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Using ab initio electronic structure calculations we investigate the change of the band structure and the ν0

topological invariant in HgSe (noncentrosymmetric system) under two different types of uniaxial strain along the
[001] and [110] directions, respectively. Both compressive [001] and [110] strain lead to the opening of a (crystal
field) band gap (with a maximum value of about 37 meV) in the vicinity of �, and the concomitant formation of
a camel-back- (inverse camel-back-) shaped valence (conduction) band along the direction perpendicular to the
strain with a minimum (maximum) at �. We find that the Z2 invariant ν0 = 1 which demonstrates conclusively
that HgSe is a strong topological insulator (TI). With further increase of the strain the band gap decreases,
vanishing at a critical strain value (which depends on the strain type) where HgSe undergoes a transition from
a strong TI to a trivial (normal) insulator. HgSe exhibits a similar behavior under a tensile [110] uniaxial strain.
On the other hand, HgSe remains a normal insulator by applying a [001] tensile uniaxial strain. Complementary
electronic structure calculations of the nonpolar (110) surface under compressive [110] tensile strain show two
Dirac cones at the � point whose spin chiral states are associated with the top and bottom slab surfaces.
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I. INTRODUCTION

There has been an explosion of theoretical and exper-
imental research in the search for three-dimensional (3D)
topological insulators (TIs), which are a new quantum state
of matter with promising applications in spintronics and
multifunctional topological-based devices and interfaces.1,2

TIs are characterized by gapped bulk states, similar to a
normal (trivial) insulators, with robust gapless topologically
protected metallic surface states resulting from the strong
spin-orbit coupling (SOC). This in turn leads to an odd number
of Dirac-cone-like dispersions crossing the Fermi level at
the surface and to a nontrivial Z2 topological invariant. The
surface states exhibit an unconventional spin texture with the
spin direction locked to the two-dimensional (2D) electron
momentum. Current ongoing research efforts focus primarily
on the prototypical single Dirac-cone family of Bi2Te3, Bi2Se3,
and Sb2Te3 3D TIs, where angle-resolved photoemission
experiments have shown the chiral spin texture of the surface
states.3–5

Although the band inversion near the time-reversal invariant
momenta (TRIM) points (�k ≡ −�k mod �G, where �G is a
reciprocal lattice vector), is a strong indication that a system
is TI, it is not definitive because the topological invariant is
a global property of the entire occupied Brillouin zone (BZ).
Thus, in order to confirm conclusively whether a 3D system
is topologically trivial or nontrivial it is essential to compute
the Z2 invariant. For band insulators with crystal inversion
symmetry, the topological invariant number can be easily
computed as the product of half of the parity (Kramers pairs
have identical parities) numbers for all the occupied states at
the TRIM points.6 For the general case of noncentrosymmetric
systems (such as zinc-blende structures) the topological
invariant can be determined either by integrating both the
Berry’s connection and curvature over half of the BZ7 or by
calculating the evolution of the Wannier function center during

a “time-reversal pumping” process.8 These two equivalent
approaches are discussed in detail in Sec. II.

The mercury chalcogenides HgSe and HgTe in the zinc-
blende (ZB) structure belong to a group of unique materials
exhibiting the so-called inverted band structure. In this band
structure, the energy of the anion s-derived �6 state, which
is the conduction-band minimum (CBM) at � for most ZB
semiconductors, is below the anion p-like valence-band max-
imum (VBM) with �8 symmetry. However, the experimental
results for the electronic structure of HgSe are controversial.
Early photoelectron spectroscopic experiments9,10 on n-type
HgSe indicated that this material should have a gap with a
positive value for E0 ≡ E(�6) − E(�8) = 0.42 eV. On the
other hand, photoemission experiments11 of the nonpolar HgSe
(110) surface (to minimize the effects of surface charges) could
not unequivocally determine the sign of E0 due to lack of
resolution of the sequence of the �6, �7, and �8 bands.

Currently, the consensus of a large amount of experimental
results12 for HgSe seems to give the sequence of the energy
bands in ascending order is �6, �7, and �8, with E0 ≈ −0.2 eV
and the spin-orbit splitting, �SO ≡ E(�8) − E(�7) ≈ 0.4 eV.
Ab initio calculations based on the GW (G is the Green’s
function and W is the screened Coulomb interaction) scheme
find13–16 E0 ≈ −0.32 to −0.58 eV and �SO ≈ 0.27 to 0.32 eV,
in agreement with experiment.

In contrast, in HgTe the sequence of the energy bands is
�7, �6, and �8.13 Interestingly, recent transport experiments17

on a 70-nm-thick HgTe film, strained by epitaxial growth on
a CdTe substrate, show that the strain induces a band gap in
the otherwise semimetallic HgTe, rendering it a 3D TI. Similar
strain appears when thin HgSe films are epitaxially grown on
CdTe or CdSe substrates.

The objective of this work is to investigate the effects of
uniaxial strain on the topological phase of HgSe employing
ab initio calculations. The rest of this paper is organized as
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follows: Section II describes the methodology used to calculate
topological invariants and the band structures. In Sec. III we
analyze the evolution of the band structure and the topological
invariant number under two different types of uniaxial strain
along the [001] and [110] directions, respectively. In order to
corroborate the topological insulator nature we also present
results for the electronic structure of the nonpolar (110) HgSe
surface and the spin polarization of the surface states. Finally,
conclusions are summarized in Sec. IV.

II. METHODOLOGY

For 2D systems, there are two commonly employed numer-
ical approaches to determine whether a noncentrosymmetric
insulator is a TI.

(1) Use the periodic part of the Bloch functions, |un(�k)〉, to
calculate the Berry connection, �A(�k) = i

∑
n〈un(�k)|∇�k|un(�k)〉,

involving the sum over the occupied bands.7 For a 2D
system, both the Berry connection and the Berry curvature,
F(�k) = ∇�k × �A(�k), can then be used to directly compute the
topological invariant, z, involving the integration over half of
the BZ, denoted by B+, i.e.,

z = 1

2π

[∮
∂B+

�A(�k) · d�k −
∫

B+
F(�k)d2k

]
mod 2.

(2) Employ a recently proposed equivalent method for the
Z2 topological invariant based on the U(2N) non-Abelian
Berry connection.8 This approach allows the identification of
the topological nature of a general band insulator without any
of the gauge-fixing problems that plague the concrete, previous
implementation of invariants. The main idea of the method is to
calculate the evolution of the Wannier function center (WFC)
directly during a “time-reversal pumping” process, which is
a Z2 analog to the charge polarization proposed by Fu and
Kane.6 The evolution of the WFC along ky corresponds to the
phase factor, θ , of the eigenvalues of the position operator, X̂,
projected into the occupied subspace.

Each state of the nth occupied band is indexed by three
quantum numbers |n, kx, ky〉. This allows us to define a square
matrix F (kx,ky) containing the overlap integrals

(F (kx,ky))mn = 〈m,kx,ky |n,kx + �kx,ky〉,
where �kx = 2π

Nxa
is the discrete spacing of Nx points. One

can in turn calculate the complex unitary square matrix

D(ky) =
Nx−1∏
j=0

F (j �kx,ky),

which has the complex eigenvalues λl(ky) = |λl(ky)|eiθl (ky ).
The topological invariant z is then calculated by the even

or odd number of crossings of any arbitrary horizontal (θ =
const) reference line with the evolution of the θl’s, mod 2.

For a 3D bulk system, it is necessary to calculate two
different invariants, z0 and zπ , for the two different BZ
planes, kz = 0 and kz = π , containing eight TRIM points. The
computation for each plane is analogous to the 2D case which
has four TRIM points. We employ the second aforementioned
approach to calculate the 3D topological invariant, ν0, which is
defined as ν0 ≡ (z0 − zπ ) mod 2. The system is in the strong
topological insulator (trivial insulator) phase, if ν0 is 1 (0).

More specifically, the system is a nontrivial or strong TI if
the evolution curves of the WFC cross an arbitrary reference
line an odd number of times in the kz = 0 plane (z0 = 1)
and an even number of times in the kz = π plane (zπ = 0)
or vice versa.8 On the other hand, if the evolution curves
cross the arbitrary reference line, an even (z0 = zπ = 0) or
odd (z0 = zπ = 1) number of times in both the kz = 0 and
kz = π planes, the system is topologically a trivial or normal
insulator (NI).

The ab initio calculations employed the Vienna Ab initio
Simulation Package (VASP) code,18,19 employing the Perdew-
Burke-Ernzerhof (PBE) flavor of the exchange-correlation
functional20 and the projected-augmented-wave approach21 to
represent the electron-ion interaction. The spin-orbit coupling
was included in the self-consistent calculations. The Hg 5d

electrons are treated explicitly as valence electrons. The energy
cutoff of the plane-wave expansion of the basis functions was
set to be 550 (450) eV for the bulk (surface) calculations.
The BZ integration was performed with a 11 × 11 × 11
(7 × 7 × 1) k-point Monkhorst-Pack mesh22 for the bulk (sur-
face) calculations. The equilibrium volume, V0 = 61.86 Å3

per formula unit, is in good agreement with previous ab
initio calculations.23 The experimental lattice constant a =
6.084 Å 23 differs by 3% from the theoretical equilibrium
value of PBE. The nonpolar (110) surface is modeled by a
periodic slab consisting of 21 atomic layers with a 12-Å-thick
vacuum region separating the periodic slabs.

An accurate description of the electronic structure is a
prerequisite in the search and discovery efforts for next-
generation TIs. It is known that density functional theory
studies24–26 of TIs based on local or semilocal exchange-
correlation functionals can incorrectly predict a material to be
a TI when in reality it is not,27 to the detriment of experiment-
theory interplay. This is usually due to the fact that such a
local or semilocal treatment systematically underestimates the
band gap and can lead to an incorrect ordering of the frontier
bands at the TRIM points, which is the determining factor
in the prediction of the topological phase. Furthermore, it
can also give rise to wrong band topologies and effective
masses.28 Thus, we have also carried out calculations employ-
ing the modified Becke-Johnson local density approximation
(MBJLDA) method,29 which predicts28 band gaps, effective
masses, and, most importantly, frontier-band ordering that are
in very good agreement with the computationally more intense
GW13 and hybrid-functional30 approaches.

Figures 1(a) and 1(b) display the PBE and MBJLDA
band structures of the undeformed HgSe, respectively, along
two symmetry directions, where the MBJLDA parameter
c = 1.2. PBE predicts the correct level ordering in the upper
valence-band region with E0 = −1.2 eV and �SO = 0.25 eV,
thus yielding a �6 state which is lying far low relative to the
�8 state. On the other hand, the MBJLDA shifts the �6 state
to a higher energy, resulting in E0 = −0.23 eV and �SO =
0.20 eV, in agreement with the values of E0 = −0.32 eV and
�SO = 0.27 eV of recent GW calculations.13 The fact that both
the PBE and the LDA13 exchange correlation functionals for
HgSe yield the correct frontier band ordering (�7, �8) allows
for a reliable determination of the topological invariant.3

Thus, throughout the remainder of this paper the electronic
structure calculations under strain are carried out using the
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FIG. 1. (Color online) Band structure relative to the Fermi energy
of unstrained HgSe along the �-X ([100]) and �-L ([111]) symmetry
directions of the BZ [�kL = π

a
(1,1,1) and �kX = π

a
(1,0,0), where a is

the equilibrium lattice constant] calculated by (a) the PBE and (b) the
MBJLDA approach,29 cMBJ = 1.2.

PBE exchange correlation functional. The atomic positions
were fully relaxed using the conjugate gradient algorithm until
all interatomic forces are smaller than 0.01 eV/nm.

III. RESULTS AND DISCUSSION

A. Bulk band structure under uniaxial strain

In order to open a band gap in the semimetallic HgSe, one
needs to employ strain. We have carried out calculations under
hydrostatic pressure in a wide volume range, from −30% to
+30% of the equilibrium volume V0, in which the equilibrium
structure of HgSe remains zinc-blende.23 We find that within
this wide range HgSe always has a zero band gap and, hence,
remains a semimetal.

Therefore, we have investigated the evolution of the elec-
tronic structure and the topological invariant under uniaxial
strain, ε[hkl] ≡ c−a

a
, along the [001] and [110] directions which

lowers the Td symmetry of the ZB structure to D2d and C2v ,
respectively, and opens a band gap near the � point. In both
cases, the in-plane lattice constant perpendicular to the strain
was fixed to that of the equilibrium ZB structure. Our ab
initio calculations of the total energy as a function of both
uniaxial strains indicate that the corresponding structures are
mechanically stable up to strain of ±15%.

1. [001] strain of D2d symmetry

Figures 2(a) and 2(b) show the band structures of HgSe un-
der ε[001] of −5% and +3%, respectively, perpendicular to the
strain direction. Under a [001] uniaxial tensile (compressive)
strain ε[001] > (<)0, of D2d symmetry, the half-filled fourfold
degenerate �8 state splits into an twofold degenerate occupied
valence �7v (�6v) and a twofold degenerate unoccupied
conduction �6c (�7c) energy levels leading to a positive
(negative) splitting, ��

[001] ≡ E(�6) − E(�7) > (<)0.
Under compressive strain (��

[001] < 0) the maxima of the
two highest nondegenerate valence bands along the [110]
direction, corresponding to the irreducible representations
3 and 4, respectively, occur away from �. This gives rise
to dumbbell- or camel-back-shaped valence bands with the
valence band minima at �, due to the fact that band energies
along [1̄1̄0] (not shown in the figure) are equal to those
along [110] due to time-reversal symmetry. Similarly, the 
4

conduction band displays a reverse camel-back shape with
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FIG. 2. (Color online) Band structure of HgSe (relative to the
Fermi energy EF ) under uniaxial strain along the [001] direction of
D2d symmetry near the � point along the symmetry directions parallel
and perpendicular to the strain direction. (a) The compressive strain of
ε[001] = −5% yields a TI (ν0 = 1) with Egap = 37 meV. (b) The tensile
strain of ε[001] = +3% yields a NI (ν0 = 0) with Egap = 13 meV. Red
and blue denote the two spin-polarized bands, while green refers to
non-spin-polarized bands.

a maximum at � and a minimum along the 
 direction
away from �. These valence bands along 
 become double
degenerate at �. This leads to an indirect gap of Egap = 37 meV
located in a direction perpendicular to the strain axis, in
contrast to the case of the [001] tensile stress in Fig. 2(b),
where the energy gap Egap occurs along the strain axis.

Figure 2(b) shows the band structure of HgSe under tensile
strain of ε[001] = +3% (��

[001] > 0) along the high symmetry
[110] and [001] directions parallel and perpendicular to the
strain direction, respectively. Note that along the � ([001])
direction of C2v symmetry both the conduction and valence
bands are doubly degenerate (denoted by the green curves)
of �5 representation. The crystal-field-splitting gap, Egap =
13 meV, which is allowed by the same symmetry of the
bands,31 is observed away from �.

2. [110] strain of C2v symmetry

Application of uniaxial stress along the [110] reduces the
symmetry further to the orthorhombic C2v . As this space group
does not allow four-fold-degenerate states, the ZB �8 splits
under strain and creates a gap between a valence �5v and
conduction �5c, both of which are twofold degenerate. Under
expansion the frontier energy bands exchange their ordering.

Figures 3(a)–3(d) show the evolution of the band structure
around �, under a uniaxial [110] strain of (a) −5%, (b) +3%,
(c) +6%, and (d) +8%, along the [110] (x̂ + ŷ) and [1̄10]
(−x̂ + ŷ) high �k symmetry directions, which are parallel
and perpendicular to the strain direction, respectively. Un-
der ε[110] = −5% the direct gap at � is ��

[110] ≡ E(�5c) −
E(�5v) = 116 meV. The minimum band gap Egap = 31 meV
occurs perpendicular to the strain direction between the
camel-back-shaped valence and inverse camel-back-shaped
conduction bands of 
4 irreducible representation.

Figures 4(a) and 4(b) display the evolution of the band
gap Egap and the energies of the conduction and valence
band states E(�n) at � as a function of uniaxial strain

075143-3



WINTERFELD, AGAPITO, LI, KIOUSSIS, BLAHA, AND CHEN PHYSICAL REVIEW B 87, 075143 (2013)
E

 −
 E

F 
 (

eV
)

[110] [110]

−0.4

−0.3

−0.2

−0.1

0

 0.1

 0.2

Γ

(a)

_
ε[110]=-5%

ν0=1

3

5

3
4

4

3

5
3

4

43
5

4

4

3

E
 −

 E
F 

 (
eV

)

[110] [110]

−0.4

−0.3

−0.2

−0.1

0

 0.1

 0.2

Γ

(c)

_
ε[110]=+6%

4

5

4
3

3

3

5
3

4

4

4
5 3

3 4

[110] [110]Γ

(b)

_
ε[110]=+3%

ν0=1

4

5

4
3

3

3
5

3

4
4

4
5

3

3

4

[110] [110]Γ

(d)

_
ε[110]=+8%

ν0=0

4

5
4

3
3

3

5 3

4
4

4
5

3

3 4

FIG. 3. (Color online) Band structure of HgSe under uniaxial
strain along the [110] direction of C2v symmetry near the � point along
the high symmetry directions parallel and perpendicular to the strain
direction. (a) The compressive strain of ε[110] = −5% yields a TI
(ν0 = 1) with Egap = 31 meV. (b) The tensile strain of ε[110] = +3%
yields a TI (ν0 = 1) with Egap = 9 meV. (c) Critical tensile strain
ε[110] = +6% where the conduction and valence bands of irreducible
representation 4 cross at EF and HgSe undergoes a TI ↔ NI transition.
(d) At larger tensile strain of ε[110] = +8% HgSe becomes a NI (ν0 =
0) with a band gap Egap = 25 meV. Red and blue denote the spin-
polarized bands.

(−15% � ε � +15%) applied along the [001] and [110]
directions, respectively. The gray shaded areas denote the
strong topological insulating phase with ν0 = 1, while the
white background corresponds to the normal insulating phase
(ν0 = 0). The evolution of ν0 with uniaxial strain is discussed
in more detail in the next section. For [001] strain, the
frontier valence and conduction bands at � are of �6 and
�7 symmetry, while they are of �5 symmetry for the [110]
strain. Under both types of uniaxial compression Egap exhibits
a nonmonotonic behavior with strain, reaching its maximum
value in the topological nontrivial phase (ν0 = 1) at ε[001] =
−5% and ε[110] = −6% and vanishing at some critical strain
of ε[001] = −10% and ε[110] = −13%, respectively, where
the system undergoes a transition into the trivial insulator
phase. On the other hand, HgSe has a different response
between [001] and [110] tensile (ε > 0) strain. Namely, for
ε[001] > 0, the band gap is trivial (ν0 = 0) and increases with
strain [Fig. 4(a)], while when ε[110] > 0 the system is in a
strong topological insulator phase (ν0 = 1) for ε[110] � +5%
and it becomes a trivial insulator (ν0 = 0) at larger strain
[Fig. 4(b)].
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FIG. 4. (Color online) Variation of the band gap Egap and the
energies of the conduction band and valence band states, E(�n), at
the � point as a function of uniaxial strain along (a) the [001] direction
of D2d symmetry (where n = 6 and 7) and (b) the [110] direction of
C2v symmetry (where n = 5c and 5v). The gray shaded areas denote
the nontrivial topological phase, where ν0 = 1.

B. Evolution of topological invariant

An intriguing question is whether there is a correlation
between the change of the frontier valence and conduction
bands and corresponding changes in the topological invariant
ν0. Adiabatic deformations of the band structure (not involving
band touching or overlaps across the band gap) under external
perturbations (such as strain) leave the topology invariant.
Murakami32 has recently studied the classifications of all the
possible gap closings in 2D and 3D and showed that the
gap closing is associated with the change of the topological
invariant number.

In order to elucidate the underlying mechanism of the
evolution of both the band inversion and ν0, we show
schematically in Fig. 5 the strain-induced change of the
band structure close to the TRIM � point along an arbitrary
direction (� ↔ ±K) in the kz = 0 plane, where the spin-split

E
ne

rg
y

-K Γ K

(a)

z0=0

-K Γ K

(b)

-K Γ K

(c)

z0=1

FIG. 5. (Color online) Schematic of the strain-induced evolution
of the band structure along an arbitrary direction (� ↔ ±K) in the
kz = 0 plane where the spin-split bands are denoted by red and blue.
(a) The strain splits the originally fourfold degenerate frontier bands
at � in electron and hole bands which does not involve any band
crossing and, hence, the bulk system is in a topologically trivial
phase with z0 = 0. (b) Band inversion of one of the spin-split bands
(blue) at the critical strain. (c) Odd number (one) of band inversions
for one of the bands (blue) at a larger strain, giving rise to a band gap
opening away from � and the concomitant formation of a camel-back-
(inverse-camel-back-) shaped valence (conduction) band along the
� ↔ ±K direction, rendering the system a strong TI (z0 = 1). Note
that the inverted bands exhibit both electron and hole characters.
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bands are denoted by red and blue. Figure 5(a) shows that
under, for example, a uniaxial tensile strain, the originally
four-fold-degenerate �8 state (under zero strain) splits in the
spin-polarized electron and hole bands without involving any
band inversion. This corresponds to the band structure along
the [110] direction for ε[001] > 0 in Fig. 2(b). In order to reach
the topological phase and its characteristic counterpropagation
of opposite spin states (i.e., �S−�k = −�S�k) on the surface, it is
necessary to “knot” (entangle) the frontier bands.33,34 That is
achieved by inverting an odd (one) number of spin-split bands
(blue) in Fig. 5(b). Further increase of the strain [Fig. 5(c)]
gives rise to the opening of a (crystal field) band gap with
the concomitant formation of a camel-back- (inverse camel-
back-) shape valence (conduction) band along the � ↔ ±K

direction. This corresponds to the nondegenerate 
4 valence
and conduction bands along the [1̄10] direction for ε[110] < 0
in Fig. 3(a). Since no other band inversions occur along the
[110] direction, the system is a strong topological insulator
(z0 = 1). Similarly, there is only one band inversion of the
valence and conduction bands of 
4 character along the [1̄10]
direction for ε[110] > 0 in Fig. 1(b), rendering the system
a strong TI. Moreover, the doubly degenerate valence and
conduction bands of �5 character along the [001] direction
for ε[001] > 0 [Fig. 3(b)] have an even (two) number of band
inversions and, hence, the system is a topologically a trivial
insulator (z0 = 0).

While the above mechanism, based on the changes of the
frontier electronic bands (eigenvalues), provides an intuitive
explanation of the topological phase transitions, it requires
knowledge of the overlap of the 2D conduction and valence
energy surfaces. It becomes less practical when these surfaces
are not smooth and present multiple extrema. That is the
case for Figs. 3(b)–3(d), for instance, requiring a careful
examination along multiple �k directions. For such cases, a
less intuitive, but more stringent criterion, is the determination
of the topological invariant, ν0 ≡ (z0 − zπ ) mod 2, based
on the evolution of the Wannier functions (which include
a phase factor), as explained in Sec. II. Nonetheless, one
notes a clear trend in the evolution of the bands along the
[1̄10] direction. The gap between the valence and conduction
bands of irreducible representation 4 is progressively reduced,
with increasing tensile strain, until they cross at ∼0 eV for
ε[110] = 5–6% [Fig. 3(c)]. The system undergoes a second
band inversion that “unknots” the band structure. As expected,
this closing of the gap coincides with the topological phase
transition predicted by the invariant ν0. For larger strain, this
gap increases monotonically [Fig. 3(d)] and without changes
to the topological phase.

In HgSe, band inversions occur only in the vicinity of �,
because the conduction and valence states at other TRIM points
are too far separated in energy. Consequently, the bands in the
kz = π plane are always not inverted [analogous to Fig. 5(a)]
and, hence, zπ = 0 in the entire strain range, thus yielding
ν0 = (zπ − z0 mod 2) = z0.

Figures 6(a) and 6(b) show the evolution lines of the
Wannier centers along ky in the kz = 0 plane under a uniaxial
compression of ε[001] = −5% and ε[001] = −15% along the
[001] direction, respectively. Under the −5% (−15%) com-
pression the evolution curves (blue) cross any arbitrary line
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FIG. 6. (Color online) Evolution of Wannier centers for HgSe
along ky in the kz = 0 plane under uniaxial strain along the [001]
direction of (a) ε[001] = −5% and (b) ε[001] = +15% and along
the [110] direction of (c) ε[110] = −5% and (b) ε[110] = +8%,
respectively. The evolution lines cross any arbitrary reference line
parallel to ky (for example, the red dotted line) an odd (even) number
of times, yielding z0 = 1 (0). In all cases the corresponding zπ = 0;
Nx = 48.

parallel to the horizontal axis (for example, the red dotted line)
an odd (even) number of points, thus yielding z0 = 1 (z0 = 0).
Furthermore, the evolution lines of the Wannier centers along
ky in the kz = π plane under both uniaxial compression
(not shown here) yield zπ = 0. This demonstrates that under
uniaxial compression along [001], there is a topological
difference between the TI phase (ν0 = 1) at ε[001] = −5%
and the trivial insulating phase (ν0 = 0) at ε[001] = −15%.
Interestingly, the critical value of ε[001] = −10% where HgSe
undergoes a TI ↔ NI transition is close to the critical value
of ε ∼ −11%, where the ZB structure undergoes a transition
to the cinnabar structure.23 In Figs. 6(c) and 6(d) we show
the evolution of the Wannier centers in the kz = 0 plane
under a uniaxial compression (ε[110] = −5%) and expansion
(ε[110] = +8%) along the [110] direction, where z0 = 1 and
z0 = 0, respectively. Since in both cases zπ = 0, HgSe is a TI
(ν0 = 1) under −5% uniaxial compression while it is in the
trivial insulating phase (ν0 = 0) under 8% uniaxial expansion.

C. Surface band structure and spin polarization

While the Z2 criterion is sufficient to ascertain whether
a 3D bulk system is a TI, an additional commonly employed
criterion is the existence of gapless surface states that have spin
texture. Therefore, we have carried out electronic structure
calculations of the nonpolar (110) HgSe surface to minimize
the effects of surface charges and reconstruction associated
with polar surfaces. The band structure of a uniaxially strained
(ε[110] = −10%) HgSe (110) slab is shown in Fig. 7 along the
symmetry directions in the 2D BZ. The states marked in blue
are identified to be spatially confined to the top and bottom
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FIG. 7. (Color online) Band structure of the (110) HgSe surface
under a [110] uniaxial compressive strain (ε[110] = −10%) along the
symmetry directions in the two-dimensional BZ showing a single
Dirac cone at � at 52 meV below the Fermi energy. The gray and
blue bands correspond to bulk- and surface-derived states, where the
latter are associated with the two top and bottom atomic layers.35

boundary layers of the slab, i.e., surface states, using the
approach of Park et al.35 The 21-atomic-layer slab exhibits a
mirror symmetry with respect to both surfaces. One can clearly
see that the topological surface states form two superimposed
Dirac cones at the � point, each spatially located on the top and
bottom surfaces. The Dirac point (52 meV below the Fermi
energy) is fourfold degenerate due to Kramer’s degeneracy
at the TRIM point �. The inset shows the variation of the
energy gap of the slab at � as function of the slab thickness,
D = Na/

√
2, where N is the number of atomic layers and

a = 6.278 Å is the equilibrium lattice constant. The large value
of the energy gap in thin slabs is due to the interactions between
the states localized at the opposite surfaces. As the number of
layers increases, the size of the gap decreases converging to
∼1 meV at the critical thickness of about 7 nm (N ∼ 16).

Figure 8 shows constant energy contours of the surface
spin polarization vector projected on the kx-ky plane in the
vicinity of the Fermi energy on the top (a) and bottom
(b) surface layers, respectively. The red arrow contours denote
the spin polarization vector of states at EF , with the remaining
energy contours representing an energy range of ±25 meV
about the Fermi energy. We find that �S−�k|| ≈ −�S�k|| and �S�k||

is locked almost normal to the in-plane momentum �k||,
which results from a combination of the strong SOC and the

−0.1

0

 0.1

−0.1 0  0.1

k y

kx

(a)

−0.1 0  0.1

kx

(b)

FIG. 8. (Color online) Constant energy contours of surface spin
polarization vector of the uniaxially strained (110) HgSe surface
in Fig. 7 within an energy of ±25 meV about EF (all state above
the Dirac point), projected onto the (a) top and (b) bottom (011)
HgSe surfaces, respectively. The red arrow contours denote the spin
polarization vector of states at EF separating those with energies
higher and lower than EF . The units of k are 2π/a.

inversion symmetry breaking at the surface, the well-known
Rashba effect.36 This in turn results in the rotation of the
spin orientation around the Fermi surface (spin chirality) as
reported for other known TI materials.

IV. CONCLUSIONS

In conclusion, we have investigated the evolution of the
band structure and of the topological invariant in HgSe under
application of [001] and [110] uniaxial strain. We predict
that HgSe is a strong TI (ν0 = 1) in the compressive strain
range, εcr

[001]([110]) � ε[001]([110]) � 0, where the (crystal field)
band gap occurring away from � displays a nonmonotonic
strain behavior. The band gap vanishes at εcr

[001]([110]), where
the system undergoes a TI ↔ NI phase transition. We find
that HgSe exhibits a similar behavior applying a [110] tensile
strain. On the other hand, under [001] tensile strain HgSe
remains a NI. Thus, these calculations demonstrate that HgSe
can be tuned into a 3D topological insulator via proper strain
engineering.

ACKNOWLEDGMENTS

The research at CSUN was supported by NSF-PREM Grant
No. DMR-1205734. Jin Li was supported by a DTRA Grant
No. HDTRA1-10-1-0113. Y.P.C. acknowledges support by the
DARPA MESO program.

*nick.kioussis@csun.edu
1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
3H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Nat. Phys. 5, 438 (2009).

4Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5,
398 (2009).

5Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi,
H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher,
Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).

6L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
7T. Fukui and Y. Hatsugai, J. Phys. Soc. Jpn. 76, 053702
(2007).

8R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B 84,
075119 (2011).

9K.-U. Gawlik, L. Kipp, M. Skibowski, N. Orłowski, and R. Manzke,
Phys. Rev. Lett. 78, 3165 (1997).

10M. von Truchseß, A. Pfeuffer-Jeschke, C. R. Becker, G. Landwehr,
and E. Batke, Phys. Rev. B 61, 1666 (2000).

11C. Janowitz, N. Orlowski, R. Manzke, and Z. Golacki, J. Alloys
Compd. 328, 84 (2001).

075143-6

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1103/PhysRevB.74.195312
http://dx.doi.org/10.1143/JPSJ.76.053702
http://dx.doi.org/10.1143/JPSJ.76.053702
http://dx.doi.org/10.1103/PhysRevB.84.075119
http://dx.doi.org/10.1103/PhysRevB.84.075119
http://dx.doi.org/10.1103/PhysRevLett.78.3165
http://dx.doi.org/10.1103/PhysRevB.61.1666
http://dx.doi.org/10.1016/S0925-8388(01)01350-0
http://dx.doi.org/10.1016/S0925-8388(01)01350-0


STRAIN-INDUCED TOPOLOGICAL INSULATOR PHASE . . . PHYSICAL REVIEW B 87, 075143 (2013)

12S. Einfeldt, F. Goschenhofer, C. R. Becker, and G. Landwehr, Phys.
Rev. B 51, 4915 (1995).

13A. Svane, N. E. Christensen, M. Cardona, A. N. Chantis,
M. van Schilfgaarde, and T. Kotani, Phys. Rev. B 84, 205205
(2011).

14R. Sakuma, C. Friedrich, T. Miyake, S. Blügel, and F. Aryasetiawan,
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and É. I. Rashba, JETP Lett. 39, 78 (1984).

075143-7

http://dx.doi.org/10.1103/PhysRevB.51.4915
http://dx.doi.org/10.1103/PhysRevB.51.4915
http://dx.doi.org/10.1103/PhysRevB.84.205205
http://dx.doi.org/10.1103/PhysRevB.84.205205
http://dx.doi.org/10.1103/PhysRevB.84.085144
http://dx.doi.org/10.1103/PhysRevB.71.045207
http://dx.doi.org/10.1103/PhysRevB.65.153205
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevLett.80.891
http://dx.doi.org/10.1103/PhysRevLett.80.891
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.83.094107
http://dx.doi.org/10.1103/PhysRevB.83.094107
http://dx.doi.org/10.1103/PhysRevLett.105.096404
http://dx.doi.org/10.1103/PhysRevB.83.125319
http://dx.doi.org/10.1103/PhysRevB.83.125319
http://dx.doi.org/10.1103/PhysRevB.85.195114
http://dx.doi.org/10.1103/PhysRevB.84.041109
http://dx.doi.org/10.1103/PhysRevB.84.041109
http://dx.doi.org/10.1103/PhysRevB.82.205212
http://dx.doi.org/10.1103/PhysRevB.82.205212
http://dx.doi.org/10.1103/PhysRevLett.102.226401
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2085170
http://dx.doi.org/10.1063/1.2085170
http://dx.doi.org/10.1103/PhysRevB.74.045205
http://dx.doi.org/10.1016/j.physe.2010.07.043
http://dx.doi.org/10.1063/1.3293411
http://dx.doi.org/10.1103/PhysRevLett.105.186801
http://dx.doi.org/10.1103/PhysRevLett.105.186801



