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Density-functional theory of bosons in a trap
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A time-dependent Kohn-Sham-~KS-!like theory is presented forN bosons in three- and lower-dimensional
traps. We derive coupled equations, which allow us to calculate the energies of elementary excitations. A
rigorous proof is given to show that the KS-like equation correctly describes the properties of one-dimensional
impenetrable bosons in a general time-dependent harmonic trap in the large-N limit.
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The recently reported Bose-Einstein condensates~BEC’s!
of weakly interacting alkali-metal atoms@1# stimulated a
large number of theoretical investigations~see recent reviews
@2#!. Most of this work is based on the assumption that
properties of the BEC are well described by the Gro
Pitaevskii~GP! mean-field theory@3#. The validity of the GP
equation is nearly universally accepted.

The experimental realization of quasi-one-dimensio
~1D! and quasi-two-dimensional~2D! trapped gases@4–6#
stimulated much theoretical interest. The theoretical asp
of BEC’s in quasi-1D and quasi-2D traps have been repo
in many papers@7–17#. For the case of dimensionsd,3, it is
known that the quantum-mechanical two-bodyt matrix van-
ishes@18# at low energies. Therefore, the replacement of
two-body interaction by thet matrix, as is done in deriving
the GP mean-field theory, is not correct in general ford,3
@12,19#.

The density-functional theory~DFT!, originally devel-
oped for interacting systems of fermions@20#, provides a
rigorous alternative approach to interacting inhomogene
Bose gases@21,22#. The main goal of this Brief Report is to
develop a Kohn-Sham-~KS-!like time-dependent theory fo
bosons.

We consider a system ofN interacting bosons in a tra
potentialVext. Assuming that our system is in local therm
equilibrium at each positionrW with the local energy per par
ticle e(n) ~e is the ground-state energy per particle of t
homogeneous system andn is the density!, we can write a
zero-temperature classical hydrodynamics equation as@8#

]n/]t 1¹W •~nvW !50, ~1!

]vW /]t 1 ~1/m! ¹W „Vext1 ]@ne~n!#/]n 1 1
2 mv2

…50,
~2!

wherevW is the velocity field.
Adding the kinetic energy pressure term, we have
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We define the density of the system asn(rW,t)5uC(rW,t)u2,
and the velocity field vW as vW (rW,t)5\(C* ¹C
2C¹C* )/@2imn(rW,t)#.

From Eqs.~1! and ~3!, we obtain the following KS-like
time-dependent equation:

i\
]C

]t
52

\2

2m
¹2C1VextC1

]@ne~n!#

]n
C ~4!

in the adiabatic local-density approximation~ALDA !.
We note here that the current-density-functional the

~CDFT! for fermions, which goes beyond the ALDA, wa
formulated in Ref.@23#. In our future work, we will also
consider the CDFT for bosons.

If the trap potentialVext is independent of time, one ca
write the ground-state wave function asC(rW,t)5F(rW)exp
(2imt/\), wherem is the chemical potential, andF is nor-
malized to the total number of particles,*drWuFu25N. Then
Eq. ~4! becomes

$2 ~\2/2m! ¹21Vext1 ] @ne~n!#/]n%F5mF, ~5!

where the solution of Eq.~5! minimizes the KS energy func
tional in the local-density approximation E
5N^Fu(\2/2m)¹21Vext1e(n)uF&, and the chemical po-
tential m is given bym5]E/]N. Equation~5! has the form
of the KS equation.

The ground-state energy per particle of the homogene
systeme(n) for dilute 3D@24# and dilute 2D@25# Bose gases
is

e~n!5 ~2p\2/m! a3Dn[11 ~128/15Ap! ~na3D
3 !1/2

18(4p/32))na3D
3 ln~na3D

3 !1¯], ~6!

and

e~n!5
2p\2n

m
u ln~na2D

2 !u21@11O„u ln~na2D
2 !u21/5

…#, ~7!

where a3D and a2D are the 3D and 2D scattering length
respectively.

For a 1D Bose gas interacting via a repulsived-function
potential g̃d(x), e(n) is given by @26# e(n)
5(\2/2m)n2e(g), whereg5mg̃/(\2n) and for small val-
©2003 The American Physical Society02-1
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ues ofg, the following expression fore(n): e(n)5(g̃/2)@n
2(4/3p)Amg̃n/\21¯# is adequate up to approximatelyg
52 @26#.

For a large coupling strengthg̃ @26#,

e~n!5 ~\2p2n2/6m! (11 2\2n/mg̃)22. ~8!

Equation~8! is accurate to 1% forg>10 @26#.
For the 1D impenetrable boson case (g→`) and for the

dilute 2D boson case@ u ln(na2D
2 )u→`#, Eq. ~4! is equivalent

to the low-dimensional modifications of the GP equatio
given by Ref.@12#.

In the limit of largeN, by neglecting the kinetic energ
term in the KS equation~5!, we obtain an equation corre
sponding to the Thomas-Fermi~TF! approximation

Vext1 ]@ne~n!#/]n 5m ~9!

in the region wheren(rW) is positive andn(rW)50 outside this
region.

Equation ~5! can be written as the stationary GP equ
tion with density-dependent coupling parame
$]@ne(n)#/]n%/n, and, for example, for a dilute 2D Bos
gas, Eq.~7!, the coupling parameter is 4p\2um ln(na2D

2 )u21.
This result agrees with energy-dependentT-matrix approach
@27#.

Now we turn our attention to elementary excitations, c
responding to small oscillations ofC(rW,t) around the ground
state. Elementary excitations can be obtained by stan
linear response analysis@28,29# of Eq. ~4!, as resonances in
the linear response. We add a weak sinusoidal perturbatio
the time-dependent equation~4!:

i\
]C

]t
5{ 2 ~\2/2m! ¹21Vext1 ]@ne~n!#/]n

1 f 1e2 ivt1 f 2eivt} C, ~10!

and assume that the solution of Eq.~10! has the following
form:

C~rW,t !5e2 imt/\@F~rW !1u~rW !e2 ivt1v* ~rW !eivt#, ~11!

whereF(rW) is the ground-state solution of Eq.~5!.
Linearization in the small amplitudesu and v yields the

inhomogeneous equations

~L2\v!u1 $]2@ne~n!#/]n2% F2v52 f 1F,

~L1\v!v1 $]2@ne~n!#/]n2% F* 2u52 f 2F, ~12!

wheren5uF(rW)u2 and

L52
\2

2m
¹21Vext2m1

]@ne~n!#

]n
1

]2@ne~n!#

]n2 n. ~13!

Setting f 6 to zero in Eq.~12!, we obtain the coupled equa
tions

Lu1 $]2@ne~n!#/]n2% F2v5\vu,
01560
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Lu1 $]2@ne~n!#/]n2% F* 2u52\vv, ~14!

which can be used to calculate the energiesE5\v of the
elementary excitations. Equations~14! are reduced to the
fourth-order differential equations for the functionsh65u
6v.

For the remainder of this paper, we will focus solely o
the one-dimensional case. For low-energy excitationsE
!m, of a Bose gas in a 1D harmonic trapVext5mṽ2x2/2,
we obtain in the case of largeN

S ]2@ne~n!#

]n2 nD 1/2S 2
\2

2m

d2

dx2 1
\2

2m
n21/2

d2n1/2

dx2 D
3S ]2@ne~n!#

]n2 nD 1/2

x5E2x, ~15!

where n is the solution of Eq. ~9! and h6

5$n]2@ne(n)#/(]n2)%71/2x. If

e~n!}nd, ~16!

the solution of Eq. ~15! has the form x( x̃)5(1
2 x̃2)21/221/(2d)P( x̃), wherex̃5xAmṽ2/(2m) andP( x̃) sat-
isfies the hypergeometric differential equationd(12 x̃2)P9
22x̃P812@E/(\ṽ)#2P50. The solution of this equation
can be written as the expansionP( x̃)5S i 50

` ci x̃i , where the
coefficientsci satisfy the recurrence relationci 125ci$ i ( i
21)d12i 22@E/(\ṽ)#2%/@( i 12)(i 11)d#. The conver-
gence condition atx̃51 requires the termination of the ex
pansion ati 5 j , and for the energy spectrum we have

(E/\ṽ)25 j /2 @21d~ j 21!#. ~17!

The spectrum Eq.~17! agrees with Ref.@30# where a similar
expression was obtained based on the hydrodynamics
proximation. In the case ofj 51, we findE5\ṽ from Eq.
~17!, in agreement with the generalized Kohn theorem@31#.
Note that, for impenetrable bosonsd52, Eq.~17! reduces to
the exact excitation spectrum of the harmonically trapped
ideal Fermi gas,E5 j \ṽ.

Now we describe the application of the time-depend
equation~4! to the case of nonlinear dynamics. We turn
the limit of very strong coupling between the interactin
bosons in 1D, the so-called Tonks-Girardeau gas@32#. In this
impenetrable boson case, the energy densitye(n) reduces to
e(n)5\2p2n2/6m, and Eq.~4! reads@12#

i\
]C

]t
5S 2

\2

2m

]2

]x2 1Vext1
\2p2

2m
uCu4DC, ~18!

with *2`
1`uC(x,t)u2dx5N.

For a general time-dependent harmonic trapVext
5mv2(t)x2/2, with the initial condition C(x,0)5F(x),
where F(x) is the ground-state solution of the time
independent equation

S 2
\2

2m

]2

]x2 1
mv2~0!x2

2
1

\2p2

2m
uFu4DF5mF, ~19!
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Eq. ~18! reduces to the ordinary differential equation, whi
can provide the exact solution of Eq.~18!.

Indeed, if we assume that the solutionC(x,t) can be
expressed as

C~x,t !5$F@x/l~ t !#/Al~ t !% e2 ib~ t !1 im~x2/2\!~l̇/l!,
~20!

we obtain the following equations forl andb after inserting
Eq. ~20! into Eq. ~18!:

l̈1v2~ t !l5v2~0!/l3 , l~0!51, l̇~0!50,

ḃ5m/\l2 , b~0!50. ~21!

Thus, the ordinary differential equations Eqs.~19! and ~21!
give the exact solution of Eq.~18!, and the evolution of the
density can be written exactly as

n~x,t !5@1/l~ t !#n„x/l~ t !,0…. ~22!

For the case of free expansion, the confining potentia
switched off att50 and the atoms fly away. In this cas
Eqs. ~21! can be integrated analytically, leading to the fo
lowing solutions forl and b: l(t)5A11v2(0)t2, b(t)
5@m/\v(0)#arctan@v(0)t#. We note that self-similar solu
tions @33# of Eq. ~18! were discussed in Ref.@34# ~see also
Refs.@35#!.

In the large-N limit, where the kinetic energy term in Eq
~19! is dropped altogether~the so-called Thomas-Ferm
limit !, the corresponding density is

nTF~x,t !5
1

pl̃~ t !
F S 2N2

x2

l̃2~ t !
D G 1/2

uS 2N2
x2

l̃2~ t !
D , ~23!

and for the Fourier transform n(k,t)
5(1/A2p)*2`

1`n(x,t)eikxdx we have

nTF~k,t !5~N/A2p! @2J1„A2Nl̃~ t !k…/A2Nl̃~ t !k# ,
~24!

wherel̃(t)5$\/@mv(0)#%1/2l(t) andJ1 is the Bessel func-
tion of first order.

The exact many-body wave functionCB(x1 ,x2 ,...,xN ,t),
of a system ofN impenetrable bosons in a time-depende
1D harmonic trap, can be found from the Fermi-Bose m
ping @15# uCB(x1 ,x2 ,...,xN ,t)u5uCF(x1 ,x2 ,...,xN ,t)u,
where CF is the fermionic solution of the time-depende
many-body Schro¨dinger equation

i\
]CF

]t
5(

i 51

N S 2
\2

2m

]2

]xi
2 1

mv2~ t !xi
2

2 DCF ~25!

with initial condition CF(x1 ,x2 ,...,xN,0)
5FF(x1 ,x2 ,...,xN), whereFF(x1 ,x2 ,...,xN) is the fermi-
onic ground-state solution of the time-independent Sch¨-
dinger equation
01560
is

t
-

(
i 51

N S 2
\2

2m

]2

]xi
2 1

mv2~0!xi
2

2 DFF5EFF .

Therefore, for the exact density nB(x,t)
5*2`

1`dx2¯*2`
1`dxNuCB(x,x2 ,...,xN ,t)u2, we have

nB~x,t !5
1

l̃~ t !
(
i 50

N21 Uf iS x

l̃~ t !
D U2

, ~26!

wheref i(x)5ci exp(2x2/2)Hi(x), ci5p21/4(2i i !) 21/2, and
Hi(x) are Hermite polynomials. Note that the evolution
nB(x,t) can be written as Eq.~22!, corresponding to a time
dependent dilatation of the length scale.

From the knowledge ofnB(x,t) and nTF(x,t) one can
evaluate the radiir (t)5@*2`

1`nB(x,t)x2dx#1/2 and r TF(t)
5@*2`

1`nTF(x,t)x2dx#1/2 and the ratio r (t)/nTF(t). This
quantity is equal to 1 at anyt for any N. This circumstance
explains why for a harmonic trap the ground-state den
profile from Eq.~18! agrees well with the many-body resul
for systems with a rather small number of atomsN'10 @12#.
As for a general trap potential, we expect such agreemen
much largerN. It was shown in Ref.@15# that Eq.~18! over-
estimates the interference between split condensates tha
recombined at a small number of atoms (N'10).

Using the relation@36#

(
m50

n

~2mm! !21@Hm~x!#25~2n11n! !21$@Hn11~x!#2

2Hn~x!Hn12~x!%, ~27!

we obtain an analytical formula for the exact dens
nB(x,t):

nB~x,t !5@1/2l̃~ t !# cN21
2 e2x2/l̃2~ t !$@HN„x/l̃~ t !…#2

2HN21„x/l̃~ t !…HN11„x/l̃~ t !…%. ~28!

Then the Fourier transform is given by

nB~k,t !5
1

A2p
e2l̃2~ t !k2/4FNLN

~0!
„l̃2~ t !k2/2…

1
l̃2~ t !k2

2
LN21

~2!
„l̃~ t !k2/2…G , ~29!

whereLn
(a) are Laguerre polynomials. Using an asympto

formula of Hilb’s type for the Laguerre polynomial@36#, we
have the asymptotic behavior ofnB(k,t) asN→`:

nB~k,t !5~N/A2p!@2J1„A2Nl̃~ t !k…/A2Nl̃~ t !k#1O~N1/4!,

~30!

which is valid uniformly in any bounded region ofkl̃(t).
Equation~30! for the case oft50 is a rigorous justification
of the Thomas-Fermi approximation@13,37# for a system of
noninteracting 1D spinless fermions in harmonic trapp
potentials.
2-3
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Comparison of Eq.~30! with Eq. ~24! shows that in the
large-N limit the KS-like time-dependent theory for 1D im
penetrable bosons in a time-dependent harmonic trap,
~24!, gives the same result as the exact many-body treatm
Eq. ~30!. Hence, we have rigorously proved that Eq.~24!cor-
rectly describes the properties of a 1D Bose gas in a ti
dependent harmonic trap in the limit of largeN. This is a
posteriori justification of our approximations.

In conclusion, we have developed a time-dependent
like theory for bosons in three- and lower-dimensional tra
We have derived coupled equations that can be used to
culate the energies of elementary excitations and have sh
that the energy spectrum provided by these equations f
y

.

te
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Bose gas in a 1D harmonic trap, Eq.~16!, is the same as tha
found in the hydrodynamics approximation. For a on
dimensional condensate of impenetrable bosons in a gen
time-dependent harmonic trap, it is shown that the cor
sponding equation reduces to the ordinary differential eq
tions and gives the same results as the exact many-b
treatment in the large-N limit.

Note added. Recently, Ref.@38# appeared. The authors us
a 1D nonlinear Schro¨dinger equation, which is equivalent t
the 1D variant of Eq.~4!, to analyze the expansion of a 1
Bose gas after removing the axial confinement.

We thank B. Tanatar for his interest and comments and
B. Kolomeisky for informing us about Ref.@34# and for use-
ful suggestions.
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