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Abstract

The zero-temperature properties of a dilute two-component Fermi gas in the
Bardeen—Cooper—Schrieffer phase—Bose—Einstein condensate crossover are
investigated. On the basis of a generalization of the variational Schwinger
method, we construct approximate semi-analytical formulae for collective
frequencies of the radial and the axial breathing modes of the Fermi gas under
harmonic confinement in the framework of the hydrodynamic theory. It is
shown that the method gives nearly exact solutions.

1. Introduction

The newly created ultracold trapped Fermi gases with tunable atomic scattering length [1-20]
in the vicinity of a Feshbach resonance offer the possibility of studying highly correlated many-
body systems including the crossover from the Bardeen—Cooper—Schrieffer (BCS) phase to
the Bose—Einstein condensate (BEC) of molecules. Various investigations based on the
hydrodynamic theory have appeared recently [21-31].

The purpose of this letter is to construct simple, semi-analytical and nearly exact formulae
for hydrodynamic frequencies. Since the collective frequencies can be measured with high
precision, these formulae will provide a simple quantitative tool for the analysis of experimental
data in the hydrodynamic regime.

2. Hydrodynamic theory

Our starting point is the quantum hydrodynamic theory [21-23] for a dilute two-component
Fermi gas in a trap potential Ve (F) = (m/2) (wi @2 +yH) + a)zzzz)

LW o,
ih— = ——— V2 + Ve W + Vi, (1)
at 2m
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where

ch(?’ 1) = [@} ,
n=n(#t)

€ is the ground state energy per particle of the homogeneous system and # is the density,
n(F,t) = |W(#, t)|*, normalized to the total number of atoms, [ n(¥, 1) d*r = N. Itis useful
to rewrite equation (1) in the form

M Vi) =0 ©)
— nv) =0,

o1

w1 dinem)) 1, #w* 1 _,

O 2 (Vi + S i = V2 ) =0, 3
ot m (“+ 2" T o Vn ©)

where ¥ is the velocity field, which for U = "0, 1/2(7, 1) can be written as ¥ = (7i/m) V.
It can be proved [21] that every solution of equations (2), (3) is a stationary point
corresponding to the Lagrangian density

2 2
Lo = hon + h_(wz)z + h—n(V¢>)2 +e(n)n + Vegn. 4)
2m 2m

It was shown in [21-23] that for experimental conditions of [14, 16, 17] the quantum pressure
term in equations (3) and (4) can be neglected. For the remainder of this letter we will use
this hydrodynamic approximation. For the harmonic trap a trial function in the scaling ansatz
is taken as [21-23, 26, 28]

3
P, 1) = ¢o(t) + (m/(2N)) Z Bi(0)x;, n(r, 1) = no(x; /b)) /k (1),
i=1
where «(t) = [] ; bj and the Hamilton principle, & [dt [ Lod®r = 0, gives the following
equations for the scaling parameters b; [21, 22]:
@} [[n*den)/dnlumny) e €1

S w2 _
o T de ) an Ty < )

Expanding equation (5) around equilibrium (b; = 1) leads to the following result for the
M = 0 modes frequencies, » in the scaling approximation,

ol = %[ns + /02 —8223¢, + 9], (6)

where ny = 4 + 24, + 322+ {S)»z, ¢ = fng dze/(dn(z)) d3r/f n(z) de/(dng) &Bra = w, /W,
and =+ refer to the transverse and axial mode, respectively.
The hydrodynamic equations after linearization take the form

02 1 a2
P LR g e G2 ¥ ) ) )
a2 m dng

where 8n (7, t) is the change in the density profile with respect to the equilibrium configuration.
If we consider oscillations with time dependence én o exp(iwt), equation (7) can be reduced
to a Hermitian equation [27]

5 |:d2(n0€(7l0))
o2 | EV0en0))

2
dng

—1
} |fy=LIf) 3
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where |f) = dz("glijé””))wn), L = —%Vnov and the equilibrium density, ng, is given by
equation
d(noe
= Ve 00, ©)
dno

where u is the chemical potential, in the region where n(7) is positive and no(¥) = 0 outside
this region.

We note here that d*(noe(ng))/dnj is positive, since the sound velocity for the
homogeneous case is given by 2= (no/m) d? (noe(no))/dn%.

3. The equation of state

For the negative s-wave scattering length between the two fermionic species, a < 0, in the
low-density regime, kr|a| < 1, the ground state energy per particle, € (n), is well represented
by an expansion in power of kp|a| [32]

3]
EM)=2EF[ﬂj—g—kﬂah4ﬂﬁ5&ﬂ@pmbz—OOGH4&FMD3+~}, (10)
T

where Er = h*k% /(2m) and kr = (37*n)'/3. In the opposite regime, a — —oo (the Bertsch
many-body problem, quoted in [33]), €(n) is proportional to that of the non-interacting Fermi
gas

3 n%k2
€m=A+p) 15— (11)

where a universal parameter 8 [10] is estimated to be 8 = —0.56 [34]. The universal limit
[10, 34-37] is valid at least in the case where the width of the Feshbach resonance is large
compared to the Fermi energy as in the cases of °Li and “°K.

In the a — +0 limit the system reduces to the dilute Bose gas of dimers

€(n) = Ep(=1/(kra)’ + ankp/(67) +---,) 12)

where a,, is the boson—boson scattering length, a,, =~ 0.6a [38].

A simple interpolation of the form € (n) & Ep P (kra) with a smooth function P (x) was
considered in several papers. In [21] a [2/2] Padé approximant has been proposed for the
function P (x) for the case of negative a,

81lx| + 8x2

, 13
1+83|x|+84x2 (13)

3
P(x) = 5 2
where §; = 0.106 103,56, = 0.187515,8; = 2.29188,8, = 1.11616. Equation (13) is
constructed to reproduce the first four terms of the expansion (10) in the low-density regime
and also to exactly reproduce results of the recent Monte Carlo calculations [34], 8 = —0.56,
in the unitary limit, kpa — —oo.
For the positive a case (the interaction is strong enough to form bound molecules with
energy Eo) we have considered in [22] a [2/2] Padé approximant

E +opx?
P(x) = mol + QX +ox (14)

2Er  1+o3x +agx?’
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where parameters «; are fixed by two continuity conditions at large x, 1/x — 0, and by two
continuity conditions at small x, «; = 0.0316621, o, = 0.011 1816, 3 = 0.200 149, and
as = 0.0423545.

In [39] a Padé approximation has been considered for the chemical potential. Authors
of [28] have used a model for P(x), interpolating the Monte Carlo results of [36] across the
unitary limit and limiting behaviours for small |x|. We note here also the BCS mean-field
calculations of [28].

4. The Schwinger variational principle

The Schwinger variational principle (SVP) [40-43] can be generalized to the case of
equation (8). Since the entire treatment is based on the equivalence of the SVP and the
method of separable representation, we briefly describe this method. Let us consider the
symbolic identity

L=LL"'L =) L)L /)L, (15)
iJ
where |i) is a complete set. Truncating the summation over the complete set we obtain a
separable approximation

q
L9 =" Lixi)d; (x;IL, (16)
ij
where dij = <X,|L|Xj>
We note that equation (16) represents an interpolation process, since L@ |x;) = L|x;)
and (x,;|LY = (x;|L.
Substituting LD from equation (16) into equation (8), we obtain

2 |:d2(n0€(no))
ot | 20 )

2
dng

-1 q
] 1) = LU =3 Lixd;; (L1 (17)
iJj
We seek a solution of equation (17) in the form

q d2
IED I UL (1)
i 0

then ¢; are defined from equations

q
> Bi(@her =0, (19)

k=1
where

2
ML) ) 20)

2\ _ . 27 _
B (@) = (Xl <w L—-L an?
and frequencies w are determined from the condition of vanishing of the determinant of the

matrix Bj;(w?):
det Bi(w?) = 0. 1)
Defining the Schwinger functional Igyp[x] by
(x| L )

Isvp[x] = HILI) ) (22)
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we get Isvplf] = w?, where f is the solution of equation (8). Introducing the function
X = Z;’:l ¢ Xr» Where c1, ¢2, ..., ¢, are g variable parameters, we see that the functional
Isvyp is stationary if dlsyp/dc, = 0. The latter equations coincide with equation (19), and
therefore the approximate solution of equation (8), which is based on the SVP, is equivalent
to the exact solution of equation (8) with separable L@,

Operator L is clearly positive, which means that (u#|L|u) > 0 for all u, but is not positive
definite, since (u|L|u) = 0 for some u # 0. It can easily be seen that

(ul(L = L'D)u) >0, (23)
for all u. Indeed,

q q
J = <<u +ch~x,~>‘L‘(u + ch)(j>> >0
i=1 j=1
for all ¢;. We choose the ¢; from the conditions d.J/dc; = 0, and then obtain
J = {ul(L = L“))Ju) > 0
for all g.

Since the problem is solved by replacing L by L and since the operator (L — L@)
is positive, the SVP leads to the approximate lower bounds for w up to the second order of
|IL — L@

For the most interested case of M = 0 modes, we can put in equation (16) g = 2, x; =
(x> + y?) and x, = z?, which gives

®
wivp = _J_[USVP + \/névp — 822(9%sve — 1)]1/2’ 24)
V2
where nsvp = 6Csvp + A2(3Csvp + 1), Lsvp = —fn%f3[%]_ldf/fnoi4di,i =

VX% + y%2 + A%2z2 and = signs refer to the transverse and axial mode, respectively.

It is easy to show that equation (24) gives exact solutions for frequencies of the breathing
modes for the polytropic equation of state, € (n) & n”. In [24], on the basis of a generalization
of the Hylleraas—Undheim method, we have constructed rigorous upper bounds to the collective
frequencies for the radial and the axial breathing mode of the Fermi gas under harmonic
confinement in the framework of the hydrodynamic theory,

w1 1/2
wuipper = —[nupper =+ \/mzlpper - 8)‘-2§upper(5€upper - 9)] / 5 (25)
vV 5 é‘upper -9
where Nupper = (3 + 44 Supper — (3 + 6A2), Lupper = lola /13, and I; = [ X'ng(¥) dX.
We expect that the difference between w3¥* and ™™ characterizes the error and is not

very sensitive to the functional form of €(n). From table 1 one can see that this difference
is order of 107, We note that the comparison with the scaling approximation, equation (6),
shows that the absolute precision of the scaling approximation is about 1073 that agrees
with [31].

In figure 1, we have compared the hydrodynamic predictions for w, with the experimental
data [17]. There is a very good agreement with the experimental data [17] near the unitary
limit. We note here that two experimental results [17] and [16] (not shown in figure 1) for w,
are still about 10% in disagreement with each other, which is not fully understood yet.

To calculate ¢, we have used the very fast converged expansion of [24],

-1
no(F) & (1 = BVext NP Y & [Veu ()]
i=0
where parameters 8, p and ¢; are fixed by requiring that no(¥) must satisfy a variational
principle 8 [no(Vex + €(n9))d*r = 0 with a subsidiary condition [nod*r = N.
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Figure 1.

Radial breathing mode frequency w, in the BCS region as a function of the

dimensional parameter X = (N'/%a/aj,)~" (the solid line). The dashed line represents the
scaling approximation, equation (6). The circular dots with error bars are the experimental results
given by the Duke University group [17]. Everything is measured in units of w .

Table 1. The transverse and axial frequencies in units of w; and w,, respectively, in the BCS
region as a function of the dimensional parameter X = (N 784 /ap,)~". The trap parameter A is
assumed to be 0.045613. The [2/2] Padé approximation of [21, 22] is used for the energy per
particle € (n).

X PP a)EVP PP wSVP w w*

—0.1 1.8160 1.8160 1.5470 1.5470 1.8193  1.5477
—0.3 1.8015 1.8015 1.5438 1.5438 1.8082  1.5453
—-0.5 1.7931 1.7931 1.5419 1.5419 1.8002 1.5435
—0.7 1.7886  1.7836  1.5409 1.5409 1.7947 1.5423
—-09 1.7867 1.7867 1.5405 1.5405 1.7910 1.5414
—1.1  1.7861 1.7861 1.5403 1.5403 1.7886  1.5409
—1.3  1.7865 1.7865 1.5404 1.5404 1.7871 1.5406
—1.5 1.7873 1.7873 1.5406 1.5406 1.7863  1.5404
—1.7 1.7884 1.7884  1.5409 1.5409 1.7860  1.5403
—2.0 1.7902 1.7902 15413 1.5413 1.7861  1.5403

5. Summary

We have generalized the Schwinger variational method for the trapped strongly interacting
atoms in the hydrodynamic regime and we have constructed semi-analytical and extremely
accurate formulae for hydrodynamic collective frequencies. These formulae are very useful
since they provide an easy and simple quantitative tool for the analysis of experimental data
for trapped condensed gases without relying on complex and extensive computations.
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