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Abstract— Machine learning (ML) algorithms have been
widely adopted in the industry for optimizing semi-
conductor process modules. However, the final device
performance may depend on a myriad of variables, includ-
ing process conditions and device design parameters
in an entangled fashion. This makes gaining detailed
physical insights necessary to disentangle all these fac-
tors effectively. Here, we propose a design and process
co-optimization framework using ML to improve the per-
formance of 2-D transistors in analogy to conventional
process optimization-design of experiments (DOEs). In par-
ticular, we utilize the “feature importance score” to quanti-
tatively evaluate the impact of each process step or design
feature on the final device performance. Example given,
through the utilization of a random forest ML algorithm,
we can design distinct threshold voltages by combining
suitable process and design parameters. This framework
aims at unrevealing the ultimate performance of 2-D field-
effect transistors (FETs) through an expedited process that
allows for quick experimental turnaround.

Index Terms— 2-D semiconductors, charge trapping,
dielectric interface, doping, monolayer transition metal
dichalcogenides (1L-TMDs), transistors.

I. INTRODUCTION

AS SILICON (Si) metal–oxide–semiconductor field-effect
transistors (MOSFETs) approach the ∼5-nm gate length

range, undesirable short channel effects, including, but not
limited to, source-to-drain tunneling, drain-induced barrier
lowering (DIBL), and the loss of electrostatic gate control
severely degrade the device performance, thus limiting the
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scaling of Si MOSFETs [1]. On the other hand, 2-D semi-
conducting transition metal dichalcogenides (2D TMDs) are
highly promising as a next-generation channel material for
ultrascaled field-effect transistors (FETs), as their atomically
thin nature ensures excellent electrostatic control of the chan-
nel potential [2], [3], [4], [5], [6], [7], [8]. Recent progress has
been made on both n-type [9], [10], [11], [12], [13], [14] and
p-type [15], [16], [17], [18], [19], [20] TMDs for realizing
high-performance FETs exhibiting hundreds of µA/µm cur-
rent densities at a bias of 1 V. Despite steady progress over the
last decade, a substantial amount of open questions regarding
the ultimate performance of TMD transistors remain, many of
them related to the fact that these devices are “interface-only”
transistors and are much more sensitive to the surrounding
environment, fabrication processes, and treatments. Moreover,
as apparent from advanced semiconductor manufacturing pro-
cess flows that involve thousands of processes, it has become a
more challenging and time-consuming task to optimize device
performance metrics, merely relying on human judgment.

To address these problems, Chen et al. [21] adopted
machine learning (ML) to evaluate and co-optimize key
process parameters that impact the final TMD device perfor-
mance. However, the parameters that were selected to evaluate
were rather limited in scope, while it is more and more clear
that a much larger set of “entangled” parameters needs to be
considered, which should include detailed process conditions
and device design parameters. In particular, optimizing the
channel geometry plays a significant role in the overall device
performance of nanosheet transistors (NSFETs) [22]. For
example, the nanosheet width can have a significant impact on
the carrier mobility and transconductance, due to edge conduc-
tion differing from the one in the middle of the channel, and
the nanosheet thickness is important for electrostatic control
and quantum confinement in the 2-D channels, both leading
to complex dependencies on the device performance. Here,
we have implemented a design and process co-optimization
framework using ML that involves 16 independently controlled
parameters and more than 1000 device characteristics to iden-
tify the desired parameter space for optimum monolayer (1L)
TMD transistor performance. The total processing time from
the initial electrical data extraction, the ML model training,
to the final prediction only takes a minute, which greatly
reduces the turnaround time for predicting the desired set of
parameters to develop optimized TMD transistors.
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Fig. 1. Features determining the electrical characteristics of 2-D 1L TMD transistors schematic cross section of a 1L-TMD FET with a LBG and a
top gate. Various components that govern the device performance are categorized, including the channel region where the top gate-stack is formed,
FET device design parameters (LCH: channel length, WCH: channel width, and LCONT: contact length), and the interface between TMD and contact
metals.

Fig. 2. Device fabrication and 1L-MoS2 LBG FETs. (a) Process flow for fabricating 1L-TMD FETs. (b) Transfer characteristics (ID–VG) of a
representative 1L-MoS2 transistor made of a 55-nm LCH with Ni contacts, reaching ∼184 µA/µm at VG = 2 V and VD = 1 V, a high ON/OFF ratio
of ∼eight orders of magnitude, a good SS of 70 mV/dec, and negligible hysteresis. (c) Distribution of SS and VTH, CC. Each data point represents a
different device fabricated by the same recipe: MBE MoS2 as the channel material with short channel lengths (<100 nm), channel width of 860 nm,
and S/D contacts of Ni.

II. FEATURES DETERMINING THE ELECTRICAL
CHARACTERISTICS OF 2-D 1L TMD TRANSISTORS

Fig. 1 illustrates the key features impacting the elec-
trical performance of 1L transition metal dichalcogenide
(1L-TMD) FETs, including the top-gated dielectric stack,
device design parameters (LCH: channel length, WCH: channel
width, and LCONT: contact length), and the interface between
the TMD and the contact metals. Here, we choose 1L-MoS2
as a representative example of 1L-TMD. All 1L-MoS2 FETs
were fabricated using a process flow illustrated in Fig. 2(a).
A Cr/Au bottom gate electrode was defined and deposited
onto a 90-nm SiO2/silicon substrate employing e-beam lithog-
raphy and lift-off, followed by the deposition of a 3 nm

atomic layer deposition (ALD) HfO2 gate dielectric at 90 ◦C.
molecular-beam epitaxy (MBE)-grown 1L-MoS2 crystals on a
sapphire substrate (Growth A) or chemical vapor deposition
(CVD)-grown ones on a silicon substrate (Growth B) were
transferred onto the local bottom gates (LBGs) and then
vacuum annealed at a pressure of ∼1 × 10−8 torr at 200 ◦C
for 2 h to remove polymer residues from the transfer process
and eliminate any air gap between the 1L-MoS2 and the
HfO2 dielectric. Note that for the encapsulation step, the same
transfer and annealing processes were used for CVD-grown
1L-hBN films that get inserted at both the channel and contact
interfaces. At the contact interface, the 1L-hBN interfacial
layer serves as a tunneling barrier to reduce the effect of
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Fig. 3. Process and design optimization using ML. (a) Schematic of the random forest algorithm. A random forest regressor consists of a group
of decision tree learners. Each tree randomly chooses features and iterates all possible conditions to optimize the information gain. (b) Feature
importance score for a combination of SS and ID at the same VOV. (c) Grid search optimization. Device performance scores can be predicted by ML
for all possible combinations using a grid-search method. Random forest is an ensemble learning method for classification and regression tasks.
It combines predictions from multiple decision trees to enhance accuracy and robustness. During training, a large number of decision trees are built,
and their outputs are aggregated to make the final prediction, reducing overfitting and improving generalization. Random feature selection randomly
considers a subset of features for each split node to avoid overfitting. Decision tree construction utilizes the MAPE for regression tasks, minimizing
it at each node. Voting for predictions combines all decision trees’ predictions, averaging them for the final prediction.

Fermi-level pinning, while it acts as a passivation layer to
reduce the impact from defects introduced by the top-gate
dielectric integration in the channel region.

After the TMD transfer, reactive ion etching using Cl2/O2
at a power of 40 W was employed to define the device
width WCH. Next, e-beam lithography was employed again
to define source/drain (S/D) contacts (Contact A = Ni and
Contact B = Bi), in this way creating devices with a range of
geometries (LCH and LCONT). Finally, a seeding layer (Seed
A = Al and Seed B = Ta) was deposited, followed by the
deposition of 6-nm ALD HfO2 gate dielectric at 90 ◦C and
patterning of a Ni top metal gate using e-beam lithography and
lift-off. All electrical measurements were performed in a probe
station under vacuum (∼1 × 10−5 torr) at room temperature.

III. TWO-DIMENSIONAL TMD FETS FABRICATION
AND CHARACTERISTICS

Fig. 2(b) shows the transfer characteristics of a representa-
tive 1L-MoS2 device with LCH = 55 nm. The device metrics
extraction was performed through an automation script. The
minimum subthreshold swing (SS) was calculated, and the
threshold voltage (VTH,CC) was extracted at a constant current
of 100 nA/um. One of the important device performance
metrics is the ON-state current at a given overdrive voltage,
VOV = VG − VTH,LIN, where VTH,LIN stands for the linear
threshold voltage. The figure-of-merit (FOM) is constituted
by the scores of SS and ON-state current at the same VOV
with a certain weight. The weight of these two metrics can be

adjusted according to the desired specs of the 2-D FETs, e.g.,
for high-performance or low-power applications. The device in
Fig. 2(b) reaches ∼184 µA/µm at VG = 2 V and VD = 1 V and
a high ON/OFF ratio of ∼eight order. The ultrathin dielectric
(3 nm) and atomically thin 1L-TMD ensure good electrostatic
control of the channel, leading to a good SS of 70 mV/dec, and
negligible hysteresis. Detailed device characterization can be
seen in [13]. Fig. 2(c) shows the distribution of SS and VTH,CC
values for 100 electrical characteristics from devices that were
fabricated with the same design and under the same processing
conditions. Each data point represents a single device.

Among a plethora of ML algorithms, such as the support
vector machine (SVM) [23], linear regression model, and con-
volutional neural network (CNN) [24], we choose a decision
tree-based model [25], since it can efficiently handle discrete
data. The model randomly selects features and builds hundreds
of decision trees. In particular, we use Gini impurity to mea-
sure the likelihood of mislabeling a randomly chosen element
from a set, based on the distribution of labels within that set.
For each decision tree, all possible conditions are iterated, the
Gini impurity at each node is calculated, and the information
gain is optimized. Finally, majority voting is conducted to
average out the result as illustrated in Fig. 3(a) and (b). This
method not only demonstrates the highest accuracy of 93% via
the mean absolute percentage error (MAPE) but also shows
several other advantages if compared with other conventional
ML algorithms, including having a lower chance of over-
fitting, fewer hyperparameters to be determined, and being
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Fig. 4. Grid search optimization and prediction from ML. (a) Process
and design combinations ranked by ascending FOM to simultaneously
achieve high ON-currents and positive VTH, CC. (b) Scatter plot of ID
at VOV = 0.5 V versus VTH,CC from ∼1000 1L-TMD FETs. The color
corresponds to different design or process conditions. The green, red,
and purple points are three batches of devices designed by human
experiences based on step-by-step optimization as discussed in the
main text. The best condition shown in orange color is the result of
the recipe in Fig. 4(a) pointed by the black arrow. Noted, all data points
shown were based on the experimental fabrication of devices.

immune to missing values and unnormalized data. Although
ML represents a computer-aided learning process from a black
box containing large amounts of device data, the optimization
process through ML reveals some physical mechanisms behind
the experimental data, which will be discussed in the following
sections.

IV. FRAMEWORK AND ALGORITHM

Based on the training results, one can simply extract the
normalized feature importance score [26] with regard to the
predicted label, as shown in Fig. 3(b). With these importance
scores in place, we can quantitatively evaluate the impact
of each process step or design feature on the final device
performance. Next, the grid search method is adopted to
iterate through all possible combinations (34 560 in this case),
as illustrated in Fig. 3(c). In this way, a prediction is made
about which process combination gives rise to the highest
FOM for the targeted application. This allows device fabri-
cation to adopt the optimal process parameters based on the
recipe suggested by ML, as shown in Fig. 4(a). To avoid
outlier data to prevent a meaningful analysis, every design
of experiments (DOEs) is conducted judiciously with at least
several device characteristics to ensure data uniformity. The
outlier data are thus not included for further analysis.

A scatter plot of around 1000 1L-TMD FETs is shown in
Fig. 4(b). For instance, one recipe using a particular contact
metal (red dots, Contact B) shows positive VTH,CC, while
another recipe pushing for small channel widths (purple dots)
gives higher ON-state currents per width at the same VOV.
However, combining these two recipes (green dots) did not
yield both, high current density and positive VTH,CC, as appar-
ent from the plot. This is counterintuitive and cannot be
explained by a simple logic analysis. The underlying reason
is that individual processes and design parameters are highly
coupled and those connections are not yet fully understood,
making process optimization of 2-D transistors complicated.
With the growing complexity of future transistor technol-
ogy nodes, the difficulty in device process optimization will
increase exponentially. Therefore, utilizing ML in this context
is highly beneficial. This is evident from the fact that devices

Fig. 5. Impact of channel material and metal contact. (a)–(c) Channel
material impact. Box plots of (a) SS, (b) VTH,CC, and (c) ID at VOV =

1 V, comparing 1L-MoS2 grown by MBE, CVD, and CVD with 1L-hBN
encapsulation. (d)–(f) Metal contact impact. Box plots of (d) SS,
(e) VTH,CC, and (f) ID at VOV = 0.5 V, comparing Ni, Bi, and Ni/1L-hBN
contacted 1L-MoS2 devices.

that yield both high ON-states and positive VTH,CC are obtained
(orange dots) when exactly following the process and design
combination predicted by the grid search optimization with
the highest FOM [see the “best condition” black arrow in
Fig. 4(a)]. This specific recipe suggests using 1L-MoS2 grown
by MBE as the channel material (instead of CVD) with small
channel widths and S/D contact of Ni. Note that the devices
denoted by red dots actually used Bi contacts.

V. STATISTICAL ANALYSIS OF CHANEL MATERIALS
AND METAL CONTACTS

With more than 1000 1L-MoS2 devices, we are able to
use our data to manually draw many conclusions about the
impact of materials and processes on certain device metrics,
when the correlation is straightforward. Below, two examples
are given. Fig. 5(a)–(c) compares the ON- and OFF-states
performance of 1L-MoS2 devices using channel materials
grown by different synthesis methods, i.e., MBE (Growth A)
and CVD (Growth B). It is understood that SS, VTH,CC, and
ON-currents heavily rely on the material qualities, such as
defect density, doping level, and so on. Our statistics reveal
that MBE MoS2 offers a slightly better ON-state current at
the same overdrive voltage and a ∼10% better SS compared
to CVD MoS2. By incorporating an encapsulation layer after
CVD growth, a substantial improvement in SS is observed.
Fig. 5(d)–(f) compares the impact of using different metal
contacts, Ni (Contact A) and Bi (Contact B), on the ON- and
OFF-states performance. Particularly, Ni contacts outperform
Bi contacts in ON-state performance. Adding an 1L-hBN
interfacial layer did not improve the Fermi level pinning, but
rather decreased current injection from Ni contacts. The lower
current is a result of electrons injected from the contacts being
“blocked” by the 1L-hBN interfacial layer in between the
channel and the contacts.

The individual steps of gate-stack formation are very impor-
tant to both the ON- and OFF-states performance. For example,
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Fig. 6. VTH tuning through different process combinations. Seven different threshold voltages can be achieved in short-channel 1L-MoS2 devices,
following the recipes predicted by ML optimization of the process conditions and design parameters.

depositing an Al seeding layer onto the intrinsic channel
followed by HfO2 to complete the top gate dielectric stack
can substantially change the TMD channel properties, such as
the degradation of SS and significant shift of VTH [12], [13].
However, by adding an encapsulation layer onto the channel
region, the detrimental impact of the gate dielectric stack
formation can be greatly mitigated, as shown in our previous
work [12]. It is clear from these examples that the combining
different process steps can result in different effects on the
final device performance. This is why ML can be a powerful
approach to optimize the parameter set needed to achieve
the desired performance for a particular target application.
More importantly, some device metrics are correlated by some
hidden materials or process parameters that are not readily
accessible to an analysis by a human. Note that the demands
from the application side are increasingly high on the semi-
conductor industry, e.g., semiconductor foundries nowadays
have to provide several threshold voltage options to meet
customers’ circuit design requirements, we show in the next
section how ML can help identifying parameter sets to satisfy
said customer needs.

VI. THRESHOLD VOLTAGE TUNNING
VIA ML OPTIMIZATION

Fig. 6 illustrates how seven different VTH,CC, ranging from
0.5 to −1.5 V, can be achieved using ML by deliberately
choosing process conditions and design parameters collected
from statistical data presented here. This level of VTH tuning

has not been reported previously and is here presented for the
first time in TMD-based devices through ML-based design and
process co-optimization. Note that in Si transistors, usually dif-
ferent work functions of gate-metal stack are employed to tune
VTH. Differently, since 1L-TMD transistors are “interface”
only transistors, the variation of process conditions and design
parameters can significantly impact the threshold voltage.

VII. CONCLUSION

In this article, we have presented a novel ML-based frame-
work for improving and predicting the performance of 2-D
semiconductor transistors by co-optimizing process conditions
and design features. This framework allows to expedite the
process of identifying the parameters that unlock the ulti-
mate performance of TMD transistors by utilizing a feature
importance score to evaluate the impact of each process step
or design feature. This framework is intended to reveal the
potential performance of 2-D FETs in an efficient manner
that allows for rapid experimental iterations. Future work will
add more data and conditions to enrich the present database
and expand the search space. The framework presented here
underscores the potential of ML to advance 2-D electronics.
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