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Mesoscopic pointlike defects in semiconductors: Deep-level energies
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Mesoscopic pointlike defects are a class of extended defects with surfaces of minimal curvature that span in
size from the point-defect limimultivacancy, antisite, impurity complex, et¢co macroscopic inclusions or
voids within a semiconductor host. The structural, electronic, and optical properties of these defects evolve
continuously from the quantum-mechanical limit to the classical limit. Mesoscopic defects share some features
in common with quantum dots, such as Coulomb-charging energies, but unlike quantum dots their electronic
properties are dominated by the covalent bond energies of the defect-semiconductor interface. The deep-level
energies of spheroidal mesoscopic defects are calculated self-consistently in the unrestricted Hartree-Fock
approximation using an extension of the many-electron model of Haldane and Anderson. The calculations in
GaAs reveal a high-multiplicity Coulomb ladder of discrete charge states distributed across the semiconductor
band gap and centered on the charge neutrality |¢861163-18208)07836-9

[. INTRODUCTION roidal, with possible faceting. They are unlike other extended
defects, such as line defedtdislocations, etg¢.or plane de-
The history of semiconductor research over the past cerfects (platelets, stacking faults, etcbecause pointlike de-
tury has been characterized by steadily increasing materidécts have bulk volumes enclosed by surfaces of minimal
heterogeneity. The first half century concentrated orcurvature. The small curvature minimizes Coulomb energies
bulk crystals of elemental and compound semiconductorsand maximizes the number of charge states that can exist
while the latter half saw forays into epitaxy. Epitaxy evolved within the semiconductor band gap.
from simple homoepitaxy into more sophisticated forms, Mesoscopic pointlike defects retain many of the features
culminating in the versatile heteroepitaxy of molecularof point defects, such as the presence of discrete charge-state
beam epitaxy and related growth techniques. Todayenergy levels within the semiconductor band gap, and their
semiconductor heteroepitaxy is continuing to evolve, ex-ability to participate in compensation mechanisms within the
panding beyond all-semiconductor heterostructuresemiconductor. But they also have important differences
to include metal-semiconductbrjnsulator-semiconductor, from point defects, such as extremely high charge-state mul-
and superconductor-semiconductor heterostructures artiplicity. It is the high multiplicity, in particular, that makes
composite$. With the proliferation of diverse new forms of these mesoscopic pointlike defects important constituents in
heterogeneous composite materials, it is important to identifgompensated semiconductors.
unifying principles and concepts that encompass the physics The importance of mesoscopic defects for charge com-
of a wide range of seemingly unrelated materials within apensation was proposed by Warrehal? to explain the
single class. semi-insulating properties of nonstoichiometric GaAs. Non-
For instance, the physical properties of inclusions withinstoichiometric GaAs forms during molecular beam epitaxy
semiconductors may be viewed as a single class of mesosn substrates held at low temperatufesar 200—300 °C
copic defect that includes the simple limit of point defects asrather than at the usual growth temperature of 600 °C. Low-
well as the electronic properties of extended defects. Théemperature growth incorporates excess arsenic into the
accumulation of vacancies into increasingly larger multiva-GaAs>® A key discovery by Purdue researchers was that the
cancy complexes is perhaps the best example of the continexcess arsenic undergoes precipitation into small arsenic in-
ous extension from the point-defect linithe isolated va- clusions upon postgrowth annéalhe accumulation process
cancy to the mesoscopic limitvoids).® Impurity atoms or  and size of the precipitate are controlled by growth or post-
nonstoichiometric concentrations can also accumulate intgrowth material processing.Therefore, the precipitates
precipitates within the semiconductolhese voids and pre- could be “engineered,” and their size and spacing could be
cipitates are mesoscopic pointlike defects that exchangeontrolled and chosen simply by playing off growth tempera-
charge with the semiconductor host and have well-defineture against anneal temperature and ti&nstoichiometric
“deep-level” energies. GaAs and related compounds are semi-insulating under most
The term “mesoscopic” describes those defects that havgrowth and postgrowth processing conditions and are play-
a characteristic energy scale that brings them continuousling an increasingly important technological role. They are
from the point-defectquantum limit to the classical limit.  currently being developed as ultrafast photodete&tGsith
This characteristic energy is the Coulomb-charging energysubpicosecond lifetimes, as far-infrared photodetectot,
reduced by hybridization with the semiconductor host. Me-in the fabrication of GaAs-based integrated circtitand in
soscopic defects have Coulomb-charging energies compghotorefractive quantum wel§;® among other applica-
rable to or smaller than the semiconductor band gap. Th&ons.
term “pointlike” describes defects that are primarily sphe-  Since the discovery of the arsenic precipitates, the semi-
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insulating nature of nonstoichiometric GaAs has been a A. Haldane-Anderson model

source of controversy, until recently. The semi-insulating The Haldane-Anderson model for transition-metal impu-
properties were initially attributed to the high concentrationyities in semiconductors begins with a model Hamiltonian
of arsenic-related point defects.Warren et al* proposed solved in the unrestricted Hartree-Fock approximation in
that the arsenic precipitates were acting as internal Schottkyhich only the dominant Coulomb terbhin the two-particle
barriers with associated depletion regions surrounding thenergy is retained, and the exchange tdrisiomitted’® The
precipitates. Subsequent studies have supported either thg@odel Hamiltonian is

defect or the Schottky models, depending on the growth and
anneal conditions. The production of mesoscopic voids in
heavily radiation-damaged GaARef. 3 raised a complica-
tion in the defect vs Schottky argument because these voids ) ) )
cannot be viewed as Schottky barriers with a high density ofh€r€Em. is the effective defect energy,, is the frac-
available internal states. However, the materials with thdional occupancy of statgna), s, is the dispersive energy

voids are semi-insulating with many of the same propertieé)ftz;:n ?lfcno? In stattk'wnlh a sta;tg ct)ccupandtyk, danddvtkstp q
as nonstoichiometric GaAs containing arsenic precipitates. | € interaction matrix element between extended states an

: . ; . the sp bonds of the localized defect. The effective defect
was shown recently that the voids play virtually an identical . ; .
. . o energy is determined self-consistently from
role as the precipitates for their ability to compensate

ff__ +
HS —Em(,nm(,+; eknk+2k Vi CsptC.C., (1)

charge!® and that voids and precipitates can be viewed N1

within a broader class of mesoscopic pointlike defects that Eme=Egt ——U 2 (Npyr), )
share many common properties, independent of their internal Ns mo#me’

constituents.

whereE is the “bare” defect energyi\, is the total number

_ Because the energy levels of mesoscopic pointlike defectgt g rtace states, and is the Coulomb interaction energy.
in semiconductors attain high charge multiplicity, they mustyhe sum is over both occupied and unoccupied surface

be calculated within a many-electron theoretical frameworkstates and the average occupandies,) are calculated
One simple many-electron model that has been a valuablﬁ:Om ti’1e Green’s function o

heuristic tool is the model of Haldane and Ander$dithis
model was originally developed to explain the occurrence of 1
multiple charge states of transition-metal impurities in semi- Gmo(w)= [0—E —S(0)]’ ©)]
conductors. It was later used to calculate effectivproper- @~ Emo @
ties of the dangling bond in silicoff,and to explain the band where the self-energy is given by
lineup of heterostructures with respect to transition-metal en-
ergy levels’! More recently, it has been used to calculate the IVKSpl2
charge-state splitting of deep energy levels in narrow-gap E(“’):; w—gy’ S
semiconductoré? to track the formation of Schottky barriers
by atoms adsorbed on a semiconductor surfiemd to ex-  Which contains both real and imaginary parts given by
plain the compensation of doped semiconductors by mesos- )
Copic VOidSJ.'B E(CU):E,((U)+|A((U), (5)

We extend the Haldane-Anderson model to calculate thgheqre
deep energy levels of mesoscopic pointlike defects in GaAs.
Two extensions to the Haldane-Anderson model are neces- A(w)=77|vksp|2pk (6)
sary. First, the intrasite Coulomb interaction enetdyis
identified. This is done in a manner that is consistent with@nd py is the density of states of the band structure. The
both the classical limit of the charging energy of a classicaPriginal Haldane-Anderson model assumed a constant den-
metallic sphere, as well as with the point-defect limit. Thesity of states to illustrate the basic principles. In our analysis,
second extension to the model is the identification of the rol&ve go a step further and use the total density of states de-
played by the charge neutrality levéIThe neutral mesos- 'ived for GaAs by Cohen and Chelikowsky.Following
copic defect level coincides with the charge neutrality levelHaldane and Anderson, we assume an energy-independent
of the semiconductor band structure. This behavior is ininteraction energyys,. While these gross approximations
cluded exp||C|t|y in the many-e|ectr0n model. These two ex-affect the details of the CalCUlationS, they are useful to illus-
tensions are described in Sec. II. In Sec. IlI, the calculationérate the general trends and show the physical content of the
are presented for the deep energy levels for both spherical, #3€eory.
well as spheroidal defects. The classical limit is discussed in The average state occupancies are expressed as
Sec. IV as the limiting behavior for large defect radius.

1 Ep
<nm0'>: ; lm f, ‘Gmrr(w)dw:ZI(Em(r)_FZ(Em(r)!

Il. HALDANE-ANDERSON MODEL (7)
OF MESOSCOPIC DEFECTS whereZ, andZ are given by

The basic mechanics of the Haldane-Anderson model for 1 £
deep-level point defects is |n.troduced first. The model is then Zy(Epy)=— Im j v Gyl ) dw, @)
extended to treat mesoscopic defects. ™ —
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1 = ng, andAn is defined as the electron occupancy that deviates
Z(Emg)=—1m J Gmo(w)do, (9 from charge neutrality. Rewriting Eq2) with these defini-
S tions gives
where Z, is the contribution to{n,,,) from hybridization
between the defect states and the states of the occupied va- x=Eq+U{(nJ+An—1)[Zy(x) +Z(x)]

lence band, and is the contribution from the pole of the
Green'’s functionG,,, in the gap. The charge contributions
can be solved numericafffusing

+(N=nJ—An)Z,(y)}, (14)
y=Eq+U{(n%+An)[Z(x)+Z(x)]

> do (10 +(N=1-n9—=An)Zy(y)}, (15)

wherex is the occupied effective defect energffs, y is the

and unoccupied effective defect enerdghno®’, and E4 is the
1 “bare” defect energy associated with total surface states.

(11) There is on average one surface bond per surface atom for

a semiconductor surface of random orientation. Therefore the

number of surface states of even a moderately sized void

P with a radius of 30 A or larger can approach a thousand. The

The defect energies and average occupancies must B‘Qare” defect energyE, in Egs. (14) and (1) in this case

solved self-consistently because the effective defect energgIII Ee hlundreds of.edee}Iow the valence-bt?n% rlnaximdum.
E,., depends on the average occupandies,) in Eq. (2), uch a large negative defect energy must be balanced pre-

which in turn depends on the effective defect enegy,°" cisely by a Coulomb energy to cause low-charge-state en-

by Eq. (7). The first step in this procedure is to calculate theS'9Y levels to occur near the middle of the band gap, which

self-energy term(w). This calculation is performed once is known to be the physical situation for semiconductor sur-
for a given interaction energy,., and density of states, face states. The Haldane-Anderson model cannot guarantee
sp .

The second step is to find the locations of the poles in th hat the neutral defect energy will lie near the middle of the

Green’s function of Eq(3), which satisfy the condition and gap becaude; cannot be easily quantified. Therefore
' our first extension of the Haldane-Anderson model to apply

wp—E(wp)— E e =0. (12) to mesoscopic defects is topriori choose the energy of the
charge-neutral defect to be equaEg, the charge-neutrality
Both occupied and unoccupied poles are found, and the avevel of the bulk semiconductor.
erage state occupanciés,,,) are calculated by Ed7). The charge-neutrality levelE, of a semiconductor has
In the Hartree-Fock approximation, it is necessary to calbeen identified by several researchers beginning with
culate total energies for a given charge state because theleine?®® to describe the nature of the metal-derived gap
two-particle energies are counted twice. Half of these termstates, which were later called metal-induced gap states or
must be subtracted from the total sum. The total energy i$11IGS2’ It can be approximately identified as the branch

1 (& A
Z2(Enmo) =7 f_w [0—Eme—3"(0)]*+A

Z(Emy) =
‘1—d—wE’(w)

w

finally given by point in the complex band structure where virtual gap states
. have52e4qual contributions from the conduction and valence
tot_ mo bands;” and has been calculated by Tersoff for several of the
E %}, JEq Z,(B)dE+ m;m @p common semiconductof& 0
By specifically requiring that the neutral defect energy
, coincide with the charge-neutrality level, E¢$4) and (15
303 (M), 13 g y level, Ed&4) and(19

simplify to x=E, andy =y, for the case wheAn=0. This
condition allows the difficult quantityey to be cancelled

in which the sums are over both occupied and unoccupie¢om the equations to give the extended equations
states, except for the sum over the occupied poles.

mo#mo’

x=Eq+U{(n)— 1)[Z3(x) ~ Z1(Eq) + Z(X) — Z(Eg)]

0

The Haldane-Anderson model requires two extensions be- T(N=N)[Z1(y) = Za(yg)]
fore it can be applied to mesoscopic pointlike defects. The +AN[Z1(X)+Z(x)—Z1(y) 1} (16
first extension handles the large number of states that arise at
the internal surface of the void or precipitate, and ensure&"
that the neutral defect energy falls near the charge-neutralit
level of the semiconductor.quhe second extensio?w defines a)r/1 y=X+U{Zy(x) +Z(x) = Z1(y)}. 17)
intradefect Coulomb energy for the electrons occupying therhe new equations are expressed in terms of the charge-
surface states of the defect. neutrality levelE, and the deviation from charge neutrality
An. An important feature of these equations is that they are
also expressed as differences of the functi@sand Z,

The number of electrons required to occupy the tdtal which gives small numbers that counterbalance the large
surface states to produce a neutral defect state is defined agmbers defined bl and nS. This process produces a lad-

B. Extension to mesoscopic defects

1. Charge neutrality



PRB 58 MESOSCOPIC POINTLIKE DEFECTSN. .. 7997

der of deep donor and acceptor energy levels centered in the 1.40 ' . ' ; ' '
band gap around the energy, . 120 | 5 a) |
Equations(16) and (17) are solved self-consistently for
E . for both occupied and unoccupied poles in the band gap.
Once the poles and defect energies are obtained, the energy
levels of the defect in the band gap are found by calculating
differences in total energy. The total energy of a state with
An electrons is now given by

0.80 -

0.60 [

0.40 |

Density of State (elec./eV)

0.20 |

ETOt(A n) =A nzl( Ezw)[E)r(rur_ Eq] - Anzl( E)n/’l(r)[EK‘m'_ yq]

0.00 L L L
+A I’]w)’; Energy (eV)
— 3UANYZ4(E},) + Z(En,) — Zu(EN) 12, e -

(18) 1.00
0.50

where the first line is the change in band energy with change
in occupancy, the second line is the change in defect energy,
and the third line is the correction to the Hartree-Fock total
energy. Equatior{18) replaces the Haldane-Anderson form
in Eq. (13) and represents the primary extension of the cur-
rent model to treat mesoscopic pointlike defects with large 150
numbers of surface states. The deep energy level of the de-
fect for the charge-state transition frodkn to An—1 is ] ]
given by Energy (eV)

0.00

050 [

Self-Energy (eV)

-1.00

-2.00

EHA(An,An_ 1)= ETot(An) _ ETot(An_ 1). (19) FIG. 1. (a) The density of states for GaAs calculated in Ref. 25.
(b) The self-energy calculated from the density of states for two
These total energy differences are the energies that can belues of the interaction matrix element. The zero crossing of the
compared to values measured experimentally by deep-leveklf-energy defines the charge neutrality lefigl
spectroscopy within the semiconductor host.
sions or voids, we adopt a semiclassical expression for the
2. Nature of the surface states effective intrasite Coulomb interaction for a spherical defect

The types of mesoscopic defect of concern here are eithéll radiusa, given by
metallic or semimetallic inclusions or voids within the semi-
conductor host. The natures of the semiconductor surface
states are similar in both cases in spite of the different
boundary conditions. In the case of mesoscopic voids, the
surface states are the unreconstructed dangling bonds. It wadiere the capacitance of the sphere imbedded in the semi-
shown in Ref. 18 that if even 90% of the surface bonds ar€onductor isC=4meza.
reconstructed, the void will still produce a ladder of energy
levels within the band gap and will provide sufficient states IIl. DEEP-LEVEL ENERGIES
to compensate doped material. Conversely, in the case of
metallic or semimetallic inclusions, the surface states can be The theoretical density of states of GaAs from Ref. 25 are
either dangling surface bonds of the semiconductor, or caghown in Fig. 1 with the calculated self-energy for matrix
be metal-induced gap stat&sA considerable literature, with €lementsV,,=1 and 0.5 eV. To solve Eq(2) self-
noted controversies, has developed concerning the nature epnsistently, the poles of the Green’s function are found first.
the states at the metal-semiconductor interfdd@espite the  The poles occur whem,—E,,=2(wp), which is shown
opposing views, the theories of the metal-semiconductor ingraphically in Fig. 2. The self-energy has a discontinuous
terface converge on similar behavior. The surface states ariséope at the edges of the band gap, but poles can occur out-
from hybridization or interaction between the surface stateside the gap, corresponding to resonance states. Both the
and the bulk states of the semiconductor. Most of the theooccupied and unoccupied poles are found by usigg=x
ries of the metal-semiconductor interface admit this interacor En,=Y, respectively, in Eq(12).
tion, although they may differ on the nature of the interac- The charge neutrality position within the band gap occurs
tion. when w,=E,, and the self-energ(E,)=0, giving the
Given the presence of surface states of the metallic inclusolution E,,,=E,. Because the matrix elemens, is as-
sion or void, it is necessary to identify the Coulomb energysumed to be a constant, the charge neutrality position is in-
U of Eg. (2). In the case of transition-metal point defects in dependent of the magnitude @fs,. In our calculationsk,
semiconductors this is taken to be an effective Coulombs taken at the zero crossing of the self-energy. This was
interactior’* that is reduced from the free transition-metal calculated numerically from the density of stafe® be Eq
atom by hybridization with the host and screening by long-~0.75 eV, which is in close agreement with more funda-
range interaction$! In the case of spherical metallic inclu- mental calculations o 30

2
V@)=, 20
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Point Defect
Limit

1.40

1.20
-50/-49

1.00

-20/-18
0.80

0.60 -1+19/+20

Self-Energy (eV)
Energy (eV)

0.40 7 +49/4+50

0.20

0.00

40

Energy (eV) Radius (A)

FIG. 2. Graphical solution to find the occupied pole in the band

FIG. 4. Haldane-Anderson deep-level energies for spherical
gap for a defect energly,,,,, -

voids calculated for charge states upgde- = 5e, and higher charge
states in intervals of- 10e.
A. Spherical defects

The full self-consistent calculations were performed forcharge state. The occupied pole energy lies midway between
spherical mesoscopic defects with radii between 5 and 30 An€ total energy and the defect eneigy,, . This trend con-
The calculations were not performed for defect radii smalletinues for higher charge states for both charge signs. For high
than 5 A(corresponding approximately to a pentavacancy ofharge-state transition€(Q—1), the deep-level energy is
five-atom metal clustérfor several reasons. The Haldane- (e average of the occupied poles for the two charge states.
Anderson(HA) model neglects lattice relaxation energies, 1 NiS suggests that simplified calculations may use the occu-
which can contribute substantially to defect energy levels. IPi€d pole alone, which is relatively simple to find, rather than
addition, there are quantum size effects and chemical effecfé®eding to calculate the total energies from Bd).
that become appreciable in this limit, but are ignored by the . The deep-level energies of spherical defects of succes-
HA model. For instance, in the case of spherical voids, thé'Vely higher charge states are shown in Fig. 4. The transi-
chemical species of the dangling bof@a or As bondswill tions for Q= *5e are shown, as well as higher charge-state

affect the energy position in the band gap. In addition, thetr_ansitions in intervals oft 10e. With increasing defect ra-
dangling bonds will themselves hybridize, leading to crystal-dius, the defect levels fan into the band gap as the Coulomb

field splitting of the defect levels, such as thg and T,  €nergyu rapidly decreases. The distribution of acceptor and

states of the monovacancy. QOnor levels is relatively symmetric about the c_harge_: n_eutral-
Several of the energies that enter into the self-consisterfy ével Eq. Over 100 charge states can exist within the

solutions to the total energies for the defect levels in the?@nd gap for a defect with a radius of only 20 A.

semiconductor are shown in Fig. 3 f@=—1e and Vs,

=1 eV. The Hartree-Fock defect enerfy,, overcounts the B. Ellipsoidal defects

two-particle interaction energy. It is used in Eq2) to find A semiclassical capacitance can also be defined for pro-

the occupied pole. These two energies, with the Coulombye 504 oblate spheroidal defects. Oblate sphertidsb
interactionU, combine to give the total defect energy for this . “pancakes’) have

2_ A2

1.40 a‘—c
C=4 —T 21
120 | § TE80 co57I(cla) (21)
1.00 - and prolate spheroida>b=c “needles”) have
s
9; 0.80 |- : 1<, ceu a’—b? -
S ooeof : ~ATE00 Sosh alb) @2
E .
040 \'~. 7 Prolate or oblate spheroids of increasing eccentricity have
020 |- \__ i increasing surfaces of curvature, which increases the
S Coulomb-interaction energy. The limit=0 for oblate sphe-
0.00 : : : ' ‘ = roids reduces to a planar defect analogous to a stacking fault.

The HA energies for two prolate spheroids with large ec-
centricities are compared in Fig. 5 with the energy of a

FIG. 3. Energy contributions to th®=—1 charge state for Spherical defect. The radius used for plotting is the semima-
Visp=1 eV showing the Coulomb interaction energy the occu- jor axis of the spheroid. Increasing eccentricity turns the
pied polew,, the defect energf,,,, and the Haldane-Anderson sphere into a needle and the capacitance increases signifi-
deep-level energies for the-1,0) charge-state transition. cantly. Strongly eccentric spheroids are not “pointlike,” and

Radius (A)
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140 i. \ T T T T T T 140 T 5 \I T T
H Prolate Spheroids FO :
130 | H \ N 130 |- \ Classical i
H U N HA
i eccentricity Lo — --HA+LR
s 120F . 1.20 - \\ Q = -10/-9
o < b \ Vskp = 1, eV
> 110 - & 110+ . =5A :
o .
5 N
S 100} . § 100 -
- w
T 090 - 0.90 - —
0.80 | . 0.80 [ R .
070 1 L | 1 1 1 Il 070 L 1 1 I Il 1 L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Radius (A) Radius (A)
FIG. 5. HA energy levels for thé—1,0) transition for prolate FIG. 7. HA energy level for thé—10,—9) transition compared
spheroids of increasing eccentricity. with the classical and HA-corrected levels foe=5 A showing the

transition from quantum to classical behavior with increasing ra-

do not fit well within the mesoscopic formalism described dius-

here. Fundamental quantum-mechanical calculations need to ] o
treat the energy levels of dislocations and platelets. Howihe Haldane-Anderson model and the classical limit, it is
ever, weakly eccentric spheroids will be described well byn€cessary to correctly interpret the Haldane-Anderson re-
the present model, and may be represented by real systen!lts:

For instance, spheroidal rather than spherical precipitates of 1heé Haldane-Anderson model describes the charge-
silver were seen in TEM micrographs in silver-implanteddepe”dem covalent hybridization of the defect surface states

GaAs3? with the bulk states of the semiconductor. The bare
Coulomb-interaction energy is reduced by charge density
“leaking” into the bulk to form a long-range charge density
IV. THE CLASSICAL LIMIT tail. For point defects, the total energy is dominated by the
intrasite Coulomb energy, and the long-range charge density
has a negligible effect. However, in the case of mesoscopic
defects, the long-range density contributes a significant por-
tion of the total energy.

The energy levels of the Haldane-Anderson calculation
can be corrected for the long-range density by including the
density in the deep-level energy. The charge density at the
defect surface is approximately given I&(E,,,). If the
where the defect capacitan€eis the quantity used for the charge density decays exponentially beyond the defect sur-
Haldane-Anderson calculations. The Haldane-Anderson caface as
culations for the mesoscopic defects should approach this
dependence for sufficiently large defects when quantum size p(r)=po exp(—alb) (24)

effects become negligible. To make the connection betwee{xli,[h a decay lengtt, then the potential that the long-range
charge density contributes to the deep-level transition is

In the classical limit of a spherical metal inclusion the
difference in total energies between defects that camy
andAn—1 charges is

eZ
E®a{An,An—1)=(An—3) ok (23)

Poir;_tin?ﬁfect Vksp==51AeV given by
1.4 :
-2/-1 ' ' .20/- b(b+a
I U= (1= Z(Ey ] 2o 2P0, (25
b2 -10/-9 i €&o
s 10F . This long-range potential is added to the Haldane-Anderson
) 3 deep-level energieE(An,A—1) to account for the long-
< 08+ L e | range charge density. The defect energy level in the band gap
Z o6l : . is therefore given by
Z i
w O/+1 !
o4l . EXR(An,An—1)=EMA(An,An—1)+(An— 1)U g.
+9/+10 (26)
0.2 - 4
2 +19/+20 The long-range potential is due to both the wave function
0.0 ‘ ' ' ' that extends beyond the surface of the mesoscopic defect, as

o] 5 10 15 20 25 30 35 40

Radius (A) well as to the long-range Coulomb tail of the defect poten-

tial. Highly localized defect wave functions would favor a

FIG. 6. Deep-level energies of spherical voids corrected forsmall value forb of only several angstroms, while the long-
long-range potentials with=5 A showing the development of the range Coulomb tail would favor a value fdr of tens of
Coulomb ladder. angstroms.
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1.0 ‘ . i . . corrections to the model of Haldane and Anderson. Even in
the short-range case with=5 A, there is a clear crossover
08 | 4 in behavior for defect radii between 10 and 30 A. This cross-
over regime is, by definition, the mesoscopic regime that
> osl | continuously connects the classical and the quantum limits.
3
o o4l . V. CONCLUSIONS
In conclusion, the many-electron model of Haldane and
02 i Anderson that was originally developed to describe the
charge states of point defects in semiconductors has been
0.0 ! ‘ : : ! ' ' extended to describe the energy levels of mesoscopic point-
© 5 10 15 20 2% 30 3B 40 like defects. The low curvature of the defects and their size
Radius (A) allows many charge states to exist inside the band gap of

FIG. 8. Ratio of the corrected HA energy to the classical energ)ﬁaAs’ producing a Coulomb ladder of energy levels centered

for the (—1,0) transition forb=>5, 10, and 50 A. The asymptotic ©Nn the charge neutrality level. o
approach to the classical limit marks the mesoscopic regime. This extended Haldane-Anderson model is primarily heu-
ristic, and helps describe the nature of the Coulomb ladder,
The deep-level energies for a spherical pointlike defecPut probably cannot be relied upon to give quantitative en-
within the Haldane-Anderson model, and corrected for theergies. It neglects many details, such as crystal-field splitting,
long-range potential, are shown in Fig. 6 for all charge State§hemica| shifts, and lattice relaxation, which contribute to
up to = 5e, and in Steps oft10e for h|gher Charge states. defect total energies. It is also necessary to correct the HA
The decay length for the long-range charge was assumed g&ergies with contributions from long-range potentials be-
beb=5 A in the calculations, which assumes that the deefgause these corrections cannot be neglected for larger radii
defect wave function is restricted to only one or two nearestdefects. The length scale of the long-range potential remains
neighbor distances, neglecting the long-range Coulomb taiRn unanswered question for these defects, and is bounded
Figure 6 can be contrasted with Fig. 4, which were the unbelow and above by 5 and 50 A, depending on whether it is
corrected HA energies. The long-range potential contribute§omposed primarily of the localized deep defect wave func-
significantly to the deep-level energies, reducing the numbelion, or by the long-range Coulomb potential.
of possible charge states that can exist inside the band gap. In spite of these quantitative deficiencies in this extended
However, high charge multiplicity is still possible, with over Haldane-Anderson model, the qualitative trends are expected
50 charge states on a defect with a radius of 40 A. to give a good physical description of the origin and approxi-
The deep energy level before and after correction for thénate magnitudes of the multiple energy levels that can exist
long-range potential is shown in Fig. 7 and compared withfor a sing[e meso;copic poin;like defect in a semiconductor.
the classical energy for the transitidf—10,~9), assuming Because it also gives an estimate for the size and extent of
b=5A. The corrected energy approaches the classical eﬁbe tra}nsltlon regime betweeq the quantum_llmlt and the c;las—
ergy for radii larger than 40 A, but significant deviations sical limit for these defects, it shc_JuI_d provide a convenient
from the classical result occur for smaller defect radii. Theframe of reference for more sophisticated calculations.
ratios of the corrected HA deep-level energies to the classical
energies are shown in Fig. _8 for=5, 10, and 50 A. The ACKNOWLEDGMENTS
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