

John Stone, University of Washington

Sampled - mostly measured:

- Bonneville shorelines (¹⁰Be, ³He, ¹⁴C, ³⁶Cl_{WR}, ³⁶Cl_K)
- Breque, Peruvian Andes (¹⁰Be)
- Scotland (¹⁰Be, ¹⁴C, ³⁶Cl_K)
- Saturated Antarctic bedrock (³He, ²¹Ne, ¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_k)

Sampled - mostly measured:

- Bonneville shorelines (¹⁰Be, ³He, ¹⁴C, ³⁶Cl_{WR}, ³⁶Cl_K) (²⁶Al, ³⁶Cl_{Ce}, ²¹Ne)
- Breque, Peruvian Andes (10Be)
- Scotland (¹⁰Be, ¹⁴C, ³⁶Cl_K) (²⁶Al, ³He, ³⁶Cl_{Ca})
 Saturated Antarctic bedrock (³He, ²¹Ne, ¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_K) (³⁶Cl_{Ca}, ...)

Sampled - yet to be measured:

- Puget lowlands
- New England moraines
- Quelccaya moraine
- Hawaii (Mauna Loa Holocene lavas)

(¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_{WR}, ³⁶Cl_K) (¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_K) (¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_K, ²¹Ne) (³He, ³⁶Cl_{WR})

Upcoming:

• Dry Valleys deep cores - muon calibration (¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_{Ca}, ³He, ²¹Ne)

Additional sites and projects:

- Recess Peak moraines, Sierra Nevada
- New Zealand landslides
- Historic lavas Canary Islands, Mauna Loa
- Deep roadcuts muon calibration

(¹⁰Be, ²⁶Al, ¹⁴C, ³⁶Cl_K, ²¹Ne) (¹⁰Be, ²⁶Al, ¹⁴C) (³⁶Cl_{Ca}, ³⁶Cl_K, ³⁶Cl_n) (¹⁰Be, ²⁶Al, ²¹Ne)

• Bonneville shorelines (¹⁰Be, ³He, ¹⁴C, ³⁶Cl_{WR}, ³⁶Cl_k)

- 39°- 41° N, 1440-1610 m
- Exposure age: 17.4 ± 0.2 cal kyr BP
- Quartzite, olivine basalt
- $P_{Be-10} = 14.0 \pm 0.2 \text{ atom/g/yr} (1 \text{ SD})$

• Scotland (¹⁰Be, ¹⁴C, ³⁶Cl_k)

- Corrie nan Arr 57.4°N, 130-140 m
- Exposure age: 11.6 ± 0.2 cal kyr BP
- Arkose (15-20% K-feldspar)
- P_{Be-10} = 4.89 ± 0.07 atom/g/yr (1 SD)

• Scotland (¹⁰Be, ¹⁴C, ³⁶Cl_k)

- Maol Cheann-Dearg 57.5°N, 510-530 m
- Exposure age: 11.6 ± 0.2 cal kyr BP
- Quartzite
- $P_{Be-10} = 6.94 \pm 0.09 \text{ atom/g/yr} (1 \text{ SD})$

- New CRONUS data
- P_{Be-10} at three sites
- each ± 2-3%
- How well do scaling factors connect these rates?
- Compare recalculated calibration sample ages to their known ages
- Paleomag-based methods all reconcile these data within their uncertainties.

- Published calibration data (basis of existing calibration):
- Scattered
- Biased ~5-6% high

- Puget lowlands
- New England moraines
- Quelccaya moraines

• Hawaii

• Holocene lavas - 1510 - 4080 yr BP

Kaniku flow 3360 cal yr BP; 60 m altitude

- Hawaii
- Holocene lavas 1510 4080 yr BP

Dating Hawaiian volcanic eruptions

Exposure age (yr)

- Depth profiles can be used to check muon production model (left panel).
- Surface concentrations are determined by erosion rate; they depend mainly on near-surface production rates.
- Be-10 depth profiles shown above calculated to fit surface concentrations.
- Concentrations at depth are systematically lower (~0.5x) than predicted.
- Same result from road-cut profile (0-15m; center panel) and quarry profile (0-6m; right panel).
- Likely explanation is that fast muon reaction rates have been overestimated.
- · Antarctic and Yucca Mtn profiles planned.
- Surfaces have erosion rates <1m/Myr.
- For such low erosion rates, $P \sim \lambda N$.
- Cores planned in quartz sandstone (Be-10, Al-26, Ne-21)

dolerite (CI-36, He-3, Ne-21, possibly Mn-53)

tuff (Be-10, Al-26, Ne-21 from quartz; Cl-36 from sanidine).

Dry Valleys core sites (Hoping to ..) drill to 30 m Additional 1-2 m cores

- Mt Insel Ferrar dolerite
- Erosion rate: 0.2 m/Myr (Schaefer et al. 2001)
- 1600 m altitude
- ³⁶Cl_{Ca}, ³He, ²¹Ne, possibly ⁵³Mn

- University Peak Beacon sandstone
- Erosion rate: 0.2 m/Myr
- 2300 m altitude
- ¹⁰Be, ²⁶Al, ²¹Ne, possibly ³⁶Cl_K

- · Freeway cut depth profiles.
- Three profiles 15 41m.
 - Two have additional samples from 0 3 m.
- Surface erosion rates: 7 15 m/Myr. Not for calibration - use to check Dry Valleys calibration.
- Ne-21 depth profiles? Need erosion to attain steady state. Permian exposure may be a problem?