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Recent Progresses in Machine Learning Assisted Raman
Spectroscopy

Yaping Qi,* Dan Hu, Yucheng Jiang, Zhenping Wu, Ming Zheng, Esther Xinyi Chen,
Yong Liang, Mohammad A. Sadi, Kang Zhang, and Yong P. Chen*

With the development of Raman spectroscopy and the expansion of its
application domains, conventional methods for spectral data analysis have
manifested many limitations. Exploring new approaches to facilitate Raman
spectroscopy and analysis has become an area of intensifying focus for
research. It has been demonstrated that machine learning techniques can
more efficiently extract valuable information from spectral data, creating
unprecedented opportunities for analytical science. This paper outlines
traditional and more recently developed statistical methods that are
commonly used in machine learning (ML) and ML-algorithms for different
Raman spectroscopy-based classification and recognition applications. The
methods include Principal Component Analysis, K-Nearest Neighbor, Random
Forest, and Support Vector Machine, as well as neural network-based deep
learning algorithms such as Artificial Neural Networks, Convolutional Neural
Networks, etc. The bulk of the review is dedicated to the research advances in
machine learning applied to Raman spectroscopy from several fields,
including material science, biomedical applications, food science, and others,
which reached impressive levels of analytical accuracy. The combination of
Raman spectroscopy and machine learning offers unprecedented
opportunities to achieve high throughput and fast identification in many of
these application fields. The limitations of current studies are also discussed
and perspectives on future research are provided.
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1. Introduction

Raman spectroscopy is a sensitive and non-
invasive measurement technique that has
been extensively used in analytical sci-
ences in the past decades.[1–5] Most com-
monly, it is based on the interaction be-
tween light and the vibration of chemi-
cal bonds in materials.[6] On a molecular
level, the Raman effect occurs when light
interacts with the electron density of the
chemical bond, leading to vibrational exci-
tation of the molecule and frequency shift
of the light.[7] The Raman effect also oc-
curs when light inelastically scatters and ex-
changes energy with excitations of materi-
als such as characteristic lattice vibrations
of solids. Thus, a vibrational fingerprint in-
trinsic to a particular molecule or material
can be acquired, enabling its identification
and characterization.[8–10]

Raman analysis has been increasingly
employed in many fields, such as iden-
tifying unknown substances in material
science, biology, pharmaceutics, and food
science.[11–16] Although Raman spec-
troscopy is a powerful technique, the raw
spectral data are often complex and contain

a lot of random noise, requiring additional data processing
techniques to extract valuable information.[17,18] However,
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conventional experimental and computational approaches can
take a long processing time, and various qualitative evaluations
[19] can lead to erroneous analysis results. They cannot keep up
with the rapidly growing demands in multi-domain research of
Raman spectroscopy.

With the advancement of artificial intelligence (AI) in recent
years, machine learning (ML) has become an effective tool in
analytical sciences.[20–22] ML is a part of AI that makes com-
puters able to learn, make decisions or predictions, without the
need to be explicitly programmed. ML algorithms iterate contin-
uously on a given dataset to find a function that solves a spe-
cific task. AI is achieved by efficiently learning from a pre-labeled
large amount of data to generate reasonable predictions on new
sets of data, significantly speeding up experimental analysis and
computation.[23,24] As a result, the use of ML has effectively con-
tributed to a wide range of research, including the assisted pro-
cessing of Raman spectroscopy data and its practical applications
in a variety of fields.[25] For instance, ML can be applied to ana-
lyze complex and large amounts of Raman spectroscopy datasets,
identify relationships, patterns, and connections in the datasets,
as well as perform classifications.

To understand better about ML, it is necessary to know the ma-
jor differences between ML and traditional chemometrics and
statistical analysis. The latter (traditional methods) depend on
statistical and mathematical models to analyze data and gener-
ate results or predictions. Traditional chemometrics and statisti-
cal analysis are usually utilized to perform qualitative and quan-
titative analysis of specific functional groups or chemical com-
pounds and carry out feature selection, and data preprocessing
in Raman spectra.[26,27] There are two main differences between
ML algorithms and traditional chemometrics and statistical anal-
ysis methods. First, ML in many cases could be more efficient
and capable than traditional chemometrics and statistical analy-
sis methods in analyzing complex, large, and high-dimensional
datasets as well as in identifying complicated patterns and con-
nections in data, even without knowing or limiting to specific
functional groups or chemical compounds.[26–29] Moreover, ML
in most cases can perform task/data analysis without much ex-
perience and prior knowledge of the studied system, while tradi-
tional chemometrics and statistical analysis methods in general
need prior knowledge and enough previous experience of the cor-
responding chemical system, and knowing which specific func-
tional groups or chemical compounds are to be analyzed.[26,28]

Many ML algorithms have been developed and reported, some
examples include decision trees, random forests, support vector
machines, and artificial neural networks. Generally speaking,
machine learning applied to chemical data such as Raman spec-
tra may also be considered as a subset and more recent addition
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to chemometrics (which has a long history and many traditional
techniques developed or employed predating machine learn-
ing). We note that machine learning is a method of teaching
computers to learn from data, while traditional techniques
such as principal component analysis (PCA), linear regression
(LR), partial least squares (PLS) regression, least square (LS),
linear or quadratic discriminant analysis (LDA, QDA), spectral
preprocessing techniques including smoothing, baseline cor-
rection, normalization, etc are mainly based on mathematical
and statistical models that are not necessarily learned from data.
For example, PCA is extensively used for data dimensionality
reduction, by constructing a set of principal components of or-
thogonal bases, taking only the first few principal components as
input, and ignoring the rest. LS is a mathematical optimization
technique that finds the best fit for a set of data by minimizing
the sum of squares of the errors between each data point and
a curve; LDA maximizes the axial component of interclass
differentiation by projecting the feature space into a subspace of
smaller dimensionality while maintaining information about the
different classes. LDA can also be used for dimensionality reduc-
tion. These techniques have been an important part of traditional
statistical and data analysis, while they can still be adapted and
useful in the more recently developed ML methods (for example
help to preprocess data, e.g. reducing dimensionality).

ML algorithms and some traditional data analysis methods in-
cluding PCA, LR, PLS, LS, LDA, QDA, and spectral preprocess-
ing techniques have been utilized to classify the spectra of un-
known substances automatically.[30,31] These algorithms together
with deep learning techniques provide new ideas for the classifi-
cation and recognition of Raman spectra and have been subject
to intense research in recent years.[32,33] Although there are ex-
tensive review papers on the application of machine learning in
various areas, fewer reviews focus on the applications of machine
learning in Raman spectroscopy. Therefore, this review does not
only aim to summarize several traditional chemometrics and sta-
tistical methods that are commonly used in ML and some preva-
lent ML techniques applied in conjunction with Raman spec-
troscopy in diverse fields but is also committed to providing gen-
eral background knowledge for readers interested in AI-assisted
data analysis for Raman spectroscopy. Finally, current challenges
and insights into the directions for future research in this area
are presented.

2. Machine Learning for Raman Spectra Analysis

As a method to achieve AI, ML learns from a large amount of
known data and then generates some reasonable predictions to
expedite the process of experimental analysis and computation
and save human resources, allowing ML to be widely used in
a myriad of scientific fields.[34–36] To model and analyze Raman
spectral data, ML algorithms are typically used in the classifica-
tion and identification of Raman spectra. The study by Guo et al.
provided good guidance from performing Raman spectroscopy
to implementing ML modeling.[37] Spectral pre-processing and
feature extraction are common steps in traditional ML analysis
of Raman spectra.[19,38] Deep learning, a branch of ML research,
is based on neural networks that rely on training data to learn
and improve their accuracy.[39,40] Deep neural networks have
the advantage of potentially avoiding pre-processing stage.[41]
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Table 1. Tools (terms) and descriptions that are commonly used in AI-assisted data analysis of Raman spectroscopy.

Tools (terms) Descriptions

K-Nearest Neighbor (KNN) A classifier that finds the K closest sample categories to a data point by calculating the distance between the data point and the
known samples, and then obtains the final category output according to the majority voting.

Decision Tree (DT) A tree structure in which the non-leaf nodes are the features selected for classification and the leaf nodes are the decision results.

Random Forest (RF) Ensemble of decision trees, using multiple trees to train and predict the samples, and finally, output the results by voting or taking
the average.

Support Vector Machine (SVM) Find the hyperplane that distinguishes the different categories with maximum margins and separate the dataset into different
categories by selecting appropriate support vectors.

Bayesian A classification technique based on the Bayes theorem, where the prior probability distribution is selected and then updated to
obtain the posterior distribution.

Artificial Neural Network (ANN) A mathematical model that simulates the brain’s neuronal activity as a set of connected input/output units, where each connection
has a weight associated with it.

Convolutional Neural Network
(CNN)

A class of feedforward neural networks with convolutional computation and deep structures. It is usually applied to analyze visual
imagery.

Recurrent Neural Network (RNN) A class of neural networks with short-term memory, suitable for processing a range of time-series related problems such as text.

Probabilistic Neural Network (PNN) A neural network technique based on the Bayesian decision rule that is widely used in classification problems.

Generative Adversarial Network
(GAN)

A novel adversarial generative model architecture that learns to generate new data with the same statistics as the training set.

Compared with traditional ML methods, deep learning has a
highly promising learning ability and low generalization error.[42]

In the following two subsections, the key properties and applica-
tions of some traditional chemometrics and statistical analysis
methods that are also commonly used in ML, as well as ML-based
algorithms, and deep learning methods will be introduced in
detail to provide an overview of different tools, methods that have
been used in this area, and to summarize the advantages and dis-
advantages of each technique. Some ML algorithms commonly
used to assist Raman spectral analysis are shown in Table 1.

2.1. Examples of Traditional Statistical Analysis Methods
Commonly used in ML and ML-Based Algorithms

Although some traditional chemometrics and statistical methods
are not considered as ML algorithms because they are based on
a set of fixed assumptions and parameters, they are still useful
tools commonly used in ML. For example, the LR model is a com-
monly used analysis technique in chemometrics, including the
more recently developed ML based methods.[43] It is primarily
used to solve linear problems and can also be used for classifi-
cation, with the LS method being a popular algorithm.[44] How-
ever, when the number of sample points is less than the num-
ber of variables, it is necessary to use the PLS method,[45] which
enables regression modeling in the presence of multiple correla-
tions in the independent variables. Moreover, LS/PLS method is
also an optimization ideology, and it is usually used in combina-
tion with other algorithms in practical applications.[46–48] Another
basic nonlinear classifier, the Bayesian classifier, solves classifica-
tion problems with the Bayesian formula, which determines the
sample as the class with the highest posterior probability and can
handle multi-classification issues.[49–52]

Another example PCA is a commonly used technique for di-
mensionality reduction in ML.[53,54] It constructs a set of prin-
cipal components of orthogonal bases from the original space

by computing, where only the first few principal components
are significant as input, and the rest are ignored.[55] Thus, the
characteristics of the data are presented in a lower dimensional
space using the new variables. The maximum variance theory
is used to maximize the retention of the interpretation of origi-
nal data.[56] ML models are constructed in most cases by starting
with dimensionality reduction to reduce computational complex-
ity. The dimensionality reduction maps high-dimensional data
onto low-dimensional data, ensuring that it succinctly conveys
similar information.[57] As decisions could not be made by PCA
based on the data, it is instead a tool that could be utilized in com-
bination with other ML techniques.[58] Therefore, PCA is just a
supporting technique (previously and commonly used in classi-
cal statistical analysis) that can also be applied in ML. However, it
is worth noting that in some cases PCA could be used as a model
(i.e., in process analytical technology applications).[59]

A third example LDA projects the data to the hyperplane,
which requires the introduction of labeled categories first to
achieve dimensionality reduction while also classifying the
data.[60] The goal of LDA is to maximize the axial component
of interclass differentiation by projecting the feature space into
a subspace of smaller dimensionality while maintaining infor-
mation about the different classes. LDA and PCA are both com-
monly used methods for dimensionality reduction.[61] However,
PCA is used primarily to find a better projection from the per-
spective of feature covariance, while LDA takes more into account
the categorical label information to choose the direction with the
best classification performance.[62]

2.2. ML and ML-Based Algorithms

On the other hand, a real machine learning model learns from
data and can improve its performance over time and can adapt
itself to the new data. Below are several examples of ML algo-
rithms. First, K-nearest neighbor (KNN) is a nonlinear classifier
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and one of the most straightforward and intuitive classification
algorithms.[63] It has no training process, instead it calculates the
distance between samples using a distance metric formula and
maps them to n-dimensional space.[64] KNN selects the K data
points closest to the unknown samples, and votes on their cat-
egories, grouping the one with the highest percentage of cate-
gories among the K nearest neighbor samples.[65] Another classi-
cal algorithm, support vector machine (SVM), is widely regarded
as one of the best classification algorithms,[66,67] which computa-
tionally solves the partitioning hyperplane that can correctly par-
tition the training data set with the most significant geometric
interval and separates the data set into different categories by se-
lecting the appropriate support vectors.[68] However, for SVM, a
model must first be trained on the training set before being used
to classify the test set directly. Third, decision tree (DT),[69] as the
term implies, is based on a tree structure to make decisions, sim-
ilar to the mechanism of human decision making.[70] Based on a
set of nested decision rules, the decision features are used to learn
the rules in the dataset to partition the unknown dataset.[71] This
algorithm can handle unrelated features in the dataset well but is
prone to over-fitting.[72] On the other hand, the RF model based
on the DTs has resistance to overfitting, as it randomly samples
data with replacement, selects features, and ranks the importance
of features by order of nodes, thus improving the resistance of the
algorithm to interference.[73] It is, however, a more complex and
computationally costly model than DT.

2.3. Deep Learning-Based Algorithms

Machine learning is a broad field that encompasses a wide range
of techniques including DTs, random forests (RFs), SVMs and
artificial neural networks (ANN), while deep learning is a spe-
cific type of artificial neural networks characterized by deep ar-
chitectures. Deep learning is based on neural network models,[74]

which do not require knowledge of the relationship between
inputs and outputs or many parameters but instead learn the
characteristics of sample data to obtain intrinsic information,[75]

making the technique particularly suitable for processing fuzzy,
stochastic, and nonlinear data.[76] As the basis of the neural net-
work, ANN is a network structure composed of numerous inter-
connected processing units.[77] The network is trained through
an iterative learning process to adjust and change the connection
weights of neurons, process information, and simulate the rela-
tionship between inputs and outputs.[78] The subsequent series
of deep learning algorithms are essentially based on the ANN
derivatives, such as probabilistic neural network (PNN), convo-
lutional neural network (CNN), recurrent neural network (RNN),
generative adversarial network (GAN), etc.[79–85]

Deep learning algorithms based on neural networks, such as
CNN and RNN, can learn features autonomously by optimiz-
ing the weights of each network layer.[80–83] In contrast, tradi-
tional chemometrics and statistical methods commonly used in
ML such as PCA, PLS, and LDA require manual feature defini-
tion and input into the algorithm to obtain classification results.
Such feature selection based on human experience is likely to
miss some information, resulting in errors. The most significant
distinction between deep learning and those traditional chemo-
metrics and statistical methods used in ML is that performance

improves as data size increases. This distinction also implies that
when sample data is limited, traditional chemometrics, and sta-
tistical methods applied in ML may outperform deep learning
algorithms.[84] However, with recent data augmentation meth-
ods, such as GAN,[85] it is possible to apply deep learning to obtain
better results with limited samples. Furthermore, deep learning
shows improved performance in completing complex tasks in-
cluding natural language processing, image and speech recog-
nition, and drug discovery. Therefore, for different algorithms,
selecting the appropriate one based on the specific problem is
critical.

3. Application of ML & Raman Spectroscopy in
Materials Science

Raman spectroscopy reflects the molecular bonding in materials,
making it a potent instrument for studying material structures in
materials science.[86,87] It is frequently used for determining the
composition and rapid classification of materials.[88] Combining
the latest technological innovations in computer science with cur-
rent methods of materials synthesis and characterization could
significantly save costs and time for research and development
in industry and academia.[89,90] The convergence of computing
techniques and materials research,[91] and some AI algorithms,
such as ML and deep learning techniques, can aid in identify-
ing materials and comprehending material behaviors and prop-
erties more efficiently.[92] In a study by Boonsit et al.,[93] CNN
can identify materials with an accuracy of up to 96.7%, even with
low-resolution Raman spectra. Pan et al.[94] proposed an algorith-
mic model for multi-label classification based on deep learning
to recognize complex mixture materials. Xie et al.[95] proposed an
algorithm for automatic material identification using ML meth-
ods for Raman spectroscopy, which can potentially be embedded
into the operating software of Raman spectrometers for practical
applications. Table 2 summarizes some examples demonstrating
the application of ML algorithms to Raman spectroscopy of ma-
terials.

3.1. ML-Assisted Raman spectroscopy of Nanomaterials

In this section we review applications of ML-assisted Raman
analysis to study nanomaterials, both 2D materials (such as
graphene), as well as 1D materials (such as nanotubes).

Graphene, the first 2D material to be discovered, has excel-
lent optical, electrical, and mechanical properties and promising
multidisciplinary applications, making it a hotbed of research in
recent years.[96–98] A study by Jo et al.[99] concentrated on iden-
tifying peak shifts in Raman spectroscopy and combining them
with PCA to build a framework that can predict the thickness of
a few graphene layers. There is an optimal range of feature sizes
where the estimation performs best in this work. Sirico et al.[100]

reported a method that combines optical contrast microscopy [101]

with an ML algorithm proposed by Lin et al.[102] to determine the
thickness of 2D materials. In this experiment, after training the
algorithm on a region under the same lighting conditions, it can
be applied to the entire sample without additional training, mak-
ing it ideal for accurately characterizing 2D materials over expan-
sive areas.

Adv. Optical Mater. 2023, 2203104 2203104 (4 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

 21951071, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adom

.202203104 by Purdue U
niversity (W

est L
afayette), W

iley O
nline L

ibrary on [01/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advopticalmat.de

Table 2. Latest developments in combining ML methods with Raman spectroscopy for materials research.

Objectives Methods Results References

Identify the number of graphene layers PCA Accuracy is below 90% for a small number of features, shows
100% accuracy between 5 and 14 features, and again
indicates below 90% using >14 features.

Jo et al.[99] (2018)

Identify the thickness of 2D materials RF The classifier provided excellent results in terms of overall
accuracy (96.4%) and training speed (8 sec).

Sirico et al.[100] (2021)

Classify graphene Raman spectra
according to different charge
densities and dielectric
environments

CNN The spectral classification with 99% accuracy using a
convolutional neural network (CNN) model.

Chen et al.[105] (2022)

Remove noise from graphene Raman
spectra

Supervised/
unsupervised deep
neural networks

Compared with traditional methods, supervised and
unsupervised models are 50% and 36% better than
traditional models.

Machado et al.[106] (2022)

Identify the twist angle of twisted
bilayer graphene (tBLG)

PCA, MLR (RF, DT…) MLRs achieved high R2 scores of 0.98 ± 0.04 and an average
root mean square error (RMSE) of twist angle is 0.70° ±
0.93°.

Sheremetyeva et al.[107] (2020)

Identify the twist angle of tBLG RF Achieve >99% accuracy in labeling twist angles. Pablo and Hiroki [108] (2022)

Identify suspended carbon nanotubes
(CNTs)

CNN More than 90% accuracy can be achieved even with a low
spectral signal-to-noise ratio.

Zhang et al.[111] (2022)

Distinguish single-layer continuous
films and random defect regions of
2D materials

RF The numerical values of area under the curve (AUC) and
average precision (AP) are 0.9852 and 0.9867 for cracks,
and 0.9902 and 0.9914 for bilayer.

Mao et al.[112] (2020)

Monolayer detection and 3D
characterization of MoS2

SVM, KNN, RF The classification accuracy of MoS2 samples is up to 99.2%. He et al.[113] (2021)

Distinguish phases of matter SVM, PCA For the Orthorhombic-Tetragonal-Cubic and
Ferroelectric-Paraelectric phase transition, the best
cross-validation accuracy is 98.7% and 99.7%, respectively.

Cui et al.[114] (2019)

Classification of variscite samples from
the Gavà mining complex to
determine the origin and depth of
mining

LR, SVM, LDA, DT, RR The best result for the accuracy of determining the mine of
origin is obtained by SVM (98%).

Díez-Pastor et al.[123] (2020)

Identification of large categories of
minerals.

Siamese network The accuracy of the Siamese network is slightly better than
traditional ML algorithms. The accuracy for the Siamese
network, SVM, and KNN are 62.27%, 59.75%, and 57.56%,
respectively.

Wu et al.[124] (2020)

Recognize minerals CNN The max accuracy of the test set is 98.43%, and the average is
97.72%.

Sang et al.[126] (2022)

Classify the plastics SVM, ANN, PCA PCA-SVM implementation demonstrated excellent accuracy
above 95%. ANN achieved a high accuracy of close to 100%
after a few hundred epochs.

Musu et al.[129] (2019)

Raman imaging visualization of
microplastics

PCA PCA can automatically extract and decode the critical
information from the spectrum matrix for imaging without
referring to standard Raman spectra.

Fang et al.[135] (2022)

(MLR: Machine Learning Regressor, LR: Logistic Regression, RR: Ridge Regression.)

In addition, parameters such as peak position and peak width
from Raman spectra of graphene are frequently used to evaluate
the strain and charge doping levels.[103,104] Chen et al.[105] used
CNN to classify graphene samples with slightly different charge
densities or dielectric environments and enhanced the spectra
data by adding noise and peak shifting. Figure 1a,b,c illustrates
the prediction of graphene doping levels using a CNN model,
and the flow chart of this experimental design is shown in Fig-
ure 1d. Experiments showed that the CNN model can classify
the Raman spectra of graphene with different charge doping lev-
els with 99% accuracy and even detect subtle differences in the

spectra of graphene on SiO2 and graphene on silanized SiO2.[105]

Machado et al.[106] proposed two approaches, one is a deep neural
network with an autoencoder architecture, and another consists
of a fully convolved autoencoder. They were used to remove noise
from Raman spectra and improve graphene spectral data quality.
These two deep neural network-based methods can significantly
improve the conditions for analyzing Raman spectroscopy data
from graphene nanosheets.[106] It can also be extended for future
use in processing spectral data for various materials.

Sheremetyeva et al.[107] presented a computational frame-
work for identifying the twist angle of twisted bilayer graphene

Adv. Optical Mater. 2023, 2203104 2203104 (5 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

 21951071, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adom

.202203104 by Purdue U
niversity (W

est L
afayette), W

iley O
nline L

ibrary on [01/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advopticalmat.de

Figure 1. a) Schematic diagram of Raman spectroscopy measurements on graphene samples. b) Representative Raman spectra of graphene. Spectra
were fed into a 1D CNN with five convolution blocks and categorized into one of four classes corresponding to four different charge doping levels of the
graphene samples. c) Raman spectra of graphene samples with four different charge doping levels. d) Experimental flow chart. After preprocessing, five
different (conventional) ML models and four different deep learning models were implemented. Adapted with permission.[105] Copyright 2022, Royal
Society of Chemistry.

Figure 2. a) ML model is trained using a dataset of Raman spectra with predetermined twist angles. b) Raman features are collected from different tBLG
samples to determine their twist angles. c, d) Trained models predict the twist angle of other BLG samples based on their Raman features. e) Average
spectra of SLG, BLG-AB, and tBLG with different twist angles. Adapted with permission.[108] Copyright 2022, ACS Publications.

(tBLG) from Raman spectra. After reducing the dimensional-
ity of the data with PCA, machine learning regressors (MLRs)
were successfully used to make predictions and compare
performance.[107] By analyzing the features learned by the MLRs,
the experiments determined that the intensity profile close to
the G-band was the most significant feature. Similarly, Solís-
Fernández and Ago [108] predicted the twist angle of a tBLG based

on its Raman spectrum using an RF algorithm. Figure 2a–d de-
picts the process of determining the BLG twist angle with ML,
and Figure 2e illustrates the average spectra at different twist
angles. The spectra are normalized to 2D band intensities and
shifted vertically, and the Raman spectra are labeled into corre-
sponding bands of twist angle.[108] The proposed method can de-
liver 99% accuracy in labeling twist angles. Such highly accurate

Adv. Optical Mater. 2023, 2203104 2203104 (6 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 3. a) High speed Raman spectra collection method for carbon nanotubes (CNTs). b) Generation of unlabeled Raman spectra. c) Labeled datasets
are organized into three classes: S-CNTs, M-CNTs, and empty. d) Illustration of a CNN model. e) Identification of unlabeled spectra using the trained
model. f) Prediction. Reproduced with permission.[111] Copyright 2022, Springer Nature.

predictions are expected to facilitate the exploration of emerging
research areas on stacked and twisted van der Waals heterostruc-
tures.

Carbon nanotube (CNT) is a 1D nanomaterial with excep-
tional mechanical, electrical, and chemical properties, and
promising avenues of application.[109,110] In a recent study,
Zhang et al.[111] proposed a high-throughput method for rapidly
identifying suspended carbon nanotubes (CNTs) employing
high-speed Raman imaging and CNN, as depicted in Figure 3.
This work used a large dataset of CNTs Raman spectra com-
prising of labels metallic CNTs (M-CNTs), typical metallic CNTs
(S-CNTs), and Empty as the source for training sets for CNN
models.[111] The trained model was then utilized to predict the
label of new unlabeled spectra. Even with a low signal-to-noise
ratio, the method can classify the samples with an accuracy
of >90%.

Mao et al.[112] pioneered using ML and Raman spectroscopy
to distinguish between single-layer continuous films and ran-
dom defect regions in 2D materials (Figure 4a, b). Based on the
position-dependent Raman information of molybdenum disul-
fide (MoS2) films, an RF algorithm is used to search for possi-
ble hidden correlations between the sample types and the fea-
tures obtained from the spatial Raman mapping to distinguish
the continuous monolayer film from the defective regions [112]

(Figure 4c, d). Due to low visual contrast, defects are frequently
overlooked in optical microscopy. Therefore, this classification
procedure of 2D material defects highlights the advantages and
potential of ML as an alternative to traditional analysis methods.
Subsequently, He et al.[113] proposed an ML-based method for

monolayer detection and 3D characterization of MoS2. The prop-
erty that the optical intensity depth of MoS2 samples captured un-
der a linearly adjustable light source is proportional to the color
depth can be utilized to extract the characteristics of questionable
monolayer MoS2 samples effectively.[113] The target value dataset
is established based on the Raman spectra of the samples, and
SVM is used to classify the monolayer MoS2 samples, with clas-
sification accuracy up to 99.2%.

Cui et al.[114] used the SVM method to mine and learn the be-
havior vectors of the phonon vibrations in a crystalline lattice
from Raman scattering, recognized the orthorhombic, tetrago-
nal, and cubic phases, and constructed the phase diagram in fer-
roelectric crystals. This study presents a tool commonly used to
detect structural properties at the molecular level, which provides
the basis for applying generic methods to predict undeveloped
structures and materials.

3.2. ML-assisted Raman Spectroscopy of Minerals

Non-destructive Raman spectroscopy has been widely used in
mineral analysis.[115–119] Whereas minerals are used as primary
structural materials, this makes it also plays a significant role
in archaeology.[120,121] Recently, some research has used ML
in conjunction with Raman spectroscopy to identify minerals.
Carey et al.[122] proposed a full-spectrum matching algorithm for
mineral identification and classification in Raman spectroscopy.
The experiments demonstrated excellent performance in clas-
sification tasks without the need for expensive dimensionality

Adv. Optical Mater. 2023, 2203104 2203104 (7 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 4. a) Optical image of the MoS2 sample. The MoS2 monolayer continuous film has a relatively smooth surface; the line and the dark triangular
areas (a cross sectional height profile is shown as inset) are cracks and double layer regions, respectively. b) Raman spectra of the monolayer, crack,
and bilayer regions. c) The basic architecture of the prediction procedure in the RF method, each small square represents a spatial measurement point
carrying characteristic information extracted from Raman. d) The predicted pictures for different samples with crack(brown), monolayer (grass green),
and bilayer (dark green) areas. Reproduced with permission.[112] Copyright 2020, MDPI.

reduction or model training.[122] In another study, ML is used to
classify variscite samples, which were once used as gemstones,
from the Gavà mining complex to determine their origin and
mining depth.[123] The SVM algorithm achieved the highest
classification accuracy in this task.

Wu et al.[124] discovered that traditional ML methods perform
poorly when dealing with minerals with many categories. To ad-
dress the issue, they proposed a similarity learning method based
on the Siamese network. The Siamese network was optimized
using the Hungarian algorithm [125] for negative samples to im-
prove mineral identification accuracy and calculate the similarity
between minerals. As a result, it outperforms traditional ML al-
gorithms in terms of robustness.

Sang et al.[126] proposed a 1D deep CNN-based classification
model for spectral data that can classify and identify hundreds
of mineral categories. For example, the model can identify min-
eral Raman spectra in the RRUFF dataset.[127] Compared with
other traditional ML methods and CNN models, this work has
improved accuracy, precision, and recall performance.

3.3. ML-assisted Raman Spectroscopy of Plastics

To reduce the negative impacts of plastic waste on the environ-
ment, Raman spectroscopy has been evaluated as a method for
identifying some common solid plastics.[128] Musu et al.[129] clas-

sified the plastics using SVM and ANN algorithms. The PCA
method was employed to reduce the data dimensions of the ba-
sic spectral peaks to simplify the computation. In the evaluation
phase, PCA-SVM model demonstrated excellent accuracy and ro-
bustness, with recognition accuracy remaining above 95% even
when the noise was increased to three times the original level.[129]

In addition, the ANN model achieves a high recognition accuracy,
≈100%, after a few hundred epoch calculations, but it takes more
time than PCA-SVM model.[129] This study assesses the use of Ra-
man spectroscopy-based ML techniques in plastic identification
and demonstrates the feasibility of accurate and rapid plastic re-
cycling classification.

Furthermore, microplastics can also cause potential negative
impacts on the environment, and the problem has attracted in-
creasing attention.[130] Numerous studies have been initiated to
address the issue of microplastic pollution.[131–134] Fang et al.[135]

proposed two methods for the visualization of microplastics us-
ing Raman imaging, including a logic-based algorithm that com-
bines several images mapped with multiple feature peaks into a
single image to improve image determinism. Another method is
to decode the spectral matrix using PCA algorithm, which is ap-
propriate for cases with complex samples and a lack of standard
spectra.[135] Experimental results indicated that logic-based algo-
rithms may suffer from signal loss when merging multi-peak im-
ages, whereas PCA algorithms have the potential to analyze large
Raman spectral matrices efficiently.

Adv. Optical Mater. 2023, 2203104 2203104 (8 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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4. Application of ML & Raman Spectroscopy in
Biomedicine

While numerous methods for screening and diagnosing diseases
are used in the medical field, clinical requirements for early and
precise disease detection are not easily satisfied.[136,137] Raman
spectroscopy has recently been applied in vitro and in vivo to
solve various biomedical problems.[138–140] As early as decades
ago, studies have been done on the potential of Raman spec-
troscopy as a new tool for biomedical applications, from proof of
principle to clinical implementation.[141,13] Raman spectroscopy
combined with ML could provide a low-cost, rapid, and noninva-
sive method for biomedical identification and diagnosis.[142] Re-
cent biomedical applications of this combination are illustrated
in Table 3 and Table 4.

4.1. ML-Assisted Raman Spectroscopy for Medical Diagnosis

In a recent study, researchers combined tear-based Raman spec-
troscopy with ML to diagnose cerebrovascular disease, enabling
a rapid, noninvasive classification of cerebral infarction and cere-
bral ischemia.[143] Analysis of Raman spectroscopy data revealed
differences in tyrosine, phenylalanine, and carotenoid levels in
the tears of patients with cerebral ischemia and patients with
cerebral infarction, which provide a foundation for early screen-
ing of patients with cerebrovascular disease. A total of 12 classi-
fication models (different combinations of the seven algorithms
listed in Table 3) established in the experiment have high accu-
racy in diagnosis, with PLS-PNN performing the best. This study
demonstrates that tear Raman spectroscopy has enormous poten-
tial for diagnosing patients with cerebral infarction and ischemia.

Sciortino et al.[144] extracted 2073 Raman spectra from 38
glioma specimens using an eXtreme Gradient Boosting (XGB)
and SVM with radial basis function on kernel (RBF-SVM) to clas-
sify tumor types. They analyzed the ability of Raman spectra to
detect mutation types in unprocessed glioma biopsies, which is
essential in surgical guidance as well as intraoperative diagno-
sis. A recent study deployed Raman spectroscopy with ML al-
gorithms and detected gliomas (Figure 5a–d) in surgical scenar-
ios and identified 19 new Raman shifts with known biological
significance.[145] According to the findings, Raman spectroscopy
combined with supervised ML techniques can distinguish be-
tween normal and tumor tissue in fresh samples in vitro. Fig-
ure 5e depicts the average spectra and deviations for healthy and
tumor patients, with arrows indicating the new Raman peaks.
The incorporation of ML further supports the development of
real-time tissue analysis using Raman spectroscopy in tumor
brain surgery.

Alzheimer’s disease (AD) is the most prevalent form of de-
mentia afflicting older adults worldwide. The clinical symptoms
of AD have progressed from mild memory loss to severe cogni-
tive impairment,[146] making it one of the most concerning health
disorders. The optimal time to diagnose AD is in the prelimi-
nary stages of its progression.[147] However, current diagnostic
options, such as clinical assessment, are only valid in the late
stages of the disease. Therefore, a rapid and effective method for
diagnosing AD is urgently needed. Some research attempts to de-
tect AD by analyzing the Raman spectra of various body fluids.

Ralbovsky et al.[148] developed a new method for AD diagnosis
based on saliva analysis. This study classified saliva samples from
normal individuals, patients with AD, and patients with mild cog-
nitive impairment using Raman spectroscopy and genetic algo-
rithms and ANN. The accuracy is 99%, indicating that salivary
Raman spectroscopy can be used effectively for early AD diagno-
sis.

In another work, AD was also diagnosed using near-
infrared spectroscopy of cerebrospinal fluid combined with ML
analysis.[149] Ralbovsky et al.[150] described a new screening
method for determining the risk of AD. The Raman spectroscopy
analysis of serum from rats fed on standard and high-fat diets re-
vealed that high-fat diet rats exhibited a pre-AD state. The exper-
imental results demonstrated that the PLS discriminant analysis
used for the classification distinguished the two rat groups with
100% accuracy at the donor level.

Furthermore, to address the impact of the intrinsically weak
Raman signal on Raman-assisted identification of biomolecules,
Huang et al. reported a method to enhance the Raman signal by
reducing Raman spectral noise with graphene.[151] The method
was applied in a recent study of rapid screening for AD by ML
and graphene-assisted Raman spectroscopy.[152] Figure 6a illus-
trates the overall workflow of the analysis. The experiment first
collected Raman spectra on brain slices of mice with and without
AD (Figure 6b, c) and then used ML to classify the collected spec-
tra. The Raman measurements were performed by contacting a
single layer of graphene with the brain slices and thus achieving
noise reduction of the Raman spectra of brain tissues to improve
the Raman signal-to-noise ratio and increase the accuracy of the
ML classification from 77% to 98%.[152] In general, Raman spec-
troscopy has the potential to be used in the future as a method to
identify AD at an early stage of its progression, which has signif-
icant implications for the early prevention and treatment of this
disease.

The demand for large-scale diagnostic tests has increased in
recent years due to the impact of the COVID-19 epidemic.[153]

However, the commonly used detection methods are still either
labor-intensive or not sufficiently accurate.[154] Rapid and precise
detection of COVID-19 is essential for the rational allocation of
healthcare resources. Chen et al.[155] constructed a stacked sub-
code classifier based on eight ML algorithms as a classification
tool for serum Raman spectral data to predict the infection sta-
tus of COVID-19. This classification task achieved an accuracy of
98%. Similarly, Yin et al.[156] collected 177 serum samples from
patients with confirmed COVID-19, suspected cases, and healthy
individuals for Raman spectroscopy analysis (Figure 7a, b). They
constructed the corresponding diagnostic algorithm using SVM,
and the receiver operating characteristic curve is shown in Fig-
ure 7c. This experiment of serum level classification results was
correct for all independent test data sets. Ember et al.[157] devel-
oped a saliva-based, reagent-free method for detecting COVID-
19. They used Raman spectroscopy and ML to detect and analyze
changes in the molecular profile of saliva associated with COVID-
19 infection.[157] These studies demonstrate the prospect of a
rapid Raman spectroscopy screening tool for medical detection.

Much research on Raman spectroscopy and ML in disease
has focused on cancer detection.[158] However, the results of
many cancer screenings still rely on the expertise of physicians.
Researchers have recently attempted to develop more efficient

Adv. Optical Mater. 2023, 2203104 2203104 (9 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Table 3. Latest developments in combining ML methods with Raman spectroscopy for medical diagnosis.

Objectives Methods Results References

Classification of cerebral infarction and
cerebral ischemia

PCA, PLS, MRMR, SVM,
KNN, PNN, DT

The classification accuracy of all models is above 85%. Especially
PLS-PNN has achieved 100% accuracy.

Fan et al.[143] (2022)

Classification of glioma types XGBoost, RBF-SVM Both the accuracy and precision of distinguishing between IDH-MUT
and IDH-WT tumors are 87%.

Sciortino et al.[144]

(2021)

Classification of glioma biopsies RF, GB The accuracy and precision of distinguishing between tumors and
healthy brain tissue are 83% and 82%, respectively.

Riva et al.[145] (2021)

Alzheimer’s disease (AD) diagnosis
based on saliva analysis

ANN The classification accuracy of salivary Raman spectroscopy samples
from normal, AD, and patients is 99%

Ralbovsky et al.[148]

(2019)

Identify the risk of AD PLS The experimental results showed that the PLS discriminant analysis is
used for the classification with 100% accuracy at the donor level.

Ralbovsky et al.[150]

(2021)

Rapid screening of AD SVM, RF, XGBoost,
CatBoost

By contacting the brain slices with a single layer of graphene to
improve the Raman signal-to-noise ratio of brain tissue and
increased the accuracy of classification from 77% to 98%.

Wang et al.[152]

(2022)

Predict the infection status of COVID-19
based on serum Raman spectra

DT-based ExtraTrees, LR,
KNN, SVM, AB, GB,
RF, MLP

The classification accuracy for 10-fold cross-validated is 98.0%,
precision is 98.6%, and recall is 98.5%.

Chen et al.[155]

(2021)

Predict the infection status of COVID-19
based on serum Raman spectra

SVM The classification accuracy between the COVID-19 cases and the
suspected cases is 87%, for COVID-19 and the healthy controls is
90%. In comparison, the accuracy between the suspected cases and
the healthy control group is 68%.

Yin et al.[156] (2021)

Saliva-based detection of COVID-19
infection

MILES Even taking into account the gender of the saliva donor, the maximum
AUC in the study is 0.80.

Ember et al.[157]

(2022)

Classify breast cancer subtypes PCA-DFA, PCA-SVM Identification of breast cancer cells and classification of cancer cell
subtypes at the single cell level with a classification accuracy of over
97%.

Zhang et al.[159]

(2022)

Diagnosis of lung cancer STFT based CNN The average accuracy of test groups is 96.5% ± 0.7%. Qi et al.[160] (2021)

Classification of lung cancer based on
serum Raman spectra

Improved ResNeXt The improved ResNeXt model achieved the best results with accuracy,
sensitivity, specificity, and AUC values of 0.968, 0.992, 0.951, and
0.973, respectively.

Leng et al.[161] (2022)

Lung cancer diagnosis based on
exosome Raman spectra

ResNet based deep
learning model

The model predicted lung cancer with an AUC of 0.912 and an AUC of
0.910 for early-stage patients.

Shin et al.[163] (2020)

Screening of cervical adenocarcinoma
and cervical squamous cell
carcinoma tissue

airPLS, PLS, PCA, KPCA,
KNN, ELM, BPNN,
GA-BPNN, LDA…

The airPLS-PLS-KNN algorithm has the highest accuracy rate of 96.3%. Zhang et al.[164]

(2021)

Screening of ovarian cancer BPNN, PCA The sensitivity and specificity of cancer detection are 81.0% and 97.3%
among normal, cyst, and cancer samples, respectively.

Chen et al.[166]

(2022)

Identify blood species RNN The recognition accuracy of bidirectional RNN with GRU is 97.7%. Wang et al.[167]

(2021)

Predict gastric cancer CNN, RF, SVM, KNN RF had the best performance with an accuracy of 0.928, sensitivity and
specificity of 0.947 and 0.908, and AUC of 0.9199.

Li et al.[168] (2021)

Investigate the long-term treatment of
G-CSF on colon and breast cancers

PCA, LDA The classification accuracy is 69.7%±11.8% for 4T1 cells and
67.5%±10.7% for CT26 cells.

Zhang et al.[170]

(2021)

Identification of kidney tumor tissue SVM The classification accuracy is 92.89%. He et al.[171] (2021)

(MRMR: Minimum Redundancy Maximum Relevance, XGBoost: eXtreme Gradient Boosting, RBF: Radial Basis Function, GB: Gradient Boosting, CatBoost: Categorical
Boosting, AB: Adaptive Boosting, MLP: MultiLayer Perceptron, STFT: Short-time Fourier Transform, ResNet: Residual Neural Network, MILES: Multiple Instance Learning
via Embedded Instance Selection, DFA: Discriminant Function Analysis, airPLS: Adaptive Iteratively Reweighted Penalized Least Squares, KPCA: Kernel Principal Component
Analysis, ELM: Extreme Learning Machine, BPNN: Backpropagation Neural Network, GA: Genetic Algorithm.)

methods to assist physicians in cancer screening. Zhang et al.[159]

adopted Raman spectroscopy combined with PCA–DFA and
PCA–SVM to simplify and accelerate the process of distinguish-
ing normal from breast cancer cells, and classifying breast cancer
subtypes. The results showed that the proposed algorithm can
identify breast cancer cells and classify cancer cell subtypes at a
single-cell level with an accuracy of over 97%.

Qi et al.[160] proposed a new method of short-time Fourier
transform (STFT)-based CNN combined with Raman spec-
troscopy to analyze lung tissues to diagnose lung cancers. When
dealing with large data volumes of samples, the STFT-based
CNN approach can provide a more accurate means of tissue sec-
tion inference in pathology. Leng et al.[161] analyzed and verified
the changes of substance components in the serum of patients

Adv. Optical Mater. 2023, 2203104 2203104 (10 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Table 4. Latest developments in combining ML methods with Raman spectroscopy for pathogens in biomedicine.

Objectives Methods Results References

Analysis of Raman spectra of human
and avian viruses

CNN The accuracy of the binary classification of influenza
viruses is 99%, for the four subtypes of influenza A is
96%, and 95% for the enveloped and non-enveloped
viruses.

Ye et al.[172] (2022)

Identification of Burkholderia mallei
and Related Species

SVM, PCA Identification accuracy of >90% could be achieved on the
spectra level.

Moawad et al.[173]

(2019)

Detection of bacteria CNN Using a 30-class bacterial isolate dataset for training and
testing, the ML model achieved recognition accuracy of
≈86% and recognition speed close to real-time.

Kukula et al.[174] (2021)

Identification of Marine Pathogens RNN (LSTM) The classification accuracy of the RNN using LSTM
method is over 94%.

Yu et al.[175] (2021)

Detection of food-borne pathogens KPCA, DT The classification accuracy is in the range of
87.1%–95.8%.

Yan et al.[176] (2021)

Identification of E. coli strains ANN, SVM Even with a limited data set, SVM achieved an average
accuracy of 98.8%. When the data set is large enough,
ANN can achieve 100% accuracy.

Zahn et al.[177] (2022)

Distinguish between resistant and
sensitive E. coli strains

SVM, LDA For the Raman microspectroscopy data, the accuracy is
75%, correctly classifying 15/20 strains.

Nakar et al.[178] (2022)

Diagnosis of bacterial pathogens at the
single-cell level

Neural Network-based DAE Demonstrated 92% (simple filter using 1 s/cell spectra)
and 84% (DAE using 0.1 s cell spectra) identification
accuracy.

Xu et al.[183] (2022)

Identification of pathogenic bacteria CNN The identification accuracy is 99.7%. Ho et al.[184] (2019)

(LSTM: Long and Short-term Memory, DAE: Denoising Autoencoders.)

Figure 5. a, b) Axial and sagittal views of preoperative MRI showed tumor consistent with Anaplastic Oligodendroglioma IDH-1 mutant. The white spots
showed the intraoperative site of tissue biopsies registered in the neuro navigation system and labeled as tumors. c, d) Preoperative MRI showed the
intraoperative location of tissue collection labeled as healthy. e) Normalized mean spectra (curves) and standard deviations (shaded bands) for healthy
(blue) and tumor patients (red). The arrows mark the new Raman peaks. Reproduced with permission.[145] Copyright 2021, MDPI.

with lung cancer and found significant differences between
lung cancer patients and normal controls in major components
in serum such as phenylalanine, 𝛽-carotene, and cholesterol.
As shown in Figure 8c, the peaks of 𝛽-carotene at 1157 and
1517 cm−1 were significantly lower in lung cancer patients than
in controls, while the peak of cholesteryl ester at 1669 cm−1

was higher than in controls. This experiment proposes a model
based on an improved ResNeXt (Figure 8b) better suited for

processing spectral data than the original model (Figure 8a),
resulting in an accurate classification of serum Raman spectra
of lung cancer patients. In addition, exosomes have been used as
promising biomarkers for liquid biopsies.[162] Shin et al. achieved
an accurate diagnosis of early-stage lung cancer based on a deep
learning method assisted SERS of exosomes.[163] The authors
isolated exosomes from cell culture supernatants and human
plasma samples and collected their Raman spectra. The deep

Adv. Optical Mater. 2023, 2203104 2203104 (11 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 6. a) Workflow for data collection, pre-processing, ML classification and interpretation of graphene-assisted Raman signals. The demonstrated
ML classifier is a linear SVM model for differentiating AD/non-AD Raman spectra. b) Raman spectra in the cortex region of brain slices preprocessed
using graphene with and without AD. The G-band of graphene at 1589 cm−1 is notated as “G”. c). Raman spectra in the cortex region of brain slices
preprocessed not using graphene with and without AD. Reproduced with permission.[152] Copyright 2022, ACS Publications.

Figure 7. a) Total mean of three Raman spectra of COVID-19, suspected, and healthy groups. b) Raman difference signal between groups (black) and
±2 standard deviations between groups (red and blue). c) The receiver operating characteristic curve of the SVM diagnostic algorithm for the COVID-19
group versus the suspected group, the COVID-19 group versus the healthy control group, and the suspected group versus the healthy control group.
Reproduced with permission.[156] Copyright 2021, John Wiley & Sons.

Adv. Optical Mater. 2023, 2203104 2203104 (12 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 8. a) ResNet model. b) Improved ResNeXt model. c) Normalized mean spectra and sample standard errors (shaded areas) of control subjects
and of lung cancer patients and their difference spectra. Reproduced with permission.[161] Copyright 2022, John Wiley & Sons.

learning algorithm based on ResNet used in the experiment was
able to detect the features of exosomes of lung cancer cells and
successfully identify patients with early-stage lung cancer.[163]

Early screening is significant for some cancers with long in-
cubation periods, such as ovarian cancer. Zhang et al.[164] pro-
posed a method for early screening of cervical adenocarcinoma
and cervical squamous cell carcinoma based on cancerous tissue
data collected by Raman spectroscopy and several classification
models constructed by ML algorithms. After a comparative study,
the airPLS-PLS-KNN algorithm has the highest accuracy rate of
96.3%.

Blood-based Raman spectroscopy can realize simple, mini-
mally invasive, and efficient cancer detection, making it promis-
ing for detecting ovarian cancer.[165] For example, in a study on
ovarian cancer,[166] a total of 174 blood samples were collected
from 95 patients with initial suspicion of ovarian cancer, of which
62 patients were diagnosed with ovarian cancer and 33 with ovar-
ian cysts after further diagnosis. Based on these two types of sam-
ples with a control group consisting of 79 normal blood samples,
a triple classification function of cancer, cysts, and normal cases
was achieved.[166] Even though the classification results could be
improved, it was still able to demonstrate the diagnostic potential
of plasma-based Raman spectroscopy with ML for ovarian can-
cer. In addition, Wang et al.[167] proposed a method for identify-
ing blood species by applying RNN to Raman spectroscopy and
achieved discrimination of 20 blood species, including humans
and different animals, in which the recognition accuracy of bidi-
rectional RNN with gate recurrent unit (GRU) was 97.7%. The
experiments demonstrate the potential of this method in practi-
cal application scenarios such as customs inspection and medical
or forensic identification.

Gastric cancer (GC) is a widespread malignant tumor of the di-
gestive tract. Li et al.[168] measured the serum Raman spectra of
GC patients and healthy controls and used 1D CNN, RF, SVM,
and KNN to diagnose and predict gastric cancer. The experimen-
tal results indicated that the RF algorithm has the best perfor-
mance. A study showed granulocyte colony stimulating factor (G-
CSF) was directly related to gastric cancer metastasis.[169] Then

Zhang et al.[170] investigated the long-term treatment of cancer
cells by G-CSF. PCA was used to determine the Raman spec-
trum band with the most significant difference between normal
control cells and cancer cells treated with G-CSF. To evaluate the
progress of G-CSF treated cells, the concept of aggression score
was derived using a posteriori probability based on the linear dis-
criminant function.[170] This work may lead to identifying new
targets for cancer treatment.

Early diagnosis of renal cell carcinoma can significantly bene-
fit patients. He et al.[171] trained more than 3000 Raman spectra
obtained from the normal kidney, fat, and tumor tissue from 77
patients to build an SVM model based on Raman spectroscopy.
The trained SVM model can achieve in vitro identification of kid-
ney tumor tissue with an accuracy of 92.89%. This study demon-
strates the potential of Raman spectroscopy-based ML models in
the rapid clinical diagnosis of kidney cancer.

4.2. ML-assisted Raman Spectroscopy of Pathogen

In clinical diagnosis, infections due to bacterial pathogens are
widespread, and severe acute bacterial infections can even be fa-
tal. Therefore, accurate and rapid identification of bacterial infec-
tions is critical in medicine. Ye et al.[172] used a Raman dataset
collected from various viruses to train CNN models capable of
being highly accurate and sensitive to identify viruses imaged
by Raman spectroscopy. The experiments accurately classified
different types of human and avian viruses. Moawad et al.[173]

applied the SVM model to identify Burkholderia mallei and re-
lated species and demonstrated the potential of ML-based Raman
spectroscopy as a bacterial bio-diagnostic tool. Kukula et al.[174]

used a four-layer CNN architecture to achieve the classification
of 30 classes of bacteria and achieved an accuracy of approxi-
mately 86%. Yu et al.[175] demonstrated the accurate identifica-
tion of eight strains isolated from the marine organism Urechis
unicinctus in the marine environment by Raman spectroscopy
with the RNN model employing long and short-term memory
(LSTM) (Figure 9a, b). The authors evaluated the performance

Adv. Optical Mater. 2023, 2203104 2203104 (13 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 9. a)A CNN that consists of three layers was designed for detection of marine pathogens. The first two layers are used to extract the features of
the Raman data, and each layer is a combination of a convolution layer and a pooling layer. The last layer is a fully connected neural network layer for
classification. b) RNN model uses the LSTM method and consists of three layers with 64 neurons in each layer, yielding a final output of eight dimensions
through the fully connected layer. c) Change in the loss value was recorded when the CNN and RNN models were trained. Although the two models dealt
with the same Raman data, the training efficiency of the RNN model was higher, and the decrease in the loss value was lower. d) Accuracy results of the
CNN and RNN models for the test data set. e, f) Final classification results of the two models. The RNN model has a significantly improved accuracy
rate compared to the CNN model. Reproduced with permissio.[175] Copyright 2021, ACS Publications.

of the proposed RNN approach with LSTM versus CNN.[175] The
training results (Figure 9c–f) showed that the RNN model in this
study has significantly higher accuracy than the CNN model, with
an accuracy higher than 94%.

Yan et al.[176] collected single-cell Raman spectra of food-borne
pathogens from seven common genera (i.e., E. coli, Listeria mono-
cytogenes, etc.) The data were processed by Kernel PCA combined
with a decision tree (KPCA-DT). KPCA extracts the nonlinear fea-
tures of the raw data and evaluates and discriminates individual
bacterial cells at the serotype level by a DT algorithm with classi-
fication accuracy in the range of 87.1%–95.8%.[176] Zahn et al.[177]

used ANN and SVM models to distinguish the Raman spectra of
11 E. coli strains, respectively. They experimentally demonstrated
that both methods could potentially analyze complex spectral
datasets for biomedical applications, with SVM showing better
results on small datasets and ANN with relatively complex struc-
tures showing better results on large datasets.[177] Nakar et al.[178]

first used Raman spectroscopy to successfully differentiate be-
tween resistant and sensitive strains of E. coli without exposure to
antibiotics. Previous experiments revealed that resistant strains
had a higher ratio of nucleic acid to protein.[179,180] Nakar et al.
subtracted the mean spectrum of sensitive strains from the mean
spectrum of the resistant strains to obtain the different spectra,
which were then classified using the ML algorithm.[178] In conclu-
sion, the classification method employing the Raman spectrum
combined with ML methods can successfully match the corre-
sponding strain types according to the Raman spectrum of a sin-
gle cell. It can assist in preventing the rise of antimicrobial resis-
tance to improve medical diagnosis.

In addition, the weak signals of Raman spectra under natu-
ral conditions make data set construction and accurate identi-

fication challenging.[181,182] Xu et al.[183] proposed to use signal-
to-noise ratio (SNR) as an evaluation metric for Raman by ana-
lyzing single-cell Raman spectra (SCRS) with short acquisition
times (and low SNR) to obtain more spectral data. Then 11141
Raman spectra from nine strains were used for bacterial identifi-
cation using two ML methods, one is a simple filter, and another
is a neural network-based denoising autoencoder. Similarly, to
address the problem of weak Raman signals, Ho et al.[184] gen-
erated a broad range of datasets of bacterial Raman spectra and
applied the deep learning method CNN to accurately identify 30
common bacterial pathogens. The experimental flow is shown
in Figure 10. Experiments were conducted to validate the results
from clinical isolates from 50 patients, only using ten bacterial
spectra per patient isolate, with a recognition accuracy of 99.7%.

5. Application of ML & Raman Spectroscopy in
Food Science

As people become more health conscious, they realize that the
problem of food adulteration is seriously damaging the inter-
ests of consumers.[185,186] In pursuit of higher commercial value,
some producers and sellers use cheaper substitutes for the orig-
inal ingredients they should use to make illegal profits. There-
fore, efficient and accurate technology is needed to provide pre-
cise information about food ingredients and detect food adul-
teration. The fast, reagent-free, and non-destructive characteris-
tics of Raman spectroscopy make it a standard method in food
identification.[15,187] In addition, considering the large amount of
data that spectroscopy usually generates, Raman spectroscopy is
often combined with ML, which enables more advanced data pro-
cessing.

Adv. Optical Mater. 2023, 2203104 2203104 (14 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Figure 10. a) To build a training dataset of Raman spectra, deposit bacterial cells onto gold-coated silica substrates and collect spectra from 2000
bacteria over monolayer regions for each strain. An SEM cross section of the sample is shown (gold coated to allow for visualization of bacteria under
electron beam illumination). b) Focusing the excitation laser source to a diffraction-limited spot size, Raman signal from single cells can be acquired.
c) Using a 1D residual network with 25 total convolutional layers, low-signal Raman spectra are classified as one of 30 isolates, which are then grouped
by empiric antibiotic treatment. d) Averages of 2000 spectra from 30 isolates are shown in bold and overlaid on representative examples of noisy single
spectra for each isolate. Spectra are color-grouped according to antibiotic treatment. Adapted with permission.[184] Copyright 2019, Springer Nature.

Table 5 shows the application of Raman spectroscopy and ML
to food safety.

Chen et al.[188] developed an ML model based on the MSC-GA-
KM-Cubist method to detect whether the Atlantic salmon was
adulterated by analyzing the component functional groups cor-
responding to the Raman peaks from the fat of two fish types.
While the Raman spectra of fat observed when Atlantic salmon
was adulterated with different proportions of rainbow trout were
similar, there is a linear relationship between Atlantic salmon’s
adulteration rate and the Raman spectrum’s intensity.

As early as 2005, Ellis et al.[189] first attempted vibrational spec-
troscopy techniques, including Raman spectroscopy analysis of
the molecular structure and intergroup relationships of mus-
cle products combined with PCA-DFA methods to study mus-
cle foods closely related to poultry species such as chicken and
turkey. Robert et al.[190] used Raman spectroscopy combined with
three classification techniques, PCA, partial least square discrim-
inant analysis (PLS-DA), and SVM, to identify different species
of red meat with a short analysis time of 15 s and high accuracy.
Therefore, ML combined with Raman spectroscopy can be used
as an alternative technique in complete meat identification. In
other words, since we can identify meat categories and poultry

products that are similar in chemical composition, we can also
apply this to identify counterfeit meat.

In another study, a method based on the rapid processing of
Raman spectra using ML algorithms to certify edible oils was
successfully developed.[191] A total of 36 samples obtained from
seven categories of oils through different extraction procedures
and mixed in different modes were selected for the study.[191]

A classification learner constructed by ML algorithms was used
to identify the most relevant oil classification model, realize
adulteration detection, and preliminarily estimate its magni-
tude. Another investigation was conducted on adulterating extra
virgin olive oil (EVOO) with inexpensive edible oil.[192] Raman
spectra were obtained from binary, ternary, and quaternary
mixtures of oil samples using non-negative least squares to
obtain the relative concentrations of EVOO and other cheap oils
to determine the purity of EVOO. This research demonstrates
the potential of Raman spectroscopy in determining the purity
of edible oils. Zhao et al.[193] discovered that Raman spectroscopy
based on fatty acid composition effectively classified edible
oils. ML algorithms significantly improved the accuracy of
Raman spectroscopy analysis, and experimental results showed
that PCA with RF model is the best algorithm for Raman

Adv. Optical Mater. 2023, 2203104 2203104 (15 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Table 5. Latest developments in combining ML methods with Raman spectroscopy for food science.

Objectives Methods Results References

Identification of rainbow trout adulteration
in Atlantic salmon

MSC, GA, KM, Cubist The determination coefficient (R2) and root mean square error of
prediction sets (RMSEP) in the test sets are 0.87 and 10.93,
respectively.

Chen et al.[188] (2019)

Identification of muscle foods PCA, DFA It is possible to discriminate qualitatively between all four muscle
groups and find relevant wavenumbers.

Ellis et al.[189] (2005)

Identification of intact beef, venison and
lamb

PCA, PLS-DA, SVM The accuracy for predicting unknown samples exceeded 80% (PLS-DA)
and 92% (SVM). SVM and PLS-DA models perform best in
predicting venison samples with sensitivities of 100%.

Robert et al.[190] (2021)

Evaluation of edible oils ML in Matlab (KNN,
PCA…)

The model that works well (accuracy 88.9%) is a subspace KNN when
the PCA is disabled.

Berghian-Grosan and
Magdas [191] (2020)

Analysis of the authenticity and
concentration of extra virgin olive oil

PLS The purity of the spiked extra virgin olive oil can be determined,
although it is mixed with one or cheaper oils.

Duraipandian et al.[192]

(2019)

Detection of edible oils type and
adulteration

PCA, CNN, RF… Several ML algorithms are time efficient and 100% accurate in
classifying edible oils based on an acid composition by gas
chromatography.

Zhao et al.[193] (2022)

Detection of adulterated honey PLS, LDA The overall accuracy rate in detecting authentic and adulterated honey
is 96.54%.

Oroian et al.[194] (2018)

Detection of adulterated Suichang native
honey

SVM, PNN, CNN The overall accuracy of CNN, PNN, and SVM models are 100%, 100%,
and 99.75%, respectively.

Hu et al.[195] (2022)

Detection of fruit distillates DT, DA, SVM, KNN,
Ensemble classifiers

Trademark fingerprint identification obtained a model accuracy of
95.5% (only one sample was misclassified). For the geographical
distinction of fruit wines, the accuracy is 90.9%.

Grosan et al.[196] (2020)

(MSC: Multiple Scattering Correction, KM: K-means Clustering, DA: Discriminant Analysis.)

Figure 11. a) Experimental process for classifying pure honey. b) Mean spectra of samples. Reproduced with permission.[195] Copyright 2022, Springer
Nature.

spectroscopy-based edible oil classification. This study illustrates
the potential of ML-assisted Raman spectroscopy for the rapid
identification and detection of food products.

ML combined with Raman spectroscopy has been used to
detect and classify honey. In 2018, Oroian et al.[194] used par-
tial least squares linear discriminant analysis (PLS-LDA) to de-
tect honey adulterated with fructose, glucose, transformed sugar,
hydrolyzed inulin syrup, and wort, and achieved an overall ac-
curacy of 96.54% in detecting authentic honey from adulter-
ated honey. A recent study applies SVM, PNN, and CNN to Ra-
man spectroscopy to classify pure honey and adulterated honey

samples.[195] The structure of this work is depicted in Figure 11a,
and the mean spectra of honey samples are shown in Figure 11b.
The overall accuracy of the CNN, PNN, and SVM models is 100%,
100%, and 99.75%, respectively, when sensitivity, specificity, and
accuracy are considered. The results indicated that Raman spec-
troscopy combined with ML algorithms can accurately detect low-
concentration adulterated honey. Falsely declaring the origin and
source of a product is also a form of food adulteration. Grosan
et al.[196] combined five predictive modeling approaches with Ra-
man spectra of fruit distillates in a specific spectral range to dis-
tinguish the trademark, geographical and botanical origin.

Adv. Optical Mater. 2023, 2203104 2203104 (16 of 22) © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
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Table 6. Latest developments in combining ML methods with Raman spectroscopy for other fields.

Objectives Methods Results References

Classification of disposable masks PCA, SVM, Bayesian, BPNN The accuracy of Bayesian discriminant model has reached
100.0%, which can be used as the best model for mask
classification.

Liu et al.[197] (2021)

Estimation of holocellulose content of
poplar clones

SVR, DT, RF, GBM… All models successfully predicted the whole cellulose content,
with the advanced GBM algorithm outperforming all
models during training and testing.

Gao et al.[199] (2022)

Identification of handmade paper PCA, LS, SVM, KNN, RF PCA-LR had the highest classification and prediction accuracy
(R2 = 1).

Yan et al.[200] (2022)

Identification of white mineral pigments Deep CNN Achieved an accuracy of up to 98.7%. Qi et al.[201] (2022)

(GBM: Gradient Boosting Machine, SVR: Support Vector Regression.)

6. Application of ML & Raman in Other Fields

As a powerful and fast analysis method, ML assisted Raman spec-
troscopy is also frequently applied to study objects commonly
used in life, such as masks, artifacts, paints, etc.[197–201] (Table
6). Disposable masks rose significantly under the lasting effects
of Covid-19, which increased the probability of their presence
at crime scenes. Liu et al.[197] analyzed the Raman spectra of
mask samples from 37 different cities and manufacturers. They
proposed a classification and recognition method for disposable
masks based on feature extraction and multi-model optimiza-
tion. The authors divided the mask categories by PCA, compared
feature peaks in Raman spectrum, and then constructed dispos-
able mask classification and recognition models based on SVM,
Bayesian discriminant analysis, and backward propagation neu-
ral network (BPNN). The training and testing accuracy of the
Bayesian discriminant model has reached 100.0%, making it the
optimal model for mask classification and recognition, which
may play a significant role in identifying material evidence in
courts.

In addition, Raman spectroscopy combined with ML has the
potential to be applied to tree breeding programs. Gao et al. used
Raman spectroscopy ML to predict the lignin content in poplar
trees.[198] In another new study,[199] they recently presented nine
ML models built based on features extracted from Raman spec-
tra that successfully predicted the holocellulose content of poplar
trees. Yan et al.[200] focused on identifying handmade paper. They
measured 18 kinds of handmade paper samples using Raman
spectroscopy. They constructed five ML models, PCA-LS, PLS-LS,
SVM-LS, KNN, and RF, to assess the impact and effect of data
processing and to classify and predict the samples. Among the
different models, PCA-LR algorithm has the highest classifica-
tion and prediction accuracy. Qi et al.[201] proposed a deep CNN-
based method to automatically identify the Raman spectra of
white mineral pigments, achieving accuracy up to 98.7%. Experi-
mental results showed that the method can analyze the composi-
tion of white mineral pigments efficiently and non-destructively,
and the proposed method exhibits superior performance com-
pared to traditional learning algorithms such as PCA-DNN and
SVM. The non-destructive nature of these works makes the Ra-
man spectroscopy with ML approach valuable for artifact re-
search, archaeology, etc., and can stimulate further research on
related cultural relics.

7. Conclusion; Challenges and Perspectives for
ML-Assisted Analysis of Raman Spectral Data

The adoption of ML has effectively contributed to a wide range of
research involving processing of Raman spectroscopy data and
practical applications in many fields, such as material classifica-
tion, biomedicine, food science, and other areas. In this review,
we first introduced the concepts of machine learning by com-
paring ML-methods with traditional chemometrics and statisti-
cal techniques. Then, we introduced the application of different
methods in ML in analyzing Raman spectroscopy data in dif-
ferent areas, summarized advantages and disadvantages, results
achieved and experiments or data or techniques that are still lack-
ing. Overall, our various examples showed that it is promising to
solve many research problems more effectively in various fields
using ML combined with Raman spectroscopy than using the tra-
ditional chemometrics and statistical techniques only. Further-
more, deep learning related methods further improved the abil-
ity for computers to analyze larger and complex data including
Raman spectroscopy data as well as to finish more difficult tasks.

During the process of using various traditional chemometrics
and statistical techniques and ML-methods for the analysis of Ra-
man spectroscopy data, many different challenges could be tack-
led, which could not be comprehensively covered here. Hence, we
only selected two specific examples including data enhancement
for Raman spectra and anomaly detection for Raman spectra be-
cause they are not only widely studied and important problems
in ML, but also especially related to data analysis of Raman spec-
troscopy.

7.1. Data Enhancement for Raman Spectra

The size of training data is a significant issue for deep learning
and ML.[75,202] It directly impacts the performance of deep learn-
ing. It is possible to overfit when deep learning is used on a small
dataset.[203] The biggest challenge for multi-classification studies
of Raman spectra utilizing deep learning techniques, is that the
amount of Raman data available to researchers is often minimal
in practice. Therefore, solving the problem of insufficient Raman
spectral data is urgent.

As a solution to the problem, a hierarchical pipeline of data
enhancement steps reinforced with the GAN method was
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presented by Frischia et al.[204] The data augmentation pipeline
began with a natural individual Raman spectrum. It progressed
to include several signal processing procedures or algorithms to
artificially increase the number of spectra in the original dataset,
such as by adding white Gaussian noise to the original signal,
applying baseline removal algorithms, noise reduction filtering,
clustering, shifting, and merging the data.[204] The dataset is then
enhanced further using the GAN framework. A discriminator
is trained to identify fake data (artificial Raman spectra) from
actual samples of the original training dataset, while the gener-
ator is trained to generate Raman spectra.[204] When using deep
learning models (e.g., CNN), the GAN-enhanced dataset exhibits
a distinctly positive behavior with significantly higher accuracy.

7.2. Anomaly Detection for Raman Spectra

Classification problems have typically attempted to identify two
or more classes. However, suppose only one type of data is avail-
able. In that case, the goal is generally to test the new data and
compare it to the original training data, which is often used for
anomaly detection.[205] Anomalistic samples will inevitably ap-
pear in Raman spectroscopy measurement, as this technique is
susceptible to environmental and other influences. From an ML
perspective, anomaly detection will significantly affect the predic-
tive model performance.[206]

Hofer et al.[207] proposed a one-class anomaly detector based
on Raman spectral autoencoder. Using a biological application
as an example, Hofer et al. measured and trained a single-class
model for an average pre-transfected cell class and made it learn
regular class features by minimizing reconstruction error for a
given loss function.[207] When using the learned encoding to re-
construct spectra, the samples are considered abnormal if they
exceed a standard deviation threshold.[207] The results demon-
strated that anomaly detection can aid in the reconstruction of
Raman spectra and lead to promising classification results.

Although there is no doubt about the great potential of using
ML in assisting the analysis of Raman spectroscopy data, there
are still quite many research directions that need to be further
studied and developed in this area. First, the limited data size
of Raman spectroscopy should be solved urgently, only data en-
hancement is not enough, the main reason for limited data size is
that Raman spectroscopy data produced in different labs are ob-
tained under different conditions and those data in general not
useful for another lab, if a public database could be established
to store all the Raman spectroscopy data from all the labs in the
world and a standard normalization or preprocessing method or
an enhanced ML method capable of doing this task is available
one day, it is expected that data size would no longer be a problem.
Second, currently, it takes quite a long time to obtain an image of
Raman spectroscopy, with the further advancement for the effi-
ciency of Raman spectrometer, increased number of Raman spec-
troscopy images is expected. Third, most Raman spectrometers
are still quite big in size, if their size could be further decreased,
portable Raman spectrometers may be possible in the near fu-
ture, by then, together with more advanced ML techniques, it
is expected that they will become more useful in medicine, di-
agnose ,and sample analysis. Fourth, more research is needed
to use AI-assisted data analysis of Raman spectroscopy on soil,

plant, rock, and food samples, results of which would provide
a lot of useful information for sample identification, classifica-
tion and prediction of their origins, distribution, characteristics
and properties, breakthrough results are expected in these pre-
viously less investigated areas. One intriguing direction can be
to combine ML and Raman spectroscopy to guide more efficient
screening and discovery of materials with better functional prop-
erties (such as those dependent on phonons, for example, ther-
mal conductivity, thermoelectrics, or even superconductivity). Fi-
nally, although several standard ML methods have been com-
bined with Raman spectroscopy and applied in several fields, in-
cluding deep learning algorithms, it is still of significant interest
to develop new and simple ML methods based on different re-
search requirements for devising new classification and recogni-
tion modes based on Raman spectra. The emerging field of com-
bining ML with Raman spectroscopy can contribute, along with
other established techniques, to expedite material characteriza-
tion, showing advantages in terms of manpower requirement,
equipment and time cost, and accuracy, in a myriad of sectors.
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