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ABSTRACT

In this work we present a low cost and scalable technique, via ambient pressure chemical vapor deposition (CVD) on polycrystalline Ni films,
to fabricate large area (∼cm2) films of single- to few-layer graphene and to transfer the films to nonspecific substrates. These films consist
of regions of 1 to ∼12 graphene layers. Single- or bilayer regions can be up to 20 µm in lateral size. The films are continuous over the entire
area and can be patterned lithographically or by prepatterning the underlying Ni film. The transparency, conductivity, and ambipolar transfer
characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.

Graphene is the hexagonal arrangement of carbon atoms
forming a one-atom thick planar sheet. The successful
isolation of graphene by the microcleaving of highly oriented
pyrolytic graphite (HOPG)1 has opened up exciting pos-
sibilities for experimental investigations.2,3 Significant at-
tention has been captured by its outstanding properties which
render it another materials option for electronics applica-
tions.4-9 Chemical routes to fabricate graphene may offer
significant advantages over the microcleaving of HOPG10-14

when pursuing the coverage of large substrate areas with
graphene for large scale applications. Methods for large area
graphene synthesis include ultrahigh vacuum (UHV) anneal-
ing of single-crystal SiC (0001),13,15 UHV chemical vapor
deposition (CVD) on single crystal transition metals12 and
the deposition of graphene oxide (GO) films from a liquid
suspension followed by chemical reduction.10,16 However,
some of these approaches require the use of a specific
substrate material. Furthermore, the high cost of the single
crystal substrates and the UHV conditions necessary for
growth significantly limit the use of these methods for large
scale applications. Films derived from liquid suspensions of
graphene flakes can potentially overcome these limitations
but the intrinsic properties of graphene have not yet been
achieved.10,17-19 In the present work, we use ambient-pressure
CVD to synthesize single- to few layer graphene films on

evaporated polycrystalline Ni. Because of the use of ambient
pressure and readily available Ni films, this process enables
the inexpensive and high-throughput growth of graphene over
large areas with properties closer to those found by micro-
cleaving HOPG. Additionally, our method allows the flex-
ibility of transferring the produced film to alternative
substrates by wet-etching the Ni film. The graphene films
can then be used without further treatment and exhibit
outstanding properties in terms of optical transparency and
electrical conductivity. The graphene film can be patterened
by standard lithographic processes. Alternatively, the catalytic
Ni surface can be prepatterned in order to produce graphene
patterns of desired geometries at controlled locations.

The growth of graphene monolayers on single crystalline
transition metals such as Co,20 Pt,21,22 Ir,23,24 Ru,25,26 and
Ni27-31 is well known. The nucleation and growth of
graphene usually occurs by exposure of the transition metal
surface to a hydrocarbon gas under low pressure or UHV
conditions. In our CVD process, we expose a polycrystalline
Ni film (at 900-1000 °C) to a highly diluted hydrocarbon
flow under ambient pressure (see Supporting Information).
This gives rise to an ultrathin graphene film (1 to ∼10 layers)
over the Ni surface. The Ni films were e-beam evaporated
onto SiO2/Si substrates and thermally annealed before the
CVD synthesis (see Supporting Information). Thermal an-
nealing before the CVD process generates a Ni film micro-
structure with single-crystalline grains of sizes between 1
µm to 20 µm. The surfaces of these grains have atomically
flat terraces and steps, similar to the surface of single crystal
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substrates used for epitaxial UHV graphene growth12,13

(Figure 1a). In this way, the growth of graphene on the
surface of individual Ni grains resembles the growth of
graphene on the surface of a single crystal substrate. In our
CVD process, graphene growth is likely to occur due to the
precipitation of graphite from carbon species within the Ni
film as observed for other transition metals, such as Ru.12

During the exposure of the Ni surface to a H2 and CH4 gas
mixture in atmospheric conditions, the Ni film and the carbon

atoms provided by this CVD process form a solid solution.
Since the solubility of carbon in Ni is temperature-dependent,
carbon atoms precipitate as a graphene layer on the Ni
surface upon cooling of the sample. Because of the formation
of grain boundaries, the top surface of the Ni film becomes
discontinuous after the thermal annealing. Nevertheless, we
found that single- and few- layer graphene bridges across
these gaps, thus forming a continuous film over the entire
Ni area (see arrows in Figure 1b).

Figure 1. Graphene films grown by CVD on Ni. (a) AFM image of the surface of a Ni grain with atomically flat terraces and steps after
annealing. (b) AFM image of a graphene film on polycrystalline Ni after CVD synthesis. The ripples (pointed out by white arrows) at the
edge of the groove indicate that the film growth bridges across the gaps between grains. (c) Optical image of a CVD-grown graphene film
(blue) transferred to a SiO2/Si substrate (yellow background). The size of the graphene film is determined by the size of the initial Ni
substrate. (d) Optical image of an edge of a graphene film on a SiO2/Si substrate. Graphene on SiO2/Si obtained by HOPG cleaving is
shown in the inset for comparison. (e) AFM image of the region enclosed by the black square in panel d. The blue (red) arrow corresponds
to the pink (purple) region in panel d. (f) Height measurements on the two positions indicated in panel e. The blue (red) curve corresponds
to the region identified by the blue (red) arrow in panel e. The height distribution, measured by AFM images taken from the film edge in
panel d, is shown as an inset. (g) Optical image of a Ni film after the CVD process and with a graphene film on its surface. (h) Optical
image of the same graphene film in panel g transferred to a SiO2/Si substrate showing a high density of large regions (1-20 µm) consisting
of 1-2 layers of graphene (identified by the black arrows). These regions grow on the large Ni grains, identified by the arrows in panel g.
The morphology (shape and size) of graphene regions with constant thickness resemble the morphology of the Ni grains in panel g. Color
scale bar corresponds to panels a,b.
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The transfer of the CVD-derived graphene films to a
nonspecific substrate is enabled by the wet-etching of the
underlying Ni film. This is carried out by treating the film with
an aqueous HCl solution after a support material is coated on
the Ni/graphene surface, in our case a poly[methyl methacrylate]
(PMMA) layer (see Supporting Information). This results in a
free-standing PMMA/graphene membrane that can be handled
easily and placed on the desired target substrate (graphene
facing the surface).32 Finally, the PMMA can be dissolved
with acetone to yield a graphene film on the desired substrate.
The transferred graphene films preserve their continuity and
attach strongly to substrates made of almost any material,
such as semiconductors, glass, metals and plastics, via van
der Waals interactions. In the case of SiO2/Si substrates, the

attached graphene films can successfully withstand harsh
processing procedures, such as sonication or acidic treatment.
The size and shape of the transferred graphene film on the
new substrate are defined by the dimensions of the initial
Ni-coated substrate (Figure 1c).

Important morphological film features are revealed by
optical images when the films are on Si substrates with a
300 nm oxide layer (Figure 1d). Variations in the film
thickness are indicated by the change of color contrast in
the optical images, due to light interference on the SiO2 layer
modulated by the graphene layers.33,34 The differences in
thickness range from a monolayer to a few graphene layers.
The lightest pink regions in the optical images (Figure 1d)
have a thickness of roughly 1 nm, as measured by AFM
(Figure 1e,f), which typically corresponds to a monolayer
or bilayer of graphene.35,36 Purple regions correspond to 3
nm thickness. Height measurements extracted from a series
of AFM images along the film edge in Figure 1d show that
the thickness ranges from 1 to 5 nm (inset of Figure 1f with
an average of 2.8 nm ( 0.3), corresponding to approximately
1-12 graphene layers.35 Furthermore, the mean and the rms
roughness estimated with our AFM data are 1.97 and 3.27
nm, respectively, over a 100 µm2 area (see Supporting
Information). By comparing optical images of as-grown
graphene films on the Ni surface and their images after being
transferred to SiO2/Si (Figure 1g,h), we observe that the
morphologies of the graphene film correlate qualitatively with
the microstructure of the Ni films. For example, we observe
a high density of regions with only 1-2 graphene layers in
thickness and 1-20 µm in lateral dimensions (black arrows
in Figure 1h). Further analysis (see Supporting Information)
confirms that these regions usually grow on the surface of

Figure 2. TEM characterization of CVD-grown graphene films.
(a) Low-magnification TEM image showing a CVD-grown graphene
film on a lacey carbon-coated grid. Electron diffraction on the
graphene film is shown as an inset. (b) Low-magnification TEM
image showing the interface between areas with different thickness
(identified by the black arrow). Although the color contrast is high
under optical images, the low contrast in TEM images shows that
the thickness difference is only a few graphene layers. (c-f) High-
magnification TEM images showing the edges of film regions
consisting of one (c), three (d), four (e), and eight (f) graphene
layers. The cross-sectional view is enabled by the folding of the
film edge. The in-plane lattice fringes suggest local stacking order
of the graphene layers.

Figure 3. Raman spectroscopy of CVD-grown graphene films on
SiO2/Si. (a) Raman spectra of 1 (red), 2 (blue), and ∼3 (green)
graphene layers from a CVD graphene film. (b) Raman spectra of
1 (red), 2 (blue), and 3 (green) graphene layers derived by the
microcleaving of HOPG for comparison. The excitation wavelength
is 532 nm.
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large Ni grains that have similar lateral sizes (black arrows
in Figure 1g). These observations imply that individual nickel
grains may independently affect the thickness of the graphene
film during CVD, leading to the thickness variations we
observe on our films. Similarly, our observations suggest that
most of the multilayer graphene nucleation occurs at the grain
boundaries. This could be explained by the fact that at such
boundaries, there is a higher density of atomic steps due to
the curvature of the grain edge, thereby inducing the
nucleation of several graphene layers.12 This points to future
work on controlling the morphology of the Ni films in order
to optimize the morphology of the graphene films.

The CVD grown films can be transferred by the same
method to TEM lacey carbon-coated grids (Figure 2a,b).
TEM examination confirms that changes in film thickness
correspond to only a few graphene layers. The edges of the
suspended film always fold back, allowing for a cross-
sectional view of the film. The observation of these edges
by TEM provides an accurate way to measure the number
of layers at multiple locations on the film (Figure 2c-f).
Typically, sections of 1-8 layers are observed in our samples
in close agreement with our AFM data. The estimated
interlayer spacing is 3.50 ( 0.14 Å. Electron diffraction on
the graphene film (inset of Figure 2a) reveals a hexagonal
pattern confirming the three-fold symmetry of the arrange-
ment of carbon atoms (the beam size used was 50 nm). When
different regions of the film are inspected, well-defined
diffraction spots (instead of ring patterns) are always
observed (see Supporting Information), indicating the crys-
tallinity of all regions examined. Stacking disorder of

graphene layers in multilayer regions is suggested by the
appearance of electron diffraction spots misaligned with
respect to each other (see Supporting Information). The
observation of lattice fringes (Figure 2d-f) on the in-plane
direction of the graphene sheets is possible. The in-plane
lattice constant is measured to be 2.32 ( 0.48 Å (compared
to 2.46 Å for graphite37).

Raman spectroscopy provides a quick and facile structural
and quality characterization of the produced material. Figure
3 compares the Raman spectra of 1, 2, and 3 graphene layers
derived by CVD and by HOPG. A low intensity of the
disorder-induced D band (∼1350 cm-1) is observed by
plotting ID/IG, the D to G (∼1580 cm-1) peak intensity ratios,
where G denotes the symmetry-allowed graphite band,
obtaining 0.05 < ID/IG < 0.3. Some weak D band intensity
is observed also away from graphene edges, suggesting the
existence of subdomain boundaries in areas with a constant
number of graphene layers. Spectra from the thinnest sections
of the CVD graphene film show a sharp line width (∼30
cm-1) and a single Lorentzian profile of the G′ band (∼2700
cm-1), which are hallmarks of monolayer graphene.38 The
G′ line shape provides a good measure of the number of
layers in the case of HOPG-derived graphene.38 However,
we observe that in multilayer (>1 graphene layers) CVD
graphene there is a variation in the G′ line shape between
regions of identical layer number. Moreover, sections of ∼2
L and 3 L regions can show linewidths of ∼30 cm-1 and
single-Lorentzian lineshapes. This indicates that an ordered
stacking (i.e., ABAB stacking) and therefore an electronic
coupling between graphene layers may not occur in all regions

Figure 4. Optical and electrical characterization of CVD graphene films and devices. (a) Optical image of a graphene film transferred to
a glass substrate. The broken edge on the bottom can be used to recognize the film. (b) Optical transmittance of a graphene film with 3 nm
average thickness on glass. (c) Histogram of the 2D resistivity (kΩ) (resistance of each device normalized by its length and width) of ∼100
graphene film devices prepared by the CVD process. (d) 2D conductivity vs gate voltage of a graphene film transistor. An optical image
of a graphene strip device is shown as an inset.
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of the film, or to the same degree as in HOPG. This observation
is consistent with our electron diffraction spectra. The absence
of interlayer coupling may be a positive effect since incom-
mensurate, multilayer graphene can have electronic properties
similar to those of a single sheet of graphene.39 Instead of the
G′ line shape, we have found that the G to G′ peak intensity
ratios (IG/IG′) provide a good correlation with the number of
graphene layers in the CVD graphene samples (see Sup-
porting Information).

The intrinsic quality of the CVD graphene films makes
them excellent candidates for both optoelectronic and
electronic applications. Figure 4a is an optical image of the
graphene film transferred onto a glass substrate. With a film
having 3 nm average thickness, the optical transmittance is
∼90% in the 500-1000 nm wavelength regime (Figure 4b).
The sheet resistances (Rs) of the films are 770 -1000 Ω/sq
as measured by a four-point probe instrument.

We further characterized the electrical properties by fabricat-
ing graphene transistors. Photolithography and O2 plasma
etching were used to pattern graphene films in 2-8 µm stripes.
Transistor channel lengths ranged from 5-15 µm. Figure 4c is
a histogram of the 2D resistivity obtained by measuring ∼100
devices at 0 V gate voltage. By applying a gate voltage of
up to ( 40 V (provided by a Si back gate with 300 nm oxide
thickness), the conductance values of the stripes are modu-
lated by 1.3∼2 times (Figure 4d). This indicates that the

effect of gate modulation is not as effective as it is in other
graphene transistors made by microcleaving HOPG.40 The
inset in Figure 4d shows an optical image of a typical device.
The average thickness of the graphene strip of this device is
also estimated to be ∼3 nm. Because of thickness variation,
it is possible that the gating effect is screened by other
graphene layers in multilayer regions of the film.2,41 Mobility
values can be derived from the slope of the conductivity
variation with gate voltage. These range from 100 to 2000
cm2/ V sec for both electrons and holes, which are ∼2 orders
of magnitude lower than the best reported graphene mobili-
ties on substrates. This is possibly due to an ineffective gate
coupling or to grain boundary scattering inside the graphene
strip. Efforts are underway to improve the quality of the films
by tuning the CVD growth conditions.

The ability to grow single and few-layer graphene with
CVD is an important advantage. Analogous to the case of
carbon nanotube growth,42,43 this technique can potentially
enable the simple growth of graphene at particular locations
and with desired geometries by controlling the catalyst
morphology and position.44 Figure 5 demonstrates the direct
CVD growth of a graphene pattern using a prepatterned Ni
structure (Figure 5a). After CVD, the graphene is transferred
to a SiO2/Si substrate (Figure 5b) with a process similar to
the one described previously (see Supporting Information).
This is a significant addition to the capabilities of graphene
device fabrication and integration. For example, in the case
of O2 plasma-sensitive substrates or substrates which cannot
withstand the lithographic processes, graphene devices can
be patterned through this approach.

In summary, we have demonstrated for the first time that
continuous films with single- to few-layer graphene can be
grown by ambient pressure CVD on polycrystalline Ni and
transferred to a large variety of substrates. The films exhibit
a large fraction of single- and bilayer graphene regions with
up to ∼20 µm in lateral size. They remain continuous and
conductive after numerous processing steps, even though the
thinnest parts are only one monolayer in thickness. These
films demonstrate a comparable structural quality to existing
graphene materials but are fabricated without the need of
bulk single crystal substrates or complex processing condi-
tions. The graphene film size is determined by the area of
the Ni growth surface and is only limited by the CVD
chamber size. Furthermore, our studies suggest that the
polycrystalline structure of the Ni film plays an important
role in the formation of the graphene film morphology. With
better engineering of the Ni film, such as enlarging and
controlling the location of the single crystal grains, well-
controlled graphene features can be envisioned. This ap-
proach enables a viable route toward the scalable production
of graphene structures for future applications.
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