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Mesoscopic pointlike defects in semiconductors: Deep-level energies
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Mesoscopic pointlike defects are a class of extended defects with surfaces of minimal curvature that span in
size from the point-defect limit~multivacancy, antisite, impurity complex, etc.! to macroscopic inclusions or
voids within a semiconductor host. The structural, electronic, and optical properties of these defects evolve
continuously from the quantum-mechanical limit to the classical limit. Mesoscopic defects share some features
in common with quantum dots, such as Coulomb-charging energies, but unlike quantum dots their electronic
properties are dominated by the covalent bond energies of the defect-semiconductor interface. The deep-level
energies of spheroidal mesoscopic defects are calculated self-consistently in the unrestricted Hartree-Fock
approximation using an extension of the many-electron model of Haldane and Anderson. The calculations in
GaAs reveal a high-multiplicity Coulomb ladder of discrete charge states distributed across the semiconductor
band gap and centered on the charge neutrality level.@S0163-1829~98!07836-9#
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I. INTRODUCTION

The history of semiconductor research over the past c
tury has been characterized by steadily increasing mat
heterogeneity. The first half century concentrated
bulk crystals of elemental and compound semiconduct
while the latter half saw forays into epitaxy. Epitaxy evolv
from simple homoepitaxy into more sophisticated form
culminating in the versatile heteroepitaxy of molecu
beam epitaxy and related growth techniques. Tod
semiconductor heteroepitaxy is continuing to evolve,
panding beyond all-semiconductor heterostructu
to include metal-semiconductor,1 insulator-semiconductor
and superconductor-semiconductor heterostructures
composites.2 With the proliferation of diverse new forms o
heterogeneous composite materials, it is important to iden
unifying principles and concepts that encompass the phy
of a wide range of seemingly unrelated materials within
single class.

For instance, the physical properties of inclusions with
semiconductors may be viewed as a single class of me
copic defect that includes the simple limit of point defects
well as the electronic properties of extended defects.
accumulation of vacancies into increasingly larger multiv
cancy complexes is perhaps the best example of the con
ous extension from the point-defect limit~the isolated va-
cancy! to the mesoscopic limit~voids!.3 Impurity atoms or
nonstoichiometric concentrations can also accumulate
precipitates within the semiconductor.1 These voids and pre
cipitates are mesoscopic pointlike defects that excha
charge with the semiconductor host and have well-defi
‘‘deep-level’’ energies.

The term ‘‘mesoscopic’’ describes those defects that h
a characteristic energy scale that brings them continuo
from the point-defect~quantum! limit to the classical limit.
This characteristic energy is the Coulomb-charging ene
reduced by hybridization with the semiconductor host. M
soscopic defects have Coulomb-charging energies com
rable to or smaller than the semiconductor band gap.
term ‘‘pointlike’’ describes defects that are primarily sph
PRB 580163-1829/98/58~12!/7994~8!/$15.00
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roidal, with possible faceting. They are unlike other extend
defects, such as line defects~dislocations, etc.! or plane de-
fects ~platelets, stacking faults, etc.!, because pointlike de
fects have bulk volumes enclosed by surfaces of minim
curvature. The small curvature minimizes Coulomb energ
and maximizes the number of charge states that can e
within the semiconductor band gap.

Mesoscopic pointlike defects retain many of the featu
of point defects, such as the presence of discrete charge-
energy levels within the semiconductor band gap, and th
ability to participate in compensation mechanisms within
semiconductor. But they also have important differenc
from point defects, such as extremely high charge-state m
tiplicity. It is the high multiplicity, in particular, that makes
these mesoscopic pointlike defects important constituent
compensated semiconductors.

The importance of mesoscopic defects for charge co
pensation was proposed by Warrenet al.4 to explain the
semi-insulating properties of nonstoichiometric GaAs. No
stoichiometric GaAs forms during molecular beam epita
on substrates held at low temperatures~near 200–300 °C!
rather than at the usual growth temperature of 600 °C. Lo
temperature growth incorporates excess arsenic into
GaAs.5,6 A key discovery by Purdue researchers was that
excess arsenic undergoes precipitation into small arsenic
clusions upon postgrowth anneal.7 The accumulation proces
and size of the precipitate are controlled by growth or po
growth material processing.1 Therefore, the precipitate
could be ‘‘engineered,’’ and their size and spacing could
controlled and chosen simply by playing off growth tempe
ture against anneal temperature and time.8 Nonstoichiometric
GaAs and related compounds are semi-insulating under m
growth and postgrowth processing conditions and are p
ing an increasingly important technological role. They a
currently being developed as ultrafast photodetectors9,10 with
subpicosecond lifetimes,11 as far-infrared photodetectors,12

in the fabrication of GaAs-based integrated circuits,13 and in
photorefractive quantum wells,14–16 among other applica-
tions.

Since the discovery of the arsenic precipitates, the se
7994 © 1998 The American Physical Society
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insulating nature of nonstoichiometric GaAs has been
source of controversy, until recently. The semi-insulat
properties were initially attributed to the high concentrati
of arsenic-related point defects.17 Warren et al.4 proposed
that the arsenic precipitates were acting as internal Scho
barriers with associated depletion regions surrounding
precipitates. Subsequent studies have supported eithe
defect or the Schottky models, depending on the growth
anneal conditions. The production of mesoscopic voids
heavily radiation-damaged GaAs~Ref. 3! raised a complica-
tion in the defect vs Schottky argument because these v
cannot be viewed as Schottky barriers with a high density
available internal states. However, the materials with
voids are semi-insulating with many of the same proper
as nonstoichiometric GaAs containing arsenic precipitate
was shown recently that the voids play virtually an identi
role as the precipitates for their ability to compens
charge,18 and that voids and precipitates can be view
within a broader class of mesoscopic pointlike defects t
share many common properties, independent of their inte
constituents.

Because the energy levels of mesoscopic pointlike def
in semiconductors attain high charge multiplicity, they mu
be calculated within a many-electron theoretical framewo
One simple many-electron model that has been a valu
heuristic tool is the model of Haldane and Anderson.19 This
model was originally developed to explain the occurrence
multiple charge states of transition-metal impurities in se
conductors. It was later used to calculate effectiveU proper-
ties of the dangling bond in silicon,20 and to explain the band
lineup of heterostructures with respect to transition-metal
ergy levels.21 More recently, it has been used to calculate
charge-state splitting of deep energy levels in narrow-
semiconductors,22 to track the formation of Schottky barrier
by atoms adsorbed on a semiconductor surface,23 and to ex-
plain the compensation of doped semiconductors by me
copic voids.18

We extend the Haldane-Anderson model to calculate
deep energy levels of mesoscopic pointlike defects in Ga
Two extensions to the Haldane-Anderson model are ne
sary. First, the intrasite Coulomb interaction energyU is
identified. This is done in a manner that is consistent w
both the classical limit of the charging energy of a classi
metallic sphere, as well as with the point-defect limit. T
second extension to the model is the identification of the r
played by the charge neutrality level.24 The neutral mesos
copic defect level coincides with the charge neutrality le
of the semiconductor band structure. This behavior is
cluded explicitly in the many-electron model. These two e
tensions are described in Sec. II. In Sec. III, the calculati
are presented for the deep energy levels for both spherica
well as spheroidal defects. The classical limit is discusse
Sec. IV as the limiting behavior for large defect radius.

II. HALDANE-ANDERSON MODEL
OF MESOSCOPIC DEFECTS

The basic mechanics of the Haldane-Anderson model
deep-level point defects is introduced first. The model is th
extended to treat mesoscopic defects.
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A. Haldane-Anderson model

The Haldane-Anderson model for transition-metal imp
rities in semiconductors begins with a model Hamiltoni
solved in the unrestricted Hartree-Fock approximation
which only the dominant Coulomb termU in the two-particle
energy is retained, and the exchange termJ is omitted.19 The
model Hamiltonian is

Hd
eff5Emsnms1(

k
«knk1(

k
Vkspck

1csp1c.c., ~1!

where Ems is the effective defect energy,nms is the frac-
tional occupancy of stateums&, «k is the dispersive energy
of an electron in statek with a state occupancynk , andVksp
is the interaction matrix element between extended states
the sp bonds of the localized defect. The effective defe
energy is determined self-consistently from

Ems5Ed1
Ns21

Ns
U (

msÞms8

8 ^nms8&, ~2!

whereEd is the ‘‘bare’’ defect energy,Ns is the total number
of surface states, andU is the Coulomb interaction energy
The sum is over both occupied and unoccupied surf
states, and the average occupancies^nms& are calculated
from the Green’s function

Gms~v!5
1

@v2Ems2S~v!#
, ~3!

where the self-energy is given by

S~v!5(
k

uVkspu2

v2«k
, ~4!

which contains both real and imaginary parts given by

S~v!5S8~v!1 iD~v!, ~5!

where

D~v!5puVkspu2rk ~6!

and rk is the density of states of the band structure. T
original Haldane-Anderson model assumed a constant d
sity of states to illustrate the basic principles. In our analy
we go a step further and use the total density of states
rived for GaAs by Cohen and Chelikowsky.25 Following
Haldane and Anderson, we assume an energy-indepen
interaction energyVksp. While these gross approximation
affect the details of the calculations, they are useful to illu
trate the general trends and show the physical content of
theory.

The average state occupancies are expressed as

^nms&5
1

p
Im E

2`

EF
Gms~v!dv5Z1~Ems!1Z~Ems!,

~7!

whereZ1 andZ are given by

Z1~Ems!5
1

p
Im E

2`

Ev
Gms~v!dv, ~8!
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7996 PRB 58D. D. NOLTE
Z~Ems!5
1

p
Im E

Ev

Ec
Gms~v!dv, ~9!

where Z1 is the contribution tô nms& from hybridization
between the defect states and the states of the occupie
lence band, andZ is the contribution from the pole of th
Green’s functionGms in the gap. The charge contribution
can be solved numerically19 using

Z1~Ems!5
1

p E
2`

Ev D

@v2Ems2S8~v!#21D2 dv ~10!

and

Z~Ems!5
1

U12
d

dv
S8~v!U

vp

. ~11!

The defect energies and average occupancies mus
solved self-consistently because the effective defect en
Ems depends on the average occupancies^nms& in Eq. ~2!,
which in turn depends on the effective defect energyEms

eff

by Eq. ~7!. The first step in this procedure is to calculate t
self-energy termS~v!. This calculation is performed onc
for a given interaction energyVksp and density of statesrk .
The second step is to find the locations of the poles in
Green’s function of Eq.~3!, which satisfy the condition

vp2S~vp!2Ems50. ~12!

Both occupied and unoccupied poles are found, and the
erage state occupancies^nms& are calculated by Eq.~7!.

In the Hartree-Fock approximation, it is necessary to c
culate total energies for a given charge state because
two-particle energies are counted twice. Half of these te
must be subtracted from the total sum. The total energ
finally given by

Etot5(
ms

E
Eq

Ems
Z1~E!dE1 (

ms occ
vp

2 1
2 U (

msÞms8

8 ^nms&^nms8&, ~13!

in which the sums are over both occupied and unoccup
states, except for the sum over the occupied poles.

B. Extension to mesoscopic defects

The Haldane-Anderson model requires two extensions
fore it can be applied to mesoscopic pointlike defects. T
first extension handles the large number of states that ari
the internal surface of the void or precipitate, and ensu
that the neutral defect energy falls near the charge-neutr
level of the semiconductor. The second extension define
intradefect Coulomb energy for the electrons occupying
surface states of the defect.

1. Charge neutrality

The number of electrons required to occupy the totalNs
surface states to produce a neutral defect state is define
va-

be
gy

e

v-
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nv
0, andDn is defined as the electron occupancy that devia

from charge neutrality. Rewriting Eq.~2! with these defini-
tions gives

x5Ed1U$~nv
01Dn21!@Z1~x!1Z~x!#

1~N2nv
02Dn!Z1~y!%, ~14!

y5Ed1U$~nv
01Dn!@Z1~x!1Z~x!#

1~N212nv
02Dn!Z1~y!%, ~15!

wherex is the occupied effective defect energyEms
occ , y is the

unoccupied effective defect energyEms
unocc, and Ed is the

‘‘bare’’ defect energy associated withN total surface states
There is on average one surface bond per surface atom

a semiconductor surface of random orientation. Therefore
number of surface states of even a moderately sized v
with a radius of 30 Å or larger can approach a thousand. T
‘‘bare’’ defect energyEd in Eqs. ~14! and ~15! in this case
will be hundreds of eV below the valence-band maximu
Such a large negative defect energy must be balanced
cisely by a Coulomb energyU to cause low-charge-state en
ergy levels to occur near the middle of the band gap, wh
is known to be the physical situation for semiconductor s
face states. The Haldane-Anderson model cannot guara
that the neutral defect energy will lie near the middle of t
band gap becauseEd cannot be easily quantified. Therefo
our first extension of the Haldane-Anderson model to ap
to mesoscopic defects is toa priori choose the energy of th
charge-neutral defect to be equal toEq , the charge-neutrality
level of the bulk semiconductor.

The charge-neutrality levelEq of a semiconductor has
been identified by several researchers beginning w
Heine26 to describe the nature of the metal-derived g
states, which were later called metal-induced gap state
MIGS.27 It can be approximately identified as the bran
point in the complex band structure where virtual gap sta
have equal contributions from the conduction and vale
bands,24 and has been calculated by Tersoff for several of
common semiconductors.28–30

By specifically requiring that the neutral defect ener
coincide with the charge-neutrality level, Eqs.~14! and ~15!
simplify to x5Eq andy5yq for the case whenDn50. This
condition allows the difficult quantityEd to be cancelled
from the equations to give the extended equations

x5Eq1U$~nv
021!@Z1~x!2Z1~Eq!1Z~x!2Z~Eq!#

1~N2nv
0!@Z1~y!2Z1~yq!#

1Dn@Z1~x!1Z~x!2Z1~y!#% ~16!

and

y5x1U$Z1~x!1Z~x!2Z1~y!%. ~17!

The new equations are expressed in terms of the cha
neutrality levelEq and the deviation from charge neutrali
Dn. An important feature of these equations is that they
also expressed as differences of the functionsZ1 and Z,
which gives small numbers that counterbalance the la
numbers defined byN andnv

0. This process produces a lad
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PRB 58 7997MESOSCOPIC POINTLIKE DEFECTS IN . . .
der of deep donor and acceptor energy levels centered in
band gap around the energyEq .

Equations~16! and ~17! are solved self-consistently fo
Ems for both occupied and unoccupied poles in the band g
Once the poles and defect energies are obtained, the en
levels of the defect in the band gap are found by calcula
differences in total energy. The total energy of a state w
Dn electrons is now given by

ETot~Dn!5DnZ1~Ems
x !@Ems

x 2Eq#2DnZ1~Ems
y !@Ems

y 2yq#

1Dnvp
x

2 1
2 UDn2@Z1~Ems

x !1Z~Ems
x !2Z1~Ems

y !#2,

~18!

where the first line is the change in band energy with cha
in occupancy, the second line is the change in defect ene
and the third line is the correction to the Hartree-Fock to
energy. Equation~18! replaces the Haldane-Anderson for
in Eq. ~13! and represents the primary extension of the c
rent model to treat mesoscopic pointlike defects with la
numbers of surface states. The deep energy level of the
fect for the charge-state transition fromDn to Dn21 is
given by

EHA~Dn,Dn21!5ETot~Dn!2ETot~Dn21!. ~19!

These total energy differences are the energies that ca
compared to values measured experimentally by deep-l
spectroscopy within the semiconductor host.

2. Nature of the surface states

The types of mesoscopic defect of concern here are e
metallic or semimetallic inclusions or voids within the sem
conductor host. The natures of the semiconductor sur
states are similar in both cases in spite of the differ
boundary conditions. In the case of mesoscopic voids,
surface states are the unreconstructed dangling bonds. It
shown in Ref. 18 that if even 90% of the surface bonds
reconstructed, the void will still produce a ladder of ener
levels within the band gap and will provide sufficient sta
to compensate doped material. Conversely, in the cas
metallic or semimetallic inclusions, the surface states can
either dangling surface bonds of the semiconductor, or
be metal-induced gap states.27 A considerable literature, with
noted controversies, has developed concerning the natu
the states at the metal-semiconductor interface.24 Despite the
opposing views, the theories of the metal-semiconductor
terface converge on similar behavior. The surface states a
from hybridization or interaction between the surface sta
and the bulk states of the semiconductor. Most of the th
ries of the metal-semiconductor interface admit this inter
tion, although they may differ on the nature of the intera
tion.

Given the presence of surface states of the metallic in
sion or void, it is necessary to identify the Coulomb ener
U of Eq. ~2!. In the case of transition-metal point defects
semiconductors this is taken to be an effective Coulo
interaction31 that is reduced from the free transition-me
atom by hybridization with the host and screening by lon
range interactions.21 In the case of spherical metallic inclu
he
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sions or voids, we adopt a semiclassical expression for
effective intrasite Coulomb interaction for a spherical def
of radiusa, given by

U~a!5
e2

C
, ~20!

where the capacitance of the sphere imbedded in the s
conductor isC54p««0a.

III. DEEP-LEVEL ENERGIES

The theoretical density of states of GaAs from Ref. 25
shown in Fig. 1 with the calculated self-energy for matr
elements Vksp51 and 0.5 eV. To solve Eq.~2! self-
consistently, the poles of the Green’s function are found fi
The poles occur whenvp2Ems5S(vp), which is shown
graphically in Fig. 2. The self-energy has a discontinuo
slope at the edges of the band gap, but poles can occur
side the gap, corresponding to resonance states. Both
occupied and unoccupied poles are found by usingEms5x
or Ems5y, respectively, in Eq.~12!.

The charge neutrality position within the band gap occ
when vp5Ems and the self-energyS(Eq)50, giving the
solution Ems5Eq . Because the matrix elementVksp is as-
sumed to be a constant, the charge neutrality position is
dependent of the magnitude ofVksp. In our calculations,Eq
is taken at the zero crossing of the self-energy. This w
calculated numerically from the density of states25 to beEq
'0.75 eV, which is in close agreement with more fund
mental calculations ofEq .30

FIG. 1. ~a! The density of states for GaAs calculated in Ref. 2
~b! The self-energy calculated from the density of states for t
values of the interaction matrix element. The zero crossing of
self-energy defines the charge neutrality levelEq .
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A. Spherical defects

The full self-consistent calculations were performed
spherical mesoscopic defects with radii between 5 and 30
The calculations were not performed for defect radii sma
than 5 Å~corresponding approximately to a pentavacancy
five-atom metal cluster! for several reasons. The Haldan
Anderson~HA! model neglects lattice relaxation energie
which can contribute substantially to defect energy levels
addition, there are quantum size effects and chemical eff
that become appreciable in this limit, but are ignored by
HA model. For instance, in the case of spherical voids,
chemical species of the dangling bond~Ga or As bonds! will
affect the energy position in the band gap. In addition,
dangling bonds will themselves hybridize, leading to cryst
field splitting of the defect levels, such as theA1 and T2
states of the monovacancy.

Several of the energies that enter into the self-consis
solutions to the total energies for the defect levels in
semiconductor are shown in Fig. 3 forQ521e and Vksp
51 eV. The Hartree-Fock defect energyEms overcounts the
two-particle interaction energy. It is used in Eq.~12! to find
the occupied pole. These two energies, with the Coulo
interactionU, combine to give the total defect energy for th

FIG. 2. Graphical solution to find the occupied pole in the ba
gap for a defect energyEms .

FIG. 3. Energy contributions to theQ521 charge state for
Vksp51 eV showing the Coulomb interaction energyU, the occu-
pied polevp , the defect energyEms , and the Haldane-Anderso
deep-level energies for the~21,0! charge-state transition.
r
Å.
r
r

,
n
ts
e
e

e
l-

nt
e

b

charge state. The occupied pole energy lies midway betw
the total energy and the defect energyEms . This trend con-
tinues for higher charge states for both charge signs. For h
charge-state transitions (Q,Q21), the deep-level energy i
the average of the occupied poles for the two charge sta
This suggests that simplified calculations may use the oc
pied pole alone, which is relatively simple to find, rather th
needing to calculate the total energies from Eq.~18!.

The deep-level energies of spherical defects of succ
sively higher charge states are shown in Fig. 4. The tra
tions for Q565e are shown, as well as higher charge-sta
transitions in intervals of610e. With increasing defect ra-
dius, the defect levels fan into the band gap as the Coulo
energyU rapidly decreases. The distribution of acceptor a
donor levels is relatively symmetric about the charge neut
ity level Eq . Over 100 charge states can exist within t
band gap for a defect with a radius of only 20 Å.

B. Ellipsoidal defects

A semiclassical capacitance can also be defined for p
late and oblate spheroidal defects. Oblate spheroids~a5b
.c ‘‘pancakes’’! have

C54p««0

Aa22c2

cos21~c/a!
~21!

and prolate spheroids~a.b5c ‘‘needles’’! have

C54p««0

Aa22b2

cosh21~a/b!
. ~22!

Prolate or oblate spheroids of increasing eccentricity h
increasing surfaces of curvature, which increases
Coulomb-interaction energy. The limitc50 for oblate sphe-
roids reduces to a planar defect analogous to a stacking f

The HA energies for two prolate spheroids with large e
centricities are compared in Fig. 5 with the energy of
spherical defect. The radius used for plotting is the semim
jor axis of the spheroid. Increasing eccentricity turns t
sphere into a needle and the capacitance increases si
cantly. Strongly eccentric spheroids are not ‘‘pointlike,’’ an

d FIG. 4. Haldane-Anderson deep-level energies for spher
voids calculated for charge states up toQ565e, and higher charge
states in intervals of610e.
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do not fit well within the mesoscopic formalism describ
here. Fundamental quantum-mechanical calculations nee
treat the energy levels of dislocations and platelets. Ho
ever, weakly eccentric spheroids will be described well
the present model, and may be represented by real syst
For instance, spheroidal rather than spherical precipitate
silver were seen in TEM micrographs in silver-implant
GaAs.32

IV. THE CLASSICAL LIMIT

In the classical limit of a spherical metal inclusion th
difference in total energies between defects that carryDn
andDn21 charges is

Eclass~Dn,Dn21!5~Dn2 1
2 !

e2

C
, ~23!

where the defect capacitanceC is the quantity used for the
Haldane-Anderson calculations. The Haldane-Anderson
culations for the mesoscopic defects should approach
dependence for sufficiently large defects when quantum
effects become negligible. To make the connection betw

FIG. 6. Deep-level energies of spherical voids corrected
long-range potentials withb55 Å showing the development of th
Coulomb ladder.

FIG. 5. HA energy levels for the~21,0! transition for prolate
spheroids of increasing eccentricity.
to
-

y
s.

of

l-
is

ze
n

the Haldane-Anderson model and the classical limit, it
necessary to correctly interpret the Haldane-Anderson
sults.

The Haldane-Anderson model describes the char
dependent covalent hybridization of the defect surface st
with the bulk states of the semiconductor. The ba
Coulomb-interaction energy is reduced by charge den
‘‘leaking’’ into the bulk to form a long-range charge densi
tail. For point defects, the total energy is dominated by
intrasite Coulomb energy, and the long-range charge den
has a negligible effect. However, in the case of mesosco
defects, the long-range density contributes a significant p
tion of the total energy.

The energy levels of the Haldane-Anderson calculat
can be corrected for the long-range density by including
density in the deep-level energy. The charge density at
defect surface is approximately given byZ(Ems). If the
charge density decays exponentially beyond the defect
face as

r~r !5r0 exp~2a/b! ~24!

with a decay lengthb, then the potential that the long-rang
charge density contributes to the deep-level transition
given by

ULR5@12Z~Ems!2#
b~b1a!r0

««0
. ~25!

This long-range potential is added to the Haldane-Ander
deep-level energiesE(Dn,D21) to account for the long-
range charge density. The defect energy level in the band
is therefore given by

ELR~Dn,Dn21!5EHA~Dn,Dn21!1~Dn2 1
2 !ULR .

~26!

The long-range potential is due to both the wave funct
that extends beyond the surface of the mesoscopic defec
well as to the long-range Coulomb tail of the defect pote
tial. Highly localized defect wave functions would favor
small value forb of only several angstroms, while the long
range Coulomb tail would favor a value forb of tens of
angstroms.

r

FIG. 7. HA energy level for the~210,29! transition compared
with the classical and HA-corrected levels forb55 Å showing the
transition from quantum to classical behavior with increasing
dius.
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The deep-level energies for a spherical pointlike def
within the Haldane-Anderson model, and corrected for
long-range potential, are shown in Fig. 6 for all charge sta
up to 65e, and in steps of610e for higher charge states
The decay length for the long-range charge was assume
be b55 Å in the calculations, which assumes that the de
defect wave function is restricted to only one or two neare
neighbor distances, neglecting the long-range Coulomb
Figure 6 can be contrasted with Fig. 4, which were the
corrected HA energies. The long-range potential contribu
significantly to the deep-level energies, reducing the num
of possible charge states that can exist inside the band
However, high charge multiplicity is still possible, with ove
50 charge states on a defect with a radius of 40 Å.

The deep energy level before and after correction for
long-range potential is shown in Fig. 7 and compared w
the classical energy for the transitionE(210,29), assuming
b55 Å. The corrected energy approaches the classical
ergy for radii larger than 40 Å, but significant deviation
from the classical result occur for smaller defect radii. T
ratios of the corrected HA deep-level energies to the class
energies are shown in Fig. 8 forb55, 10, and 50 Å. Thea
posteriori long-range potential depends on the value cho
for the decay lengthb. The local nature of the deep-leve
wave functions would favorb55 Å. However, if the long-
range charge is accommodated in an effective-mass C
lomb tail, thenb550 Å may best describe the long-rang

FIG. 8. Ratio of the corrected HA energy to the classical ene
for the ~21,0! transition forb55, 10, and 50 Å. The asymptoti
approach to the classical limit marks the mesoscopic regime.
F.
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F
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e
s

to
p
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il.
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er
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e
h
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e
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corrections to the model of Haldane and Anderson. Even
the short-range case withb55 Å, there is a clear crossove
in behavior for defect radii between 10 and 30 Å. This cro
over regime is, by definition, the mesoscopic regime t
continuously connects the classical and the quantum lim

V. CONCLUSIONS

In conclusion, the many-electron model of Haldane a
Anderson that was originally developed to describe
charge states of point defects in semiconductors has b
extended to describe the energy levels of mesoscopic po
like defects. The low curvature of the defects and their s
allows many charge states to exist inside the band gap
GaAs, producing a Coulomb ladder of energy levels cente
on the charge neutrality level.

This extended Haldane-Anderson model is primarily he
ristic, and helps describe the nature of the Coulomb lad
but probably cannot be relied upon to give quantitative
ergies. It neglects many details, such as crystal-field splitt
chemical shifts, and lattice relaxation, which contribute
defect total energies. It is also necessary to correct the
energies with contributions from long-range potentials b
cause these corrections cannot be neglected for larger
defects. The length scale of the long-range potential rem
an unanswered question for these defects, and is boun
below and above by 5 and 50 Å, depending on whether
composed primarily of the localized deep defect wave fu
tion, or by the long-range Coulomb potential.

In spite of these quantitative deficiencies in this extend
Haldane-Anderson model, the qualitative trends are expe
to give a good physical description of the origin and appro
mate magnitudes of the multiple energy levels that can e
for a single mesoscopic pointlike defect in a semiconduc
Because it also gives an estimate for the size and exten
the transition regime between the quantum limit and the c
sical limit for these defects, it should provide a convenie
frame of reference for more sophisticated calculations.
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