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A B S T R A C T

Two-dimensional (2D) materials have attracted extensive attention due to their unique characteristics and po
tential applications. Raman spectroscopy, as a rapid and non-destructive probe, exhibits distinct features and 
holds notable advantages in the characterization of 2D materials. However, traditional data analysis of Raman 
spectra relies on manual interpretation and feature extraction, which are both time-consuming and subjective. In 
this work, we employ deep learning techniques, including classificatory and generative deep learning, to assist 
the analysis of Raman spectra of representative 2D materials. For the limited and unevenly distributed Raman 
spectral data, we propose a data augmentation approach based on Denoising Diffusion Probabilistic Models 
(DDPM) to augment the training dataset and construct a four-layer Convolutional Neural Network (CNN) for 2D 
material classification. The proposed CNN model achieves an impressive accuracy of 98.8 % on the original 
dataset. Experiments illustrate the effectiveness of DDPM in addressing data limitations and significantly 
improving the performance of the classification model. Notably, when enhanced with DDPM-augmented data, 
the DDPM-CNN method shows high reliability, with 100 % classification accuracy. Our work demonstrates the 
practicality of deep learning-assisted Raman spectral analysis for high-precision recognition and classification of 
2D materials, presenting a promising avenue for rapid and automated materials analysis via spectroscopy.

1. Introduction

Since the discovery of graphene in 2004, an ever-expanding family of 
two-dimensional (2D) materials has been discovered and explored [1,2]. 
Due to their unique physical and chemical properties, 2D materials have 
garnered significant attention in the scientific community and [3] have 
exhibited tremendous potential in an extensive range of applications 
[4-6]. To investigate the diverse properties of 2D materials, it is essential 
to characterize their basic structures and compositions.

Raman spectroscopy is commonly employed as a measurement 
technique for identifying and analyzing 2D materials. It has been widely 
used in analytical sciences due to its sensitivity and non-invasive nature 

[7-9]. However, conventional Raman spectroscopy analysis often in
volves laborious efforts and human intervention for data interpretation 
[10-12]. While manual identification by visual inspection of Raman 
spectra may be feasible for small datasets, a limited number of possible 
choices of 2D materials, and relatively simple heterostructures, it be
comes less practical for increased choices and varieties of 2D materials, 
and more complex, multi-layered stacked heterostructures. For example, 
as the number of constituent materials and stacking sequences increases 
in heterostructures involving three or more distinct layers, the Raman 
spectra can become more complex with peak overlaps and even become 
significantly altered due to interlayer interactions, easily obscuring the 
unique spectral signatures of individual materials and making it very 
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hard to resolve them using manual inspection and conventional 
methods. Additionally, in high throughput or industrial applications, 
quality control processes, or other situations where large-scale experi
mental datasets with numerous spectra must be analysed rapidly and 
accurately, manual inspection is neither scalable nor reliable. Therefore, 
automated solutions, such as deep learning-based methods, are essential 
to systematically extract subtle spectral features and achieve efficient 
and precise classification in these challenging scenarios. To address 
these challenges, there has been a growing interest in integrating ma
chine learning techniques with Raman spectroscopy [13-16]. In the 
high-throughput or industrial applications, efficient analysis through 
Raman spectroscopy is crucial, particularly in areas such as quality 
control in product manufacturing, where rapid and accurate assessment 
of a large quantity of materials is necessary [17,18]. Moreover, the 
complexity of material structures in industrial applications, involving 
multiple materials, makes the use of Raman spectroscopy combined with 
machine learning highly valuable for rapid analysis of materials, in
terfaces, and configurations.

Machine learning has attracted growing interest among researchers 
for its ability to analyze complex spectral data [13,19,20]. For instance, 
algorithms such as random forest, kernel ridge regression, and 
multi-layer perceptron have been applied to the study of 2D materials, 
such as identifying and characterizing monolayer MoS2 as well as twist 
angles of twisted bilayer graphene [21-24]. Despite these advances, it is 
important to note that conventional machine learning methods largely 
depend on manual preprocessing and feature engineering of spectra to 
achieve optimal performance [25]. To address these limitations, re
searchers are applying deep learning to assist Raman spectroscopy 
analysis [13,25]. A prime example is the application of convolutional 
neural networks (CNN), which have been successfully employed in 
high-speed Raman imaging for the rapid identification of carbon nano
tubes [26]. Furthermore, CNN has demonstrated its efficacy in accu
rately identifying hundreds of mineral categories and in distinguishing 
spectra of materials that are highly similar in subtly different environ
ments [27,28].

Nevertheless, deep learning generally requires extensive training 
datasets to optimize the network parameters and mitigate overfitting 
risks [29]. Data augmentation methods such as generative adversarial 
networks (GAN), often applied when there may be insufficient number 
of datasets, have shown promise in reducing overfitting and improving 
the accuracy of classification algorithms [30-32]. However, some re
searchers observed that GAN trades off diversity for fidelity to produce 
high-quality data samples but cannot cover the whole distribution of 
features in abundant sample scenarios [33-35]. In response to this lim
itation, our study proposes a novel approach, integrating a denoising 
diffusion probabilistic model (DDPM) with a 1D CNN-based classifier 
[35]. This hybrid model aims to efficiently and accurately identify 
distinct types of 2D materials and their stacked combinations using 
Raman spectroscopy.

In this research, we explore the fusion of classification-focused deep 
learning and generative deep learning methodologies for the identifi
cation of various 2D materials through Raman spectroscopy. In response 
to the challenge of limited and non-uniformly distributed experimental 
Raman data of 2D materials, we implement advanced data augmenta
tion strategies to substantially expand the number of training samples. 
The expansion is crucial for enhancing the performance of classification 
algorithms. Considering the characteristic diversity of Raman spectral 
features even for one material on varied substrates, we have constructed 
a DDPM based on ResNet for data augmentation. Subsequently, we 
developed a four-layer CNN for the automatic classification of spectra. 
This approach holds the potential to streamline the experimental pro
cess, reduce human intervention, and facilitate automated analysis of 
Raman spectra of 2D materials, particularly in complex situations such 
as multilayer stacked heterostructures or dealing with a large number of 
possible choices of constituent 2D materials.

2. Materials and overall framework

2.1. Raman spectral data

This article defines the task of identifying various categories of 2D 
materials as a multi-class classification problem. In this study, we utilize 
a dataset that comprises a total of 594 experimental Raman spectra for 
seven distinct 2D materials and three stacked combinations chosen as 
examples to demonstrate our methodology: Black phosphorus (BP), 
Graphene, Molybdenum disulfide (MoS2), Rhenium disulfide (ReS2), 
Tellurium (Te), Tungsten diselenide (WSe2), Tungsten ditelluride 
(WTe2), BP–WSe2 stack (S1), Te-ReS2-WSe2-Graphene stack (S2), and Te- 
WSe2-WTe2 stack (S3). It is noteworthy that the spectral features of these 
materials might exhibit a range of variations, as the spectra of each 
material are obtained on more than one type of substrate. The number of 
experimental Raman spectra for 2D materials studied in this work is 
summarized in Table 1.

2.2. Overall framework

In practical applications, many issues may limit the amount of 
acceptable spectral data obtained from experiments. For example, there 
may be limited experimental samples or insufficient measurement re
sources, or the weak Raman signals of substances measured may be 
difficult to separate from the background [36]. To address this issue, our 
framework introduces a novel data augmentation-based approach for 
Raman spectroscopy-based 2D material classification, as illustrated in 
Fig. 1. It primarily consists of the following two components: 

1. Data Augmentation Module: To augment the limited training dataset 
(experimental spectra), we employ DDPM to generate synthetic 
(data) samples for each category of materials. This process generates 
a substantial number of independently and identically distributed 
data samples based on the original Raman spectral dataset. The 
objective is to assist the classification model in accurately and effi
ciently identifying various types of 2D materials.

2. Data Classification Module: Combining the original spectral data 
samples with those generated by DDPM, the data classifier learns to 
determine the category of each sample. In our study, we construct a 
four-layer CNN to classify each sample into their respective cate
gories and compared it with other commonly used classification 
methods (comparison results are shown in the experiments and re
sults section) such as Artificial Neural Networks (ANN), Random 
Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors 
(KNN), and Logistic Regression (LR) [37,38].

Table 1 
Statistics of Raman spectral dataset of 2D materials 
studied in this work. S1 to S3 refer to various hetero
structure stacks (see text for details).

Materials Quantity of spectra

BP 35
Graphene 209
MoS2 8
ReS2 15
Te 270
WSe2 6
WTe2 28
S1 8
S2 7
S3 8
Total: 594
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3. Methodology

3.1. Data augmentation module

Firstly, this study employs DDPMs for data augmentation. Earlier 
studies have used DDPMs to synthesize high-quality data [39-42]. 
Diffusion probabilistic models were first introduced by Sohl-Dickstein 
et al. [43]. They defined a Markov chain of diffusion steps to construct 
desired data samples by adding random noise to data and then learning 
to reverse the diffusion process. Subsequently, Ho et al. (2020) [35] 
proposed DDPM, a simplified diffusion model driven by the connection 
between denoising diffusion models and denoising fractional matching. 
DDPM utilizes a multi-step Markov chain process to create synthetic 
data samples by initially adding Gaussian noise to the original data in a 
forward diffusion process, gradually transforming it into a noise distri
bution. The model then learns to reverse this diffusion process through a 
series of denoising steps, progressively removing the noise to reconstruct 
and generate new data samples that accurately reflect the features of the 
original distribution [44].

DDPM is composed of two processes: forward diffusion (left to right) 
and reverse diffusion (right to left), as shown in Fig. 1(a). Forward 
diffusion is a process of adding noise to the input data, represented by q, 
which is fixed to a Markov chain from data x0 to the latent variables x1, 
……, xT : 

q(x1:T |x0) =
∏T

t=1
q(xt |xt− 1) (1) 

The sampling noise latent based on the input x0 at an arbitrary step t 

can be expressed by defining αt = 1 − βt and αt =
∏T

t=0
αt, where β1, 

……, βT are the noise schedule consisting of a set of linearly increasing 
constants: 

xt =
̅̅̅̅αt

√
xt− 1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
z1 (2) 

xt =
̅̅̅̅
αt

√
x0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
zt zt ∼ N(0, I) (3) 

where 1 − αt demonstrates the variance of noise for an arbitrary time 
step. Given sufficiently large time step T, the latent xT tends to the 
standard normal distribution xT ∼ N (0, I).

The reverse diffusion process is also defined as a Markov chain from 
the Gaussian noise input xT to xT− 1, ……, x0. According to q(xT), we can 
sample the reverse steps q(xt− 1|xt). Here, we use pθ to indicate the 
reverse process: 

pθ(x0:T− 1|xT) =
∏T

t=1
pθ(xt− 1|xt) (4) 

Using Bayes theorem, the diffusion process can be represented by the 
known quantities from the forward process, and it can be proved that 
pθ(xt− 1|xt , x0) is also a Gaussian distribution: 

pθ(xt− 1|xt , x0) = q(xt |xt− 1, x0)
q(xt− 1|x0)

q(xt |x0)
(5) 

q(xt− 1|xt , x0) = N(xt− 1; μ̃t(xt , x0), β̃tI), β̃t =
1 − αt− 1

1 − αt
βt (6) 

Fig. 1. Illustration of the DDPM-based data augmentation and classification framework for Raman Spectra of 2D materials. (a) Data augmentation module based on 
DDPM. (b) Spectral classification module based on 1D CNN.
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μ̃t(xt , x0) =

̅̅̅̅̅̅̅̅̅

αt− 1

√

βt

1 − αt
x0 +

̅̅̅̅αt
√

(1 − αt− 1)

1 − αt
xt

(7) 

The relationship between x0 and xt is already obtained in the forward 
process: 

μ̃t(xt) =
1̅
̅̅̅
αt

√

(

xt −
1 − αt
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√ zt

)

(8) 

Since the noise zt at time step t depends on the entire forward 
training process, it is hard to estimate. Therefore, we constructed re
sidual networks (ResNet) based on the DiffWave model presented by 
Kong et al. (2020) to approximate the distribution of zt in the reverse 
process. The structure of the ResNet is illustrated in Fig. 2, it consists of 
eight residual layers and utilizes skip connections to connect the entire 
network.

The input of the model consists of two parts: input diffusion noise 
and step embedding, where the model generates different diffusion re
sults for different values of step t. Step embedding is a positional 
embedding introduced by Vaswani et al. [45], and in this study, we 
utilize it for the time step. The diffusion noise is fed into a 1D con
volutional layer, while step t is input into a two-layer fully connected 
layer, where the parameters of these two parts are shared. Subsequently, 
step t is mapped to an embedding vector through the third fully con
nected layer, and together with the diffusion noise, it is added to the 
input of each residual layer in the model. Each residual layer utilizes one 
convolutional layer for feature extraction. The obtained features are 
then activated by gated activation units and passed through a pointwise 
convolutional layer. The output of the pointwise convolutional layer is 
divided into two parts along the channel dimension: one part is the input 
of the next residual layer, while the other is directly output through a 
skip connection, where the output module consists of two convolutional 
layers.

3.2. Data classification module

From the data augmentation module, we can obtain a set of new 
samples for each class (material type) of the original spectral data, which 
will be utilized to enhance the performance of the classifier. In our 
classification module, we employ a 1D CNN as the core component. The 
neural network architecture constructed for classification is illustrated 
in Fig. 3. The convolutional layer is crucial in CNNs for feature extrac
tion. It convolves input data with trainable filters, directly influencing 
model performance. More convolutional layers allow the learning of 
additional features but increase training time. Each convolutional layer 
consists of trainable filters (kernels) that slide over input data, per
forming convolution operations. The process can be denoted as: 

cl
j = f

⎛

⎝
∑

i∈Ej

cl− 1
j ∗ kl

ij + bl
j

⎞

⎠ (9) 

where * represents the convolution operation, l denotes the current 
convolutional layer, cl

j is the output of jth feature map, kl
ij is the con

volutional kernel, Ej represents the input feature maps, f is the activation 
function, and b is the bias. The convolutional kernel hyperparameters 
are randomly initialized and optimized iteratively for optimal perfor
mance.

Our CNN model uses four convolutional layers to extract data fea
tures and uses Leaky ReLU as the activation function. Subsequently, a 
flattening layer is applied to transform the multi-dimensional input data 
into a set of 1D vectors, which is then fed into a fully connected layer. 
The fully connected layer receives the output from the convolutional 
and pooling layers and maps the learned features to a predefined vector 
space for feature classification. The expression for the fully connected 
layer is as follows: 

hw,b(x) = f
(
wTx+ b

)
(10) 

Where h represents the output of the current neuron, x denotes the 1D 
feature vector input, and w corresponds to the weight vector connected 
to the neuron. Finally, there is a Softmax function with an output 
dimension equal to the number of classes. The Softmax function takes a 
set of 1D vectors as input and normalizes them into a probability 
distribution.

The classifier uses sparse categorical cross-entropy to calculate loss, 
which is expressed as follows: 

loss = −
1
m

∑m

i=1

∑k

j=1
yijlogŷij (11) 

where m denotes the number of samples and k denotes the number of 
categories, yij means the real label of Raman data (if sample i belongs to 
class j then yij is 1, else 0) and ̂yij means the probability of model predicts 
the sample i belongs to class j.

4. Experiments and results

4.1. Data preprocessing

To ensure consistent dimensionality for the input of the model, we 
employ a simple spline interpolation technique to convert each Raman 
spectrum into a vector of 851 intensity values, within the wavenumber 
range of 50–1750 cm − 1. This range is selected to maximize the 

Fig. 2. An illustration of the ResNets architecture. In this schematic, "FC" denotes the fully connected layer. "Relu" represents the rectified linear unit (Relu) acti
vation function. The "gated activation unit" consists of the hyperbolic tangent (tanh) activation function and the sigmoid activation function, it can be denoted as 
tanh

(
Wf ,k∗x

)
⊙ σ

(
Wg,k∗x

)
, where W represents a convolutional filter, f and g represent the filter and gate, respectively, and k represents the layer index.
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information within each spectrum, and effectively encompass the 
characteristic peaks necessary for differentiating the Raman spectra of 
studied 2D materials. For spectra that do not cover the entire range of 
wavenumbers, the missing intensity values are padded with zeros. 
Finally, the dataset is normalized (to intensity values between 0 and 1) 
to establish consistent scaling across all features, thus preparing for 
model training and analysis.

4.2. Implementation settings

The experiments in this study are conducted on the Windows 11 
operating system using Python 3.9 programming language. The hard
ware used for the experiments includes a 12th Gen Intel(R) Core (TM) 
i7–12,700 CPU and a Nvidia GeForce RTX 3060 Ti GPU.

In the data augmentation module during the training of ResNet, each 

Fig. 3. The architecture of the four-layer CNN for Raman spectra-based classification.

Fig. 4. The Raman spectra of various 2D materials before and after data augmentation using DDPM: (a) BP, (b) Graphene, (c) MoS2, (d) ReS2, (e) Te, (f) WSe2, (g) 
WTe2, (h) BP–WSe2 stack (S1), (i) Te-ReS2-WSe2-Graphene stack (S2), and (j) Te-WSe2-WTe2 stack (S3). The left side of each panel represents the original Raman 
spectra dataset, while the right represents the augmented Raman spectra dataset.
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convolutional layer has a kernel size of 3, and the channel dimension 
within the residual blocks is set to 128. The generation of diffusion noise 
follows a linear schedule spanning 50 steps, with the range of βt values 
set between 0.0001 and 0.02. For the proposed four-layer CNN in the 
classification module, the kernel size is set to 3, and a stride of 2 is 
applied. The number of filters is configured as 32, 64, 128, and 256 for 
the respective layers. All neural network models are optimized using the 
Adam optimizer with an initial learning rate of 0.0002. The model un
dergoes training for 100 epochs, utilizing a batch size of 32. The training 
and test datasets, consisting of 10,000 synthetic spectra combined with 
594 experimental spectra, were divided in a 4:1 ratio, with 8475 spectra 
(80 %) allocated for training and 2119 spectra (20 %) reserved for 
testing.

4.3. Generated data

To ensure a comprehensive augmented dataset, the experiment uti
lizes the best-saved model to generate Raman spectra for each trained 
diffusion model. Fig. 4 shows the Raman spectra of ten categories of 
materials included in the dataset, as well as the generated Raman 
spectra. We employ DDPM to augment 1000 spectral data for each type 
of 2D material, generating a total of 10,000 Raman spectrum samples for 
further analysis. It can be observed that DDPM can generate diverse 
synthetic spectra that closely resemble the features of the original 
spectra. Additionally, DDPM exhibits the ability to fill in new data 
within a specific range based on original data (extrapolate data within 
predefined limits using the original data as a reference). This capability 
enables the comprehensive capture of all characteristics and improves 
the diversity of the dataset.

Furthermore, we employ the t-SNE dimensionality reduction tech
nique to visualize the original and augmented data (Fig. 5), providing 
insight into the high-dimensional structure of the dataset in a lower- 
dimensional space. The proximity of data points in the t-SNE plot re
flects their similarity in the original high-dimensional space, thus if two 
data points are close in the t-SNE visualization, their spectral features 
are likely to be similar. This is clearly demonstrated in Fig. 5(b), where 
the augmented data clusters closely with the original spectral data for 
each material category, suggesting that the augmented data preserves 
the intrinsic properties of the original spectra. Moreover, it can be 
observed that the features of augmented data for different categories 
exhibit more distinct boundaries in the low-dimensional space than 
original dataset. The clearer demarcation between clusters of different 
materials indicates that DDPM augmentation method does not 
compromise the inherent characteristics of each category but rather 
enriches the dataset in a way that can improve the performance of 
classification algorithms. Therefore, integrating the generated spectra 
into the dataset facilitates more diverse and comprehensive analysis, 

enabling a robust evaluation of deep learning-assisted methods.

4.4. Results and analysis

To assess the advantages of the proposed model, the experiments 
conduct the following baselines for comparison: RF, SVM, KNN, LR, and 
an ANN model with two hidden layers. For the multi-class classification 
task to identify 2D materials, we evaluated the performance of the model 
on the original dataset as well as augmented dataset respectively using 
the average accuracy, precision, and recall of ten-fold cross-validation as 
evaluation metrics. Table 2 reports the performance comparisons be
tween the proposed method with the baselines (the DDPM prefix in
dicates the use of the enhanced dataset, otherwise the original dataset). 
It is worth noting that CNN and DDPM-CNN exhibit superior classifi
cation performance compared to other models in the evaluation. Spe
cifically, CNN achieves an exceptional accuracy rate of 98.8 % without 
data augmentation, surpassing most other models. This indicates its 
ability to accurately classify data and exhibit good generalization.

Fig. 6 supplements this evaluation with an array of confusion 
matrices for different algorithms, where CNN displays higher accuracy 
in classifying most categories. The reported accuracy, precision, and 
recall metrics were obtained through a ten-fold cross-validation on a 
dataset comprising 10,000 synthetic spectra generated via DDPM and 
594 experimental spectra. The combined dataset was divided into ten 
(nearly) equal-sized subsets, with nine used for training and remaining 
one for validation (alternating to a different subset for each iteration). 
The final metrics were averaged across all 10 iterations to provide a 
robust and unbiased assessment of the model’s generalization perfor
mance. Such results corroborate that deep learning methods can 

Fig. 5. t-SNE plots for (a) the original dataset and (b) the augmented dataset (including original spectral data) of different 2D materials. [S1: BP–WSe2 stack, S2: Te- 
ReS2-WSe2-Graphene stack, S3: Te-WSe2-WTe2 stack.].

Table 2 
The average performance of ten-fold cross-validation comparisons between the 
proposed methods (with DDPM) vs. baselines (no DDPM, using only original 
data).

Method Accuracy Precision Recall

CNN 0.988 0.945 0.937
DDPM-CNN 1.000 1.000 1.000
ANN 0.946 0.658 0.646
DDPM-ANN 1.000 1.000 1.000
RF 0.906 0.566 0.574
DDPM-RF 1.000 1.000 1.000
SVM 0.966 0.829 0.786
DDPM-SVM 1.000 1.000 1.000
KNN 0.953 0.826 0.770
DDPM-KNN 0.988 0.989 0.988
LR 0.960 0.731 0.711
DDPM-LR 1.000 1.000 1.000
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Fig. 6. Confusion matrices depicting the average accuracy of ten-fold cross-validation in the classification of each category by different algorithms: (a) CNN, (b) 
ANN, (c) RF, (d) SVM, (e) KNN, and (f) LR. The diagonal elements represent the percentage of true positives, which is a key indicator of the algorithm’s ability to 
correctly identify each category. The off-diagonal elements represent misclassification rates.
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effectively extract sample features even when training data is limited. 
Conversely, conventional machine learning techniques such as RF and 
KNN tend to underperform when relying on raw Raman data as input 
features, which may limit the exploitation of inter-feature correlations, 
thereby affecting classifier performance. Moreover, with a precision of 
94.5 % and a recall of 93.7 %, it indicates that CNN still faces challenges 
in accurately identifying positives and capturing all True Positive 
instances.

In comparison, models such as ANN, RF, SVM, KNN, and LR, 
demonstrate varying levels of performance in accuracy, precision, and 
recall. Although these models may be slightly inferior to CNN, their 
performance nonetheless indicates their capabilities for Raman-based 
2D material recognition. It is worth emphasizing that the incorpora
tion of the DDPM for data augmentation method significantly enhances 
the performance across all evaluated models. Notably, the average ac
curacy in ten-fold cross-validation of DDPM-ANN and DDPM-RF models 
ascended from 94.6 % and 90.6 % to 100 %. This highlights the effec
tiveness of DDPM in refining algorithm performance in Roman-based 2D 
material recognition. The comparison results are shown in Fig. 7.

However, the advantages of DDPM-CNN are not prominent due to 
significant differences among the data categories used in this study. All 
DDPM-based conventional machine learning can achieve remarkable 
results. Typically, deep neural networks require larger datasets to reach 
their optimal performance, so further validation of its performance can 
be conducted on more complex datasets with smaller inter-category 
differences that are more difficult to distinguish.

The DDPM-based data augmentation module proposed in this study 
significantly enhances sample density and diversity, enabling the clas
sifier to establish decision boundaries more effectively. As a result, it 
outperforms baseline models. Higher sample density, in comparison to 
sparse data, often allows classifiers to learn more precise boundaries. 
Overall, the utilization of DDPM-based data augmentation has the po
tential to be a valuable technique in materials science. It has ability to 
generate realistic spectra and improve the recognition capabilities of 
classification models. The findings underscore the effectiveness of 
leveraging data augmentation methods for more accurate and robust 2D 
material recognition, ultimately contributing to the progress and 
exploration of novel materials in the scientific community.

5. Conclusion

This study explores the application of deep learning techniques to 
assist in identifying different 2D materials based on Raman spectros
copy. In response to the challenge of limited data availability, we 
employ data augmentation techniques to substantially augment the 
training samples to improve the effectiveness of the classification. We 
have constructed a DDPM-based augmentation model with ResNet, 
which effectively addresses data distribution, promotes diversity, and 
boosts the performance of all classification models, including CNN, 
ANN, RF, SVM, KNN, and LR. The four-layer CNN model that we con
structed demonstrates exceptional performance in this study, achieving 

classification accuracies of 98.8 % without data augmentation and a 
score of 100 % accuracy upon integrating DDPM-based data augmen
tation. These outcomes highlight the practicality of the proposed data 
augmentation approach, enabling high-precision identification of 2D 
materials even in small-scale data tasks. Furthermore, this study is the 
inaugural application of the DDPM in spectral generation, presenting a 
novel tool for data augmentation in Raman spectroscopy and other 
spectral analysis. It can simplify the experimental process, reduce 
human intervention, and facilitate automated analysis of spectroscopy, 
thus paving a new avenue for further research in this domain.

Researchers in this field can leverage our methodology to enhance 
the robustness and accuracy of material identification tasks, especially 
in instances where data is scarce or expensive to acquire. However, it’s 
important to acknowledge that the current tool has certain limitations. 
While our approach significantly improves classification performance, it 
still relies on the quality and representativeness of the initial dataset. 
Future investigations could delve into refining and expanding upon our 
approach, exploring its applicability across diverse spectroscopic tech
niques and materials, thus advancing the capabilities of material char
acterization and analysis. Additionally, the computational resources 
required for training deep learning models with DDPM augmentation 
may pose challenges for researchers with limited access to high- 
performance computing infrastructure. Addressing these challenges 
and exploring additional avenues for improvement, such as transfer 
learning, multimodal integration, and real-time analysis, will be essen
tial for realizing the full potential of deep learning in material science. 
Moreover, it would be worthwhile to extend the current approach to 
include layer numbers (thickness) and polytypes, and twist angle iden
tification in complex heterostructures. This would further broaden the 
utility and impact of our approach, enabling more advanced structural 
characterizations and fostering deeper insights and new advancements 
in 2D materials research.
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