ge2Te6 [27]. We also
performed polarized Raman experiments to evaluate the in-
plane anisotropy and found it to be small [12], so we used data
from unpolarized Raman measurements for most of our analy-
sis unless otherwise noted. We studied the correlation between
TC and Raman peaks on four flakes focusing on two in-plane
Raman modes [Fig. 3(b)], and extracted an approximate linear
correlation of ∼−20 K/cm−1 (converting to a rate of change
of TC to strain ∼26 K/%).

Magnetism in Cr2Ge2Te6 mainly relies on the interactions
between Cr atoms, which form a quasi-2D honeycomb lattice.
Such interactions have been studied previously in MCrS2

systems (M is a monovalent metal among Li, Na, K, Ag,
and Au) [30,31]. Specifically, three unpaired electrons from
Cr form triplet t2g orbitals with a lower energy than doublet
eg states. The direct overlap between different t2g orbitals of
neighboring Cr ions gives rise to strong antiferromagnetic
(AFM) exchange interactions, which strongly depend on and
decrease with increasing Cr-Cr distance. This competes with
ferromagnetic (FM) interactions that are caused by virtual
hopping from the occupied t2g shell of one Cr to the empty eg

FIG. 3. Correlation between tensile strain and enhanced magnetism. (a) The correlation between peak positions of two in-plane Raman
modes (E 4

g vs E 1
g ) for Cr2Ge2Te6. Samples (after) before depositing NiO which do not show wrinkles are indicated as (open) solid rectangles.

Samples after depositing NiO which show wrinkles are indicated by diamonds. (b) Relationship between the measured Curie temperature (TC)
and the two in-plane Raman modes peak positions [top (E 4

g ) and bottom (E 1
g ) axes] for Cr2Ge2Te6 samples with a NiO overlayer. (c) Curie

temperature TC (red filled circle), crystalline magnetoanisotropy energy C-MAE (blue triangle), and first exchange coupling J1 (green empty
circle) with respect to the in-plane tensile strain, from DFT calculations.

L020402-3



HIROSHI IDZUCHI et al. PHYSICAL REVIEW B 111, L020402 (2025)

FIG. 4. STEM image and tensile strain in Cr2Ge2Te6 layers. (a) Top: cross-section STEM image of a Cr2Ge2Te6/NiO. The upper dark
region indicates the NiO overlayer. In the lower region, well-defined flat layered patterns indicate the Cr2Ge2Te6 layers [each layer highlighted
by blue dashed rectangles, highlighting the area to count the contrast in (b) and (c)]. These layers are individually numbered (1, 2, …15).
Between these and NiO, there is a region (labeled as L1) with less flat layers and less sharp contrast. L2 (Lref ) represents layers 1–10 (n > 12).
The image was taken at the position ∼1 µm apart from the center of the wrinkle (not on the wrinkle itself). Bottom: atomic structure of
Cr2Ge2Te6 generated with VESTA [36], where the b axis direction (the horizontal direction in the STEM image above) is the zigzag direction.
(b) The contrast variation with lateral position in layers 1 and 13 shown in (a). Red and blue curves show the fitting with the sine function
(periods 0.194 and 0.189 nm). (c) Fourier transform (see Supplemental Material [12] for more details) of the highlighted region in (a). (d)
STEM Energy Dispersive X-ray Spectroscopy mappings for O, Cr, Ni, Ge, and Te atoms with a scale bar of 5 nm. First panel shows a STEM
image for the area. At the interface, there is a region showing intermixing, labeled as L1a and L1b, together corresponding to L1 in (a).

shells of another Cr. This explains why the AFM (FM) nature
is more pronounced in small (large) M in MCrS2 compounds.
In Cr2Ge2Te6, we expect that the increase in Cr-Cr distance
reduces the AFM exchange interaction, resulting in the net
increase of the FM strength. The increased FM interaction in
the stretched lattice is further confirmed by density functional
theory (DFT) calculation and Monte Carlo simulations, as
shown in Fig. 3(c). As tensile strain increases, the net ferro-
magnetic exchange energy thus TC and the magnetoanisotropy
increase [12]. Although similar calculations were previously
reported in the atomically thin limit [27,32,33], we computed
the increase of TC for both the case of an atomically thin limit
[12] and thick flake, the latter corresponding to the configu-
ration of our experiment. Notably, for small strain values, a
tensile strain of 1% leads to an increase in TC of ≈17% (from
90 to 105 K) in reasonable agreement with the experimental
data. It is interesting to note that in Fe3GeTe2, TC is reported
to increase from 180 to 210 K with strain, but the mechanism
is considered to be more related to spin-orbit coupling [34].

The strain in a Cr2Ge2Te6/NiO (tNiO = 50 nm) heterostruc-
ture was further characterized by cross-sectional scanning
transmission electron microscopy (STEM) [35]. Figure 4(a)
displays a black-and-white contrast view, with electrons scat-

tering from the Cr2Ge2Te6 layers in the direction along the
crystal axis perpendicular to the zigzag direction of Cr-Ge-Cr.
A representative trace of the contrast gives a period of ≈0.19
nm [Figs. 4(b) and 4(c) [12]], in good agreement with the
previous reported value for the Te-Te distance in Cr2Ge2Te6

crystal (0.197 nm [30]). Interestingly, the Cr2Ge2Te6 layers
located near the Cr2Ge2Te6/NiO interface (L2 region) have a
larger period (0.194 nm) than those located deeper and further
away from the interface (0.189 nm). Such a larger period
is also visible in the Fourier transformed image [12] based
on the contrast of each layer [Fig. 4(c); note that the spatial
frequency has been converted to period], further indicating
the characteristic thickness of the stretched region (L2) ≈10
layers [7 nm, not including the regions that do not show the
periodic contrast (L1 region)]. Within the thickness (∼27 nm)
of Cr2Ge2Te6 on SiO2/Si in this specimen, apart from the
layers in (L1) region and the first 12 layers in (L2) region,
the rest of the layers (reference region) towards SiO2 showed
no notable change in the in-plane lattice parameters. An en-
ergy dispersive x-ray spectroscopy image of this specimen
[Fig. 4(d)] shows that there are no notable deviations from
stoichiometry in the L2 region. However, at the same time,
in line scans we notice that a small amount of Ni atoms
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FIG. 5. Curie temperature in Cr2Ge2Te6, Cr2Ge2Te6/NiO, and
Cr2Ge2Te6/MgO. Curie temperature of Cr2Ge2Te6 flakes with wrin-
kles with 50-nm-thick NiO overlayer (red square) and 30-nm-thick
MgO overlayer (green circle). Data without any overlayer (blue tri-
angle) are from this study except for the four data points of thinnest
samples [1]. The shaded regions are visual guides.

(∼1%) are substituted up to ∼10 nm in depth [which cannot
be seen in the mapping in Fig. 4(d)]. Note that first-principles
modeling of Ni substitution (Supplemental Material Fig. S7)
show that wiggles or buckling appear as a consequence of
structure relaxations.

Below we further elaborate on the origin of the enhanced
magnetism, and address the TC dependence on the thickness of
Cr2Ge2Te6 flake. As shown in Fig. 1(d), TC is enhanced even
in the bulk limit of Cr2Ge2Te6. This is consistent with the
limited probing depth of MOKE, and the lattice deformation
being limited to the layers close to the surface (as charac-
terized by STEM and expected for strain transferred from a
top sputtered thin film). For the thin limit, Cr2Ge2Te6 shows
suppressed magnetism attributed to large thermal fluctuations
on the 2D limit [1] and disorder. We note that NiO is an anti-
ferromagnetic material, and we observed no ferromagnetism
in NiO itself in our MOKE measurements. We replaced NiO
with MgO and prepared some Cr2Ge2Te6/MgO heterostruc-
tures. We observed the formation of similar wrinkle structures,
similar Raman peak shifts close to the wrinkles, and also
enhancement in both TC (Fig. 5) and coercive field [12]. The
increase of TC with MgO was as high as with NiO overlayer
(up to 120 K) for thicker Cr2Ge2Te6 flakes. These observa-
tions suggest that the enhanced magnetism in Cr2Ge2Te6/NiO
is unlikely related to the antiferromagnetism of NiO or dop-
ing of magnetic element Ni. For Cr2Ge2Te6/MgO, the TC

starts to decrease rapidly with decreasing Cr2Ge2Te6 thick-
ness below “the critical thickness” tC ∼ 17 nm, and MOKE
hysteresis can no longer be observed for ∼12 nm or thin-
ner. For Cr2Ge2Te6/NiO, the critical thickness (tC) below
which the TC starts to decrease is smaller (∼7 nm), and the

MOKE hysteresis cannot be observed for ∼4 nm or thinner.
For Cr2Ge2Te6 without any overlayer, tC is even smaller [3].
The difference in tC can be related to the different amount
of “dead layers” (disordered or degraded layers below the
Cr2Ge2Te6 top surface). These dead layers can weaken the
magnetism, and lessen the enhanced magnetism induced by
strain in thin flakes. The smaller tC for Cr2Ge2Te6/NiO may
be attributed to the relatively thinner degraded region (dead
layers) compared to Cr2Ge2Te6/MgO. Indeed, we observed
modified Raman spectra, with strong oxide-related peaks
dominating the Raman spectra, of Cr2Ge2Te6/MgO flakes
when the thickness of Cr2Ge2Te6 is below ∼12 nm, whereas
such modified spectra are observed for flakes with Cr2Ge2Te6

thickness below ∼4 nm for Cr2Ge2Te6/NiO samples. These
thickness values match those below which we could no longer
observe magnetic hysteresis and may be taken as an esti-
mated thickness of the degraded region of dead layers. In the
case of Cr2Ge2Te6/NiO, the ∼4-nm-thick degraded region is
also consistent with the thickness of intermixing region (L1,
Fig. 4). In summary, while the enhanced magnetism can be
observed not only with NiO but also with other overlayer
materials (such as MgO) that can induce strain, different over-
layer films can give different interfaces with Cr2Ge2Te6 that
affect the Cr2Ge2Te6 thickness dependence of the enhanced
ferromagnetism.

In conclusion, we demonstrated a method to induce strain
or artificially stretch the lattice in a crystalline Cr2Ge2Te6

flake, by inducing wrinkles after depositing an overlayer ma-
terial such as NiO or MgO. We experimentally characterized
the local magnetic and lattice properties, established the re-
lationship with local strain, and corroborated our results with
theoretical calculations. Our work provides an easily imple-
mentable method (via heterointerfaces) for strain engineering
that could apply to a wide variety of 2D vdW materials (and
even non-2D materials), to control the electronic, magnetic,
and optical properties and develop new functionalities.
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