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Effective-mass Fibonacci superlattices are composed of quasiperiodic sequences of weakly coupled quantum
wells in which the transfer-matrix element is significantly smaller than the confinement energy, which is
significantly smaller than the confining potential. We identify several distinct classes of quasiperiodic super-
lattices that are distinguished by diagonal vs off-diagonal quasiperiodicity and by compositional vs structural
quasiperiodicity. The spatial quasiperiodicity in Fibonacci superlattices leads to a fractal set of critical points in
the one-electron spectra. In the hierarchy of quasiband critical points, the critical points associated with earlier
generations are dominant and terminate the widest quasigaps. The interplay of the one-electron critical points
with many-electron excitonic enhancements creates complex spectra. Excitonic interactions concentrate the
oscillator strength to the lower-energy transitions, and exciton linewidths of late-generation critical points are
broadened by Fano resonance with the continua of lower-energy critical points. Using electromodulation
spectroscopy, we identify the first several generations of critical points in experimental absorption and elec-
troabsorption spectra of several Fibonacci superlattices that differ in their structure and coupling strength.
[S0163-182607)06327-3

[. INTRODUCTION periodic sequences of layers. These structures have rich elec-
tronic spectra that arise from wave-function localization.

Semiconductor multilayer structures are typically com-One well-known set of quasiperiodic superlattices are the
posed of two or more distinct semiconductor compounds thaEibonacci superlattice’d. These superlattices produce a frac-
occur in periodic or aperiodic sequences. The possible contal density of states, which has been studied in some detail in
binations that can be made using modern growth techniquee case of strong-coupling superlatti¢gs'® Much less
such as molecular-beam epitaxy or related epitaxial growthvork has been performed on weak-coupling Fibonacci
techniques, are almost limitless. Therefore, this large desigauperlattices; and little effort has been made to classify
space has been broken into broad classes that encompahistinct forms of these weak-coupling superlattices. The
certain common properties. These classes include multipleveak-coupling Fibonacci superlattices possess a imit
quantum-well (MQW) structures;? coupled quantum-well relatively unexplorefidesign space because of the flexibility
and resonant-tunneling structureand superlattice$® The  in the use of variable widths and variable compositions in the
key feature that distinguishes among these classes is the de&ell and barrier layers.
gree of quantum mechanical coupling from layer to layer. In this paper, we define and experimentally investigate
Quantum wells are isolated by wide barriers; coupled quantwo types of quasiperiodicity that are implemented with two
tum wells consist of groups of wells that are coupled closelytypes of disorder. The quasiperiodicity can be either diagonal
among themselves, but are otherwise isolated; superlattic®s off-diagonal, and the quasiperiodicity can be implemented
consist of layers that are all coupled. using either structural or compositional disorder. These dif-

Within the class of superlattices, two limiting cases can bderent types of weak-coupling Fibonacci superlattices exhibit
distinguished. Superlattices consisting of single monolayergifferent spectra. In Sec. Il we set the framework for the
or small numbers of monolayers are strongly coupled layeglassification of various types of quasiperiodic and aperiodic
by layer. The electronic structure of these materials requiré@eterostructures, describe the structures we have studied ex-
first-principles calculations to accurately describe their elecperimentally, and present a model for the calculation of the
tronic propertie$~® The other extreme case is the limit of electroabsorption spectra. Section Ill presents the modulation
weakly coupled quantum wells. Quantum wells consisting ofSpectroscopy experiments, and Sec. IV concludes with a dis-
many monolayers of low-gap material, and separated frongussion of the results.
other wells by many monolayers of higher-gap materials, can
be weakly coupled by quantum-mechanical tunneling
through the barriers. This class of superlattice can be viewed Il. FIBONACCI SUPERLATTICES
perturbatively as a tight-binding system within an effective-
mass approximation. This considerably simplifies the theo-
retical understanding of the electronic structure of these su- A Fibonacci superlattice is a quasiperiodic heterostructure
perlattices, making heuristic models easily accessible to theonsisting of building blocks arranged in the Fibonacci se-
experimentalist. guence, which follows the rule that finite generations of the

Also within the class of semiconductor superlattices aresequence are constructed by concatenating the two previous
aperiodic structures that are composed of random or quasiinite parent generations:

A. Fibonacci structure
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due to compositional quasiperiodicity in the wells and

i Wells . - ( I que
= barrier-width quasiperiodicity; and FSL No. 4, due to well-
A B A A B A | A B AABA width quasiperiodicity.
Layer-width
Disorder | | |
ixed Di B. One-electron energy spectra of Fibonacci superlattices
Off-diagonal Q-P Mixed Diagonal

ff-diagonal Q-P - . . . .
and Off-diagonal @ We will illustrate the electronic properties of Fibonacci

superlattices by considering a tight-binditi{ronig-Penney
approactt’ which is a valid approximation for long-period
- A B A A B A, A B A A B A superlattices because the coupling between wells is small
Compositional i . . .
Disorder enough to be considered a perturbation of the isolated well
- wave functions. The coupling between two wells in the su-
Mixed Diagonal . . . .o .
and Off-diagonal Q-P Diagonal Q-P perlattice sequence and j is described by the transfey;
=(i|Vilj) and shifts;j=(i|V,|i) integrals, wherdi) is the
FIG. 1. lllustration of the classes of superlattice quasiperiodicity![.scilated well "é‘f""e Junctlﬁ)n_,”e]m\zlifls th(tahsuperlattIC(_a p?.ter?t'
(Q-P) as a function of the type of disordédiagonal or off- lal corresponding 0 well. Theretore, the one-carrier ight-

diagonal when the quasiperiodicity is structural or compositional binding Hamiltoniafi® can be written in the form
arising from perturbation of the wells or the barriers.

5%

H=i2j (8i5ij+sij)|i><i|+i2j t; )il 1
SN+l:{SNSN71}- . .
wheree; are the isolated well energy levels. This takes an
average over the crystal potential of the superlattice in the
Each building block is made up of two types of terms orform of a series of potential step functions, while the band-
“periods,” which consists of a well and barrier of given structure details are only taken into account through the car-
thicknesses and Al fractions. In the case that the wells have i@er effective masses. The deviation from a periodic superlat-
longer and shorter width, the Fibonacci superlattice would bdice can be quantitatively characterized by the variations
represented as the sequence of well widthsalong the superlattice in the transfer and shift integei|s
LSLLSLSLLSLLSetC. and 8s;; . The departure from a periodic superlattice treat-
To facilitate the description of various types of Fibonacciment consists of solving the Hamiltonian for &ll wells of
superlattices, one can make a distinction between diagon#the superlattice, with the isolated quantum-well wave func-
and off-diagonal quasiperiodicity, based on the manner irions as the basis, and considering only nearest-neighbor
which the quasiperiodicity affects the electronic spectrum ofwvell-to-well interaction. Therefore such a model does not
the Fibonacci superlattice. In diagonal quasiperiodic latticestake into account band nonparabolicities, valence-band mix-
the on-site energies deviate from periodicity, while in off-ing, and electron correlation effects. A simple one-carrier
diagonal quasiperiodic lattices the on-site energies are perapproach to the calculation of the electron or hole minibands
odic but the site-to-site transfer or hopping energies are quaan extract the prominent energy distribution features of the
siperiodic. In  semiconductor superlattices, spatialexperimentally observed transitions. However, many inter-
quasiperiodicity can be due to layer-width disorder or com-esting characteristics such as oscillator strength can only be
positional disorder, which both lead to different types of qua-approached in the framework of a many-body treatAtesft
siperiodicity depending on whether they affect the superlatexcitonic effects.
tice barriers or wells. In the approximation of first-order Any quasiperiodic spatial variation in the superlattice,
terms in the perturbation from periodicity, the influence ofsuch as quasiperiodic interwell coupling or confinement en-
both types of disorder on the superlattice quasiperiodicity i®rgy, will induce a fractal distribution of allowed energy
schematically depicted in Fig. 1. states in the reciprocal space. If spatial quasiperiodicity is
The distinction between diagonal and off-diagonal perturintroduced starting from a periodic superlattice, then the su-
bations on a lattice is important in the case when the perturperlattice minibands will acquire a fractal distribution of
bation is random(pure disorder, where it leads to distinct minigaps which define “quasibands.” The one-dimensional
mobility edgé® behavior with increasing disord&t.It can  one-carrier density of states therefore resembles a “devil's
also influence the emergence of van Hove-type critical pointstaircase,” and quasiband edges are indicated by sharp
at the center of the energy bahdOne-dimensional systems slopes in the density of states.
with either diagonal or off-diagonal disorder are always Representative devil's staircases are shown in Fig. 2 for
localized!® while the states in systems with diagonal or off- both diagonal and off-diagonal quasiperiodicity. The most
diagonal quasiperiodicity seem to be critiCalHowever, important aspect of the devil's staircase density of states is
there may be special cases in off-diagonal quasiperiodic syshe distribution of quasigaps of increasing number and de-
tems when at least one state is extended. creasing size. The notable difference in the gap distribution
The Fibonacci superlatticd&SL’s) we have studiedde- between the case of diagonal and off-diagonal quasiperiod-
scribed below fall approximately into the two categories of icity is the asymmetry with respect to the center of the band
guasiperiodicities we have defined here. One of the struan the first case, and the symmetry in the later case. In off-
tures(FSL No. 2 is an off-diagonal Fibonacci superlattice diagonal quasiperiodicity, symmetry about the center of the
due to barrier-width quasiperiodicity. Two other structuresband is a consequence of the diagonal degeneracy and the
were mainly diagonal Fibonacci superlattices: FSL No. 3hermiticity of the tight-binding Hamiltonian; it can be de-
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N distinct optical transitions. WheN is large (N=100 in

12 ' ' ' ' our caseg this presents a formidable task. Fortunately for the
a) Off-diagonal M2 spectroscopist, not all transitions have equal strength. In fact,
10 - quasiperiodicity ) °¢ there is a hierarchy of modulation signatures that make it
Mo A sufficient to identify only a few of the critical point transi-
08 - .I\.llo-type. ) tions in order to describe most of the modulation spectra.
o critical points -+ 1 ¢« M,° This hierarchy is based on the iterative generation of quasi-
Q06 - 2 . gaps by successive Fibonacci generations.
Q ¢ \L The magnitude of the quasigaps plays an important role in
0.4 i . the modulation spectroscopy of the Fibonacci superlattices.
1 - Each gap terminates a quasiband atvbnsaddle point, and
M' M -type ) ; - L
02 - M M critical poi begins a quasiband at &n, critical point== Many-electron
points L . -
1 effects, such as excitonic enhancements in the absorption, are
0.0 ; | | concentrated a¥, critical points. There are several ways in

0.03 0.035 0.04 0.045 0.05 0.05t which the quasigaps act to augment the electroabsorption,
through modifications of the excitonic Rydberg, and through

energy (eV) the broadening mechanism of Fano resongnce.

2 ' ! ' ' ' The largest quasigaps are associated with the largest Fou-
b) Diagonal M2 rier components of the quasiperiodic potential, which also
10 quasiperiodicity 0 . . . i
M provides the largest effective mass to the associstg@riti-
cal point. The larger effective mass produces a larger exciton
08 .l\‘llo-type. ] Rydberg and a larger oscillator strength, which gives a stron-
o critical points ¢ M, ger modulation signal during modulation spectroscopy.
8 0.6 - . 7 Therefore the larger quasigaps will produce larger modula-
= M, tion signatures. The hierarchy of decreasing gap sizes is ex-
0.4 - M,° . pected to produce a hierarchy of diminishing modulation sig-
M1-type natures.
02 |- ¢'3 critical points ] In addition to the effects on excitonic oscillator strength,
each discreté excitonic transition is degenerate with the
0.0 ! I I continuum of each lower-energy transition. This condition

0.03 0.04 0.05 0.06 0.07 may produce Fano resonance, in which the transition prob-
ability of the continuum states interferes with the resonance,
producing broadening of the transition linewidth. T,
) ) - o _critical points that terminate the larger quasigaps experience
FIG. 2. lllustration of the hierarchy of critical points in quasi- smaller broadening because of smaller interaction with the
bands for off-diagonal and diagonal superlattice quasiperiodicityunderMng continua. Smaller gaps, on the other hand, allow
The curves are the calculated integrated one-electron density of oo ter interaction with the continua and therefore a larger
states fof(a) off-diagonal Flbonam SL No. 2 an(b) dlagonalu Proadening. Since broadening implies smaller modulation
Fibonacci SL No. 4. The subscripts designate the type of lecasignals the hierarchy of diminishing quasigap sizes will

point (van Hove singularity, while the superscripts label the gen- . d hi hv of diminishi dulati .
eration of the quasigap associated with the critical points, as disﬁjgrzg] produce a hierarchy ot diminishing moduiation signa-

cussed in the text.

energy (eV)

The hierarchy of diminishing modulation signatures con-

scribed as perturbing a periodic lattice by introducing quasi—s_iderably simplifies th_e task of i_dentify_ing the many tran_si-
ons observed experimentally in a Fibonacci superlattice,

eriodic coupling. The asymmetry in the case of dia onaE . . - i
P ping y y 9 ecause the strongest modulation signatures will be associ-

quasiperiodicity, on the other hand, is not strictly a conse- 4 with theM " fthe | ; F
quence of the coupling; it arises due to a perturbation on aft€d With theM, transitions of the larger quasigaps. For a

initially quasiperiodic lattice. For decreasing coupling, the9!VeN e)_(ge”mema: Imhe-sfr_\ape resoal\:tlon,. !t n|1ay .be neces-
limiting situations in the two cases are quite different. In theS&"Y tol entlfy only the first severa, critical points in
limit of no coupling (very thick barriers an off-diagonal order to describe the strongest modulation features of the

superlattice is indistinguishable from that of the isolatedF'bor?_aCﬁ.' specrt]ruml. bi |
guantum well. On the other hand, in the same limit a diago- This hierarchy also suggests an unambiguous nomencla-

nal quasiperiodic superlattice exhibits a two-level spectrunfur® Scheme for identifying the transitions based on the rank
d f the gap. The nomenclature scheme shown in Fig. 2 is

that preserves the occupation ratio due to the quasiperio @ ) )
spatial arrangement of the now isolated wells. ased on the WeII-'knowrj trlfurc'atlon of_the Cantor set spec-
trum of the one-dimensional Fibonacci chafrDue to the

. , » _ scaling properties of the spectrum, each gap can be unam-
C. Transition hierarchy and critical-point nomenclature biguously labeled using an integer, related to the quasi-
The greatest challenge for optical spectroscopy of Fiband occupation of the integrated density of state©S) at

bonacci superlattices is the correct identification of the manghe bottom of the gap) which is {m7}=mr—int(mr),

optical transitions that are observable in modulation specwhere the golden ratio=(\5—1)/2. Generally, the gaps

troscopy. In generalN periods of the superlattice produce with lower index are larger and emerge in earlier Fibonacci
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TABLE I. Structure of the three Fibonacci superlattices and of the periodic control superlattice.

Layer A LayerB
Structure well barrier well barrier
Fibonacci SL No. 2 75-A GaAs 25-A pbGay-As  75-A GaAs  18-A A);Ga - As
Fibonacci SL No. 3 75-A AJyGayoAs  18-A AlysGaysAs  75-A GaAs  25-A A} ;Gay 7AS
Fibonacci SL No. 4  62-A GaAs 16-A pbGaysAs  75-A GaAs  16-A A} ;G 7AS
Periodic SL 62-A GaAs 16-A Al,Gay7As  62-A GaAs  16-A A} ;Ga 7AS

generations. This nomenclature provides an unambiguouserous wells. Growths FSL Nos. 2 and 3 both had 75-A
way of designating the multiple critical points in the super-wells. In the diagonal structure FSL No. 4 the GaAs well
lattice. Each gap will be bracketed betweerMprtype criti-  widths are equal to either 62 or 75(8horter wells are more
cal point on the lower-energy side and Bhy-type critical  numeroug with the barriers 16 A wide. Finally, the periodic
point on the higher-energy side, both of which will be in- control superlatticéPSL No. 7 had 62-A GaAs wells and
dexed by a superscript identifying the gap. This provides ang-A barriers. The building blocks for each of the superlat-
exhaustive scheme for labeling the superlattice criticatices are given in detail in Table I.

points. In the off-diagonal Fibonacci superlattice, the two A structures were grown by molecular-beam epitaxy; an
Iarg_est gaps are degenerate in size. Each of th_ese is |dent|f|g\q0.5G%HAS layer was included to serve as a stop etch. The
as first generation gaps, followed by successive generatio mples were epoxied onto glass slides and the substrates
pairs of gaps. Although the density of states of the diagonqizre removed using a wet chemical efélso that transmis-

superlattice is asymmetric with respect to the center of th%ion measurements could be made. Gold contacts were
band, it follows the same scaling behavior, and its gaps can '

. evaporated onto each sample with a spacing of 1 mm to

be designated by the same nomenclature scheme. lv an electric field in the plane of the wells. Th mol
Using this nomenclature, it should possible to identifyappy"’}[ ?e.z Ct' elt th € pia eto ff els. ef. Sl?j Ee
experimentally the first several generationdvbf-type criti- geometry IS identical to the geometry ot transverse-ield pho-

cal points in a spectrum. The general trend is expected to Higrefractive quantum wells. o _
approximately valid, i.e., that the larger gaps will have asso- El€ctroabsorption measurements at liquid helium tem-
ciated with them the strongest modulation signatures. HowP€ratures were performed using a Janis Supervaritemp opti-
ever, since this trend is based on a one-carrier treatment, it @l cryostat. An ac electric field was applied in the plane of
expected to hold in general, but to fail in detail oncethe quantum wells up to fields as high as 4 kv/icm. The
electron-hole interaction effects are considered. In a periodigransmitted and electromodulated light were detected using a
superlattice, the oscillator strength of the excitonic transifreamplified Si photodiode and lock-in detection, with the
tions in a miniband tends to concentrate strongly at the lowlock-in amplifier referenced either to a chopper or to the
energyM, critical point?* We can expect many-body effects applied ac electric field.
to produce the same tendency in a quasiperiodic superlattice. An electric field applied parallel to the quantum weliis
Therefore, the general aspect of the spectrum will be detethe Franz-Keldysh geomefrynduces a change in the trans-
mined by the multifractal distribution of one-carrier critical missionAT through exciton lifetime broadening or exciton
points, but the strength of the transitions will be primarily jonization. The detected electromodulated signal is directly
influenced by many-electron effects, which will induce a biasrelated to the change in absorption due to the applied electric
in the spectrum, augmenting the low-energy transitions anield, and for small modulation the dependence is given by
broadening the higher-lying transitions in the quasibandAT/T=LAa, whereL is the thickness of the semiconductor
This preferential distribution of the oscillator strength at theheterostructure and is the zero-field transmission. Measur-
low-energy critical points will determine the general appearing the differential transmissioAT/T therefore provides a
ance of the electrotransmission spectra. way of determining the change in the absorption coefficient
of the excitonic transition, which is directly correlated with
the transition oscillator strength. The differential transmis-
sion is also the quantity of interest when using semiconduc-
We have experimentally investigated several different Fitor heterostructures as photorefractive  electrooptic
bonacci superlattices, together with a purely periodic superodulator*2® for light diffraction and optical processing.
lattice as a control structure. In all structures the superlattic&or such applications, the diffraction efficiency is the most
barriers are made of kGa,7As and the superlattice con- important parameter, and its magnitude and spectral depen-
sists of 100 periods. The off-diagonal superlattice FSL No. Zlence are determined by the magnitude and spectral depen-
has a quasiperiodic barrier-width sequence, of 25- and 18-Aence of the differential transmission.
barriers, the longer barriers being more numerous. In the Apart from the transition oscillator strength the change
mixed diagonal and off-diagonal structure FSL No. 3, in ad-in absorption depends on the zero-field linewidth of the tran-
dition to a quasiperiodic barrier-width sequen@8- and sition I'y, the variation of the linewidthAT'(E) with the
25-A barriers, the shorter barriers being more numerous applied electric fieldE, and also on the saturation of the
compositional quasiperiodicity was incorporated into thebroadening with field. The electroabsorption depends on
wells by the introduction of 1% Al fraction in the more nu- these factors as

IIl. MODULATION SPECTROSCOPY
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Aa(E)xfAT (E)IT3. ) 40 RS
. . . . HH
The excitonic oscillator strength is a measure of the tran- % M, Periodic Superlattice |
sition probability, and in the simplest model, in the approxi- £ 30 | v MU .
) . X . 5 b HH
mation where carrier correlation effects are not taken intc £ 25 |- v M, |
account, is quantified by the overlap of the conduction banc g 20 L \;M LH
and valence band carrier wave functions. The field-inducer g ’ !
broadening describes the ionization enhancement of the e g 5o
citon under an applied electric field. Qualitatively, the exci- < 10 ‘/V 7
S I < 4 ) T=10K
ton ionization probability increases with increasing applied 05 a)
electric field, up to the point wheAT (E) saturates. The 0.0 R SN .
zero-field linewidth of the transitioli, depends on thermal oy, T T T T T T
i i i - iti i 004 = MFHT g Periodic Superlattice |
broadening and on the interaction of the given transition witt o M, p
lower-lying continua(Fano resonangeln real systems, fac-

.. . . 0.02 HH —
tors such as sample variatioGsell- or barrier-width fluc- v M, M LH
tuationg or microscopic electric fields produced by material & ¢' !
damagé’ can inhomogeneously increase the exciton line-
width. ) ) 002 |- T=10K -

Taking these factors into account, the general features ¢ E=4 kV/cm
the electrotransmission spectrum can be described as fc 004 - b) -
lows. It has been shown that the excitonic oscillator strengtl S U S——
tends to concentrate in the lower-energy part of the superla 1.55 1.6 1.85 17

) e ) ook E v
tice miniband?® Therefore, due to this preferential distribu- neray(eV)

tion of the oscillator strength, the strongest transition oscil- FIG. 3. Absorption(a) and differential transmissiofb) spectra
lator ) Strength_s_ will t?e assoc'e_lted with t_he Iow_er-energyof the periodic control superlattice. The indicated critical points are
quasiband critical points. The increased interaction of th&gcyjated using the nominal parameters of the superlattice and no
higher-energy critical points with lower continua will pro- agjystable parameters, neglecting exciton effects.

duce larger Fano broadenifdg, of these transitions. The

field-induced broadening will also vary across the SUpe”atpotentials for GaAs and glag%3! The heavy- and light-hole
tice m|n|b§1nd; qualitatively, the excitons with lower bln(_jmg excitonic features dominate the sample. The saddle-type
energy will broaden and saturate faster than the highery critical points for the light- and heavy-hole minibands
blndln'g—energy excr[ons,l associated Wlth. the critical pomtsappear as inflection points in the absorption spectrum, and
following the larger quasigaps. The combined effect of thesgnere is good agreement with the predicted critical point en-
factors will be that the sharpest and strongest transitions W"érgies. The spectra show that, within the resolution of our
occur at the lower energies in the miniband, and the highermeasurement$which ranges b’etween 0.1 and 0.2 meV

lying transitions will be weaker and broader. there is no observable spectral structure due to layer fluctua-
o . tions and interface roughness. Therefore we conclude that
A. Periodic superlattice the longer periods of our Fibonacci superlattices render the

We examined a periodic superlattice structure, as a Conspectral_ features relative!y insensitiye to small variations in
trol for quantifying deviations from ideality due to growth layer widths. More sensitive techniques should be able to
effects such as interface roughness, and for the purpose Eftect the spectral lines due to such facférs.
testing our numerical model on a relatively simple system. The three Fibonacci superlattices we have studied go from
The absorbance and electroabsorption low-temperature spefd-diagonal to mainly diagonal quasiperiodicity, as can be
tra are shown in Fig. 3, with the predicted transition energie$€en from the quasiperiodic variation of the transfer an(_j shift
for the heavy- and light-hole excitons derived from the nu-integrals among the superlattic€Bable Il). FSL No. 2 is
merical model. The absorbance is defined as T)(IL/ where N . o .

T is the transmission and is the sample thickness, and is TABLE Il. Cr_m_cal points of the pe_rlodlc superlattice heavy_—
proportional to the absorption of the sample but does noimd light-hole minibands. The calculations have used the nominal

take into account Fresnel reflections at interfaces. The caIctf—ﬁgter(;a:t'cel.par;mewlrs'lbi’téhe t(;ans't'o.” en?r?'fes gave b?elr; rigidly
lations for all superlattices have been performed within azolnse Tr?ea::gzma?ecda;:e? ?esak:]avgxg):er;mceor;rzctlég f&clnrrnt(:lr:eaeffcreac?ss Ic-Jf
transfer-matrix approact;?° using the nominal superlattice ' 9

parameters, which have not been adjusted to provide a bettgtrram but not for the exciton Rydberg.

fit. Table Il shows the experimental transition energies, to-

. . L3 Measured transition Calculated transition
ggther with the ca_lculated. assignments. The transition ener- energy(eV) Assignment label energy(eV)
gies have been given a rigid shift to align the fundamental
transition energy with the lowest experimental transition. In 1.5733 n=1HH M, 1.5733
calculating the transition energies, we have taken into ac- 1.5867 n=1LH M, 1.5850
count the strain introduced by the differential contraction of 1.6219 n=1HH M, 1.6150
the glass substrate through a rigid shift of the gap, and an 1.6558 n=1LH M, 1.6569
additional splitting of the light- and heavy-hole bands, esti- 1.7340 n=2HHM, 1.7484

mated from known expansion coefficients and deformation



1992 M. DINU, D. D. NOLTE, AND M. R. MELLOCH 56

TABLE lll. Characteristic energy variations in the four Fi- TABLE IV. Critical points of the Fibonacci superlattice FSL
bonacci superlattices, with the notation from Ed). The table  No. 2. The calculated energies use the nominal superlattice param-
shows the change in the respective energy between the two types efers, but have been corrected through a rigid shift to account for
blocks in the superlattice. All energies are given in meV. deviations from the nominal thicknesses. The exciton binding ener-
gies have not been included in the calculated values.

Structure |58i| |6tii| |6Sii|
- ] Measured transition Calculated transition

Fibonacci SL No. 2 0.0 2.21 0.33 energy(eV) Assignment label energy(eV)

Fibonacci SL No. 3 8.10 2.21 0.33

Fibonacci SL No. 4 11.74 5.73 0.38 1.5612 HH Mg 1.5612
1.5624 HH My 3, M3 1.5621, 1.5633
1.5670 HH M,* 1.5676

almost purely off-diagonal, as characterized by the variation 1.5732 LH M 1.5767

ot , calculated to be=2.2 meV. The corresponding diago- 1.5749 HH M} 1.5740

nal variation ds;; is negligible, as in all the superlattices; 1.5767 LH M2 1.5804

however, in any real superlattics;; can never be exactly 1.5826 LH M,*! 1.5877

zero, and therefore any real quasiperiodic superlattice has 1.5863 LH M3 1.5902

some degree of diagonal quasiperiodicity. For FSL No. 3 the 1.5943 LH M} 1.5992

diagonal terméde;=8.1 meV is more significant than the 1.6072 LH M? 1.6094

transfer integrals; likewise, FSL No. 4 is strongly diagonal.
This trend can also be perceived in the complexity of the
measured spectra. bands. The correspondence between the measured and calcu-
lated transition energies is shown in Table IV. Transitions
are assumed to take place betwéép critical points in the
conduction and valence bands. The transition energies do not
The absorption and electromodulation spectra for the offinclude the exciton binding energies. Implicit in our assign-
diagonal Fibonacci superlattice FSL No. 2 are shown in Figments are “selection rules” that eliminate from consider-
4. Also shown in the figure are the assigned transition labelsation all but a few possible transitions. Even in a one-carrier
in accordance with the notation convention described in SeGpproximation, the oscillator strength of a given transition
Il C. The transition energies are calculated starting from thexan still be estimated from the overlap integrals of the cor-
one-carrier quasibands in both the conduction and Va|en0|%sponding electron and hole enve|0pe functiﬁ'gased on
this analysis, we found that the strongest transitions occur
mostly between equivalelgie., having the same rank in the

B. Off-diagonal quasiperiodicity

4.0 T T T T T T T T hi hY M itical . . h s
_ V(MO gap hierarc _y o-type critical points in the energy quasi-
2 FSL No.2 bands. In this sense, the off-diagonal Fibonacci superlattice
330 r (M) ey . still approximately preserves the well-known=n’ selec-
3 (M)HH \L tion rule that is obeyed in the case of isolated quantum wells.
8 0L T=t0K | As can be seen from Fig. 4, the symmetry of the quasi-
§ \ ¢ )r 1« bands in the case of the off-diagonal superlattice leads to a
S o oL (M")LA relatlvel_y sn_1a_|| number of tran5|_t|ons._ This is a consequence
- M) (MB)H (MY of the simplicity of the symmetrical hierarchy.
0.0 —— : e —— C. Combined diagonal and off-diagonal quasiperiodicity
012 v, (MO FSL No.2 | The electroabsorption and absorption spectra for the
mixed diagonal and off-diagonal superlattice FSL No. 3 are
_ 008 T=10K 4 shown in Fig. 5. The correspondences between the strongest
= w My ESOSKViem transitions and the calculated transition energies are indi-
< 0.04 ™M) oH ] cated, and the numerical values are shown in Table V. As in
»L(M ) the case of FSL No. 2, the lowest-energy light-hole exciton
0.00 e R 'T‘ transition is an adjustable parameter in the assignments.
OVLH t ™ (M“)L”¢M1 LH b) However, the_lowgs_t-energy light-hole transition can be un-
ooap o MO eyt MY T ambiguously identified to occur at 1.578 eV by comparing
156 156 157 158 159 1.60 1.61 1.62 the absorption spectra of a sample with biaxial strain with a
Energy (eV) strain-free(freestanding sample. Unlike the case of the off-

diagonal superlattice, the lack of inversion symmetry in the
FIG. 4. The (a) absorption andb) differential transmission quasiband together with the increased superlattice coupling

spectra of the off-diagonally quasiperiodic Fibonacci superlattice'e"’ld to the appearance of “forbidden” transitions, i.e., tran-

FSL No. 2. The off-diagonal quasiperiodicity preserves the symmeSitions between nonequivalekt,-type critical points in the
try of the energy band, and leads to few prominent transitions. Théluasibands. For instance, the feature at 1.5713 eV is attrib-

transitions between major critical points in the quasiband are laUted to a transition between th&J critical point in the elec-
beled following the convention introduced in Figal tron quasiband and thhflg critical point in the heavy-hole
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3.0 T 'v' L L I 3.0 B B A
iy O\HH N MO Hi
"% 25 | M) \L(MO)LH - FSL No.3 | Z 25| (M) FSL No.4 |
£ 20 ¢(M‘1)LH o (M2 2
: T vy g 20 1
§ 15 - - g 15 i
s 3
g 10 . 5 1.0 -
£0 7]
< <
05 . 05 .
(MZ)HH a)
0.0 ) I L L L { " s L | L L L | f ' i 0.0 n L L L L 1 . L L { L L L 1
L B L B T ] ——
: \ R oo FSL No.3 | (M) FSL No. 4
008 [- (MY™ 5 0.08 |- »L ¢(M")HH |
- [ (MO)LH i ALH (M1)|_H ] - (MO)LH 1\HH (M1)LH (M-Z)LH
= o0 ¢ (M3 (M) e - = 004 F (M)
< IR ] < Y v
0.00 [ ==ssio- i} 1 P\ o AN e - . . 0.00 -J- s A |
I ¢T T=10K b) ] ¢ T=15K
0-1\HH s 4 L N E=2 kV/cm H
oot (MZ)IHHI | $M| ). o E~'2 kIV/crIn e -0.04 e (Ile)LHI (M1)II.H | - b)
1.56 1.58 1.60 1.62 1.64 1.56 1.58 1.60 1.62 1.64
Energy (eV) Energy(eV)
FIG. 5. The (a) absorption andb) differential transmission FIG. 6. The(a) absorption andb) differential transmission

spectra of the combined diagonal and off-diagonal quasiperiodispectra of the mainly diagonal quasiperiodic Fibonacci superlattice
Fibonacci superlattice FSL No. 3. The important transitions are=SL No. 4. The large diagonal quasiperiodicity destroys the sym-
shown with their attributed critical points. The diagonal quasiperi-metry of the energy quasiband, and leads to a multitude of transi-
odicity removes the symmetry of the quasiband density of statedjons of comparable intensity. The transitions between the main
and leads to a richer distribution of gaps evident in the spectra. critical points in the quasiband are labeled following the designa-
) . . tions of Fig. Zc).

quasiband(labeled HHM®~2 in our notation. The agree-

ment between the assignments and the observed transitions iF d d ineriodici d with
good, also showing that in the case of this superlattice th@'"9 and more pronounced quasiperiodicity compared wit

one-carrier tight-binding treatment captures the distinctivéNe Otheér two Fibonacci superlattices. The absorption and
features of the electromodulation spectra. The number 0eFIectromoduIatlon spectra for the FSL No. 4 superlattice are

spectral features observed is larger due to a more complEnOWn in Figs. &) and Gb). The spectra exhibit a large
cated hierarchy in the density of states. number of transitions, the most important of which are iden-

tified as described for the Fibonacci superlattice FSL No. 3.
D. Strong diagonal quasiperiodicity Table_VI shows th_e_ transition a_ssignments o_f_the strongest
experimental transitions. The hierarchy of critical points is

The strongly diagonal Fibonacci supperlattice FSL NO. 4gjmijar in the two diagonal superlattices, and the identifica-

is interesting because it exhibits both stronger interwell cOUti of the salient transitions relies on the same oscillator
TABLE V. Critical points of the Fibonacci superlattice FSL No. Strength arguments. A peculiarity of the Fibonacci superlat-

3. The calculated energies have used the nominal superlattice pa-

rameters but have been corrected through a rigid shift to account for TABLE VI. Critical points of the Fibonacci superlattice FSL

deviations from the nominal thicknesses. The exciton binding enerNo. 4. The calculated energies use the nominal superlattice param-

gies have not been included in the calculated values. eters, but have been corrected through a rigid shift to account for
deviations from the nominal thicknesses. The exciton binding ener-
Measured transition Calculated transition  gjes have not been included in the calculated values.
energy(eV) Assignment label energy(eV)

15665 HH M8 15665 t Me_?sure(\j/ reel label Calculated trft/nsmon

15675 HH Mg 15684 ransition(eV) ssignment labe energy(eV)

1.5713 HH M52 1.5714 1.5639 HH M{ 1.5639

1.5772 HH Myt 1.5788 1.5698 HH M3 2 1.5697

1.5791 LH M 1.5824 1.5773 LH M 1.5794

1.5835 LH M3 1.5860 1.5825 LH M3 1.5854

1.5888 HH M} 1.5868 1.5919 HH M} 1.5920

1.5960 LH Myt 1.5959 1.5954 LH Myt 1.6002

1.6067 LH M} 1.6100 1.6043 LH M} 1.6219

1.6145 LH My 2 1.6174 1.6217 LH M2 1.6358
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tice FSL No. 4 is the strong dependence of the spectral dis
tribution of electromodulation intensity on applied field. The
electroabsorption spectra corresponding to three differentay ;o5 L
plied fields are shown in Fig. 7. The intensity of the electro-
modulation signal of the higher-energy transitions saturate: g4 |

e
FSL No.4

for small applied electric fields. Also apparent in Fig. 6 is the

sharpness of the lower-lying features, and especially that ¢ ¥ 0.00 |- -

the feature we attribute to thé°~2HH transition, occurring E2 KV/em
0.04 - | | | . .

between theM critical point in the electron quasiband and e
the Mgz critical point of the heavy hole quasiband; the
sharpness is probably due to the absence of a continuum wit 004
which the transition energy can have a degeneracy. The ir
terplay between the dependences of electric field sensitivit
and linewidth on transition energy and the tendency of the =~ 400 L. .-
oscillator strength to concentrate at the lower energies pro
duces a complicated dependence of the modulated signal as  -0.02 - Lo

function of electric field across the energy quasibands. 004

AT/T

E=1 kV/cm

IV. DISCUSSION

The guiding principle we have used in assigning transition
labels to observed features in the electromodulation spectr
is that complexity in a spectrum is inversely correlated with
feature importance, i.e., the most prominent features are du E= 0.25 kV/cm
to early generations of the Fibonacci superlattice, and fea  -0.04 *— A1 ————t—— -t

. . . 1.54 1.56 1.58 1.60 1.62 1.64
tures that appear in later generations have lower prominenc Energy(eV)
in the spectrum. This principle follows naturally from the-
fractal nature of the energy spectrum, correlated with the
previously discussed excitonic effects, broadening mecha-

nisms, and _eIeCtrlc-fleId sensitivity dependg_nce, V\./h'Ch aIESL No. 4. The interplay between sensitivity to field and oscillator
ten(_j to relatively al_ngent the Iow-energy critical p0|nt§ fol- strength produces a complicated field dependence of transition
onvmg Iarggr guasigaps to the .dlsadvantage of _the h'gherétrengths across the quasiband.
lying transitions or those following smaller quasigaps. The

superlattices we have studied span different degrees of couasibands gives rise to multiple critical points in the absorp-
formance to these principles. For the weaker coupling Fition and electroabsorption spectra. The dominant features are
bonacci superlattices FSL No. 3 and especially FSL No. 2due to critical points in the one-carrier quasibands that
these arguments seem to be valid because the lower-energynerge in low-order generations of the Fibonacci sequence,
excitonic transitions, either light hole or heavy hole, alwaysand their hierarchy can therefore be understood within a
show higher electroabsorption. Also, as the field is increasedimple one-carrier model. The details of the electroabsorp-
the relative intensities of the transitions do not change, indition spectrum are due to many-electron interactions, which
cating a slowly varying sensitivity to field across the quasi-determine the distribution of oscillator strength in the quasi-
bands. The heuristic arguments we have proposed begin ttand and augment the low-energy transitions. A helpful dis-
break down in the case of the stronger coupling diagonalinction can be made between diagonal and off-diagonal qua-
Fibonacci superlattice FSL No. 4; the transitions in this susiperiodicity: the asymmetry of the diagonally disordered
perlattice show different field dependence and saturatioguasiband induces a more complicated distribution of gaps
across the quasibands. and critical points and leads to the relaxation of the selection

To summarize, the fractal nature of the one-carrier energyules obeyed in periodic and off-diagonal superlattices.

AT/T

FIG. 7. The electroabsorption spectra at three different applied
lectric fields for the mainly diagonal quasiperiodic superlattice
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