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Electroabsorption spectroscopy of effective-mass AlxGa12xAs/GaAs Fibonacci superlattices
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School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285
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Effective-mass Fibonacci superlattices are composed of quasiperiodic sequences of weakly coupled quantum
wells in which the transfer-matrix element is significantly smaller than the confinement energy, which is
significantly smaller than the confining potential. We identify several distinct classes of quasiperiodic super-
lattices that are distinguished by diagonal vs off-diagonal quasiperiodicity and by compositional vs structural
quasiperiodicity. The spatial quasiperiodicity in Fibonacci superlattices leads to a fractal set of critical points in
the one-electron spectra. In the hierarchy of quasiband critical points, the critical points associated with earlier
generations are dominant and terminate the widest quasigaps. The interplay of the one-electron critical points
with many-electron excitonic enhancements creates complex spectra. Excitonic interactions concentrate the
oscillator strength to the lower-energy transitions, and exciton linewidths of late-generation critical points are
broadened by Fano resonance with the continua of lower-energy critical points. Using electromodulation
spectroscopy, we identify the first several generations of critical points in experimental absorption and elec-
troabsorption spectra of several Fibonacci superlattices that differ in their structure and coupling strength.
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I. INTRODUCTION

Semiconductor multilayer structures are typically co
posed of two or more distinct semiconductor compounds
occur in periodic or aperiodic sequences. The possible c
binations that can be made using modern growth techniq
such as molecular-beam epitaxy or related epitaxial gro
techniques, are almost limitless. Therefore, this large de
space has been broken into broad classes that encom
certain common properties. These classes include multi
quantum-well ~MQW! structures,1,2 coupled quantum-wel
and resonant-tunneling structures,3 and superlattices.4,5 The
key feature that distinguishes among these classes is th
gree of quantum mechanical coupling from layer to lay
Quantum wells are isolated by wide barriers; coupled qu
tum wells consist of groups of wells that are coupled clos
among themselves, but are otherwise isolated; superlat
consist of layers that are all coupled.

Within the class of superlattices, two limiting cases can
distinguished. Superlattices consisting of single monolay
or small numbers of monolayers are strongly coupled la
by layer. The electronic structure of these materials req
first-principles calculations to accurately describe their el
tronic properties.6–8 The other extreme case is the limit o
weakly coupled quantum wells. Quantum wells consisting
many monolayers of low-gap material, and separated fr
other wells by many monolayers of higher-gap materials,
be weakly coupled by quantum-mechanical tunnel
through the barriers. This class of superlattice can be vie
perturbatively as a tight-binding system within an effectiv
mass approximation. This considerably simplifies the th
retical understanding of the electronic structure of these
perlattices, making heuristic models easily accessible to
experimentalist.

Also within the class of semiconductor superlattices
aperiodic structures that are composed of random or qu
560163-1829/97/56~4!/1987~9!/$10.00
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periodic sequences of layers. These structures have rich
tronic spectra9 that arise from wave-function localization
One well-known set of quasiperiodic superlattices are
Fibonacci superlattices.10 These superlattices produce a fra
tal density of states, which has been studied in some deta
the case of strong-coupling superlattices.11–13 Much less
work has been performed on weak-coupling Fibona
superlattices,14 and little effort has been made to classi
distinct forms of these weak-coupling superlattices. T
weak-coupling Fibonacci superlattices possess a rich~but
relatively unexplored! design space because of the flexibili
in the use of variable widths and variable compositions in
well and barrier layers.

In this paper, we define and experimentally investig
two types of quasiperiodicity that are implemented with tw
types of disorder. The quasiperiodicity can be either diago
or off-diagonal, and the quasiperiodicity can be implemen
using either structural or compositional disorder. These
ferent types of weak-coupling Fibonacci superlattices exh
different spectra. In Sec. II we set the framework for t
classification of various types of quasiperiodic and aperio
heterostructures, describe the structures we have studied
perimentally, and present a model for the calculation of
electroabsorption spectra. Section III presents the modula
spectroscopy experiments, and Sec. IV concludes with a
cussion of the results.

II. FIBONACCI SUPERLATTICES

A. Fibonacci structure

A Fibonacci superlattice is a quasiperiodic heterostruct
consisting of building blocks arranged in the Fibonacci
quence, which follows the rule that finite generations of t
sequence are constructed by concatenating the two prev
finite parent generations:
1987 © 1997 The American Physical Society
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SN115$SNSN21%.

Each building block is made up of two types of terms
‘‘periods,’’ which consists of a well and barrier of give
thicknesses and Al fractions. In the case that the wells ha
longer and shorter width, the Fibonacci superlattice would
represented as the sequence of well widt
LSLLSLSLLSLLS, etc.

To facilitate the description of various types of Fibonac
superlattices, one can make a distinction between diag
and off-diagonal quasiperiodicity, based on the manne
which the quasiperiodicity affects the electronic spectrum
the Fibonacci superlattice. In diagonal quasiperiodic lattic
the on-site energies deviate from periodicity, while in o
diagonal quasiperiodic lattices the on-site energies are p
odic but the site-to-site transfer or hopping energies are q
siperiodic. In semiconductor superlattices, spa
quasiperiodicity can be due to layer-width disorder or co
positional disorder, which both lead to different types of qu
siperiodicity depending on whether they affect the super
tice barriers or wells. In the approximation of first-ord
terms in the perturbation from periodicity, the influence
both types of disorder on the superlattice quasiperiodicit
schematically depicted in Fig. 1.

The distinction between diagonal and off-diagonal pert
bations on a lattice is important in the case when the per
bation is random~pure disorder!, where it leads to distinc
mobility edge15 behavior with increasing disorder.16 It can
also influence the emergence of van Hove-type critical po
at the center of the energy band.17 One-dimensional system
with either diagonal or off-diagonal disorder are alwa
localized,18 while the states in systems with diagonal or o
diagonal quasiperiodicity seem to be critical.19 However,
there may be special cases in off-diagonal quasiperiodic
tems when at least one state is extended.

The Fibonacci superlattices~FSL’s! we have studied~de-
scribed below! fall approximately into the two categories o
quasiperiodicities we have defined here. One of the st
tures ~FSL No. 2! is an off-diagonal Fibonacci superlattic
due to barrier-width quasiperiodicity. Two other structur
were mainly diagonal Fibonacci superlattices: FSL No.

FIG. 1. Illustration of the classes of superlattice quasiperiodic
(Q-P) as a function of the type of disorder~diagonal or off-
diagonal! when the quasiperiodicity is structural or composition
arising from perturbation of the wells or the barriers.
r

a
e
:

i
al
in
f
s,

ri-
a-
l
-
-
t-

f
is

-
r-

ts

s-

c-

s
,

due to compositional quasiperiodicity in the wells a
barrier-width quasiperiodicity; and FSL No. 4, due to we
width quasiperiodicity.

B. One-electron energy spectra of Fibonacci superlattices

We will illustrate the electronic properties of Fibonac
superlattices by considering a tight-binding~Kronig-Penney!
approach,20 which is a valid approximation for long-perio
superlattices because the coupling between wells is s
enough to be considered a perturbation of the isolated w
wave functions. The coupling between two wells in the s
perlattice sequencei and j is described by the transfert i j
5^ i uVi u j & and shiftsi j5^ i uVj u i & integrals, whereu i & is the
isolated well wave function, andVi is the superlattice poten
tial corresponding to welli . Therefore, the one-carrier tight
binding Hamiltonian20 can be written in the form

H5(
i , j

~« id i j1si j !u i &^ i u1(
i , j

t i j u j &^ i u, ~1!

where« i are the isolated well energy levels. This takes
average over the crystal potential of the superlattice in
form of a series of potential step functions, while the ban
structure details are only taken into account through the
rier effective masses. The deviation from a periodic super
tice can be quantitatively characterized by the variatio
along the superlattice in the transfer and shift integralsdt i j
and dsi j . The departure from a periodic superlattice tre
ment consists of solving the Hamiltonian for allN wells of
the superlattice, with the isolated quantum-well wave fun
tions as the basis, and considering only nearest-neigh
well-to-well interaction. Therefore such a model does n
take into account band nonparabolicities, valence-band m
ing, and electron correlation effects. A simple one-carr
approach to the calculation of the electron or hole miniba
can extract the prominent energy distribution features of
experimentally observed transitions. However, many int
esting characteristics such as oscillator strength can onl
approached in the framework of a many-body treatment21 of
excitonic effects.

Any quasiperiodic spatial variation in the superlattic
such as quasiperiodic interwell coupling or confinement
ergy, will induce a fractal distribution of allowed energ
states in the reciprocal space. If spatial quasiperiodicity
introduced starting from a periodic superlattice, then the
perlattice minibands will acquire a fractal distribution
minigaps which define ‘‘quasibands.’’ The one-dimension
one-carrier density of states therefore resembles a ‘‘dev
staircase,’’ and quasiband edges are indicated by sh
slopes in the density of states.

Representative devil’s staircases are shown in Fig. 2
both diagonal and off-diagonal quasiperiodicity. The mo
important aspect of the devil’s staircase density of state
the distribution of quasigaps of increasing number and
creasing size. The notable difference in the gap distribut
between the case of diagonal and off-diagonal quasiper
icity is the asymmetry with respect to the center of the ba
in the first case, and the symmetry in the later case. In
diagonal quasiperiodicity, symmetry about the center of
band is a consequence of the diagonal degeneracy and
hermiticity of the tight-binding Hamiltonian; it can be de
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56 1989FIBONACCI SUPERLATTICES
scribed as perturbing a periodic lattice by introducing qua
periodic coupling. The asymmetry in the case of diago
quasiperiodicity, on the other hand, is not strictly a con
quence of the coupling; it arises due to a perturbation on
initially quasiperiodic lattice. For decreasing coupling, t
limiting situations in the two cases are quite different. In t
limit of no coupling ~very thick barriers!, an off-diagonal
superlattice is indistinguishable from that of the isolat
quantum well. On the other hand, in the same limit a dia
nal quasiperiodic superlattice exhibits a two-level spectr
that preserves the occupation ratio due to the quasiperi
spatial arrangement of the now isolated wells.

C. Transition hierarchy and critical-point nomenclature

The greatest challenge for optical spectroscopy of
bonacci superlattices is the correct identification of the m
optical transitions that are observable in modulation sp
troscopy. In general,N periods of the superlattice produc

FIG. 2. Illustration of the hierarchy of critical points in quas
bands for off-diagonal and diagonal superlattice quasiperiodic
The curves are the calculated integrated one-electron densit
states for~a! off-diagonal Fibonacci SL No. 2 and~b! diagonal
Fibonacci SL No. 4. The subscripts designate the type of crit
point ~van Hove singularity!, while the superscripts label the gen
eration of the quasigap associated with the critical points, as
cussed in the text.
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N distinct optical transitions. WhenN is large ~N5100 in
our case! this presents a formidable task. Fortunately for t
spectroscopist, not all transitions have equal strength. In f
there is a hierarchy of modulation signatures that mak
sufficient to identify only a few of the critical point trans
tions in order to describe most of the modulation spec
This hierarchy is based on the iterative generation of qu
gaps by successive Fibonacci generations.

The magnitude of the quasigaps plays an important rol
the modulation spectroscopy of the Fibonacci superlattic
Each gap terminates a quasiband at anM 1 saddle point, and
begins a quasiband at anM0 critical point.

22 Many-electron
effects, such as excitonic enhancements in the absorption
concentrated atM0 critical points. There are several ways
which the quasigaps act to augment the electroabsorp
through modifications of the excitonic Rydberg, and throu
the broadening mechanism of Fano resonance.23

The largest quasigaps are associated with the largest
rier components of the quasiperiodic potential, which a
provides the largest effective mass to the associatedM0 criti-
cal point. The larger effective mass produces a larger exc
Rydberg and a larger oscillator strength, which gives a str
ger modulation signal during modulation spectrosco
Therefore the larger quasigaps will produce larger modu
tion signatures. The hierarchy of decreasing gap sizes is
pected to produce a hierarchy of diminishing modulation s
natures.

In addition to the effects on excitonic oscillator streng
each discreteM0 excitonic transition is degenerate with th
continuum of each lower-energy transition. This conditi
may produce Fano resonance, in which the transition pr
ability of the continuum states interferes with the resonan
producing broadening of the transition linewidth. TheM0
critical points that terminate the larger quasigaps experie
smaller broadening because of smaller interaction with
underlying continua. Smaller gaps, on the other hand, al
a greater interaction with the continua and therefore a lar
broadening. Since broadening implies smaller modulat
signals, the hierarchy of diminishing quasigap sizes w
again produce a hierarchy of diminishing modulation sign
tures.

The hierarchy of diminishing modulation signatures co
siderably simplifies the task of identifying the many tran
tions observed experimentally in a Fibonacci superlatti
because the strongest modulation signatures will be ass
ated with theM0 transitions of the larger quasigaps. For
given experimental line-shape resolution, it may be nec
sary to identify only the first severalM0 critical points in
order to describe the strongest modulation features of
Fibonacci spectrum.

This hierarchy also suggests an unambiguous nomen
ture scheme for identifying the transitions based on the r
of the gap. The nomenclature scheme shown in Fig. 2
based on the well-known trifurcation of the Cantor set sp
trum of the one-dimensional Fibonacci chain.19 Due to the
scaling properties of the spectrum, each gap can be un
biguously labeled using an integerm, related to the quasi-
band occupation of the integrated density of states~IDOS! at
the bottom of the gap,24 which is $mt%5mt2 int(mt),
where the golden ratiot5(A521)/2. Generally, the gaps
with lower index are larger and emerge in earlier Fibona
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TABLE I. Structure of the three Fibonacci superlattices and of the periodic control superlattice

Structure

LayerA LayerB

well barrier well barrier

Fibonacci SL No. 2 75-Å GaAs 25-Å Al0.30Ga0.70As 75-Å GaAs 18-Å Al0.30Ga0.70As
Fibonacci SL No. 3 75-Å Al0.01Ga0.99As 18-Å Al0.30Ga0.70As 75-Å GaAs 25-Å Al0.30Ga0.70As
Fibonacci SL No. 4 62-Å GaAs 16-Å Al0.30Ga0.70As 75-Å GaAs 16-Å Al0.30Ga0.70As
Periodic SL 62-Å GaAs 16-Å Al0.30Ga0.70As 62-Å GaAs 16-Å Al0.30Ga0.70As
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generations. This nomenclature provides an unambigu
way of designating the multiple critical points in the supe
lattice. Each gap will be bracketed between anM1-type criti-
cal point on the lower-energy side and anM0-type critical
point on the higher-energy side, both of which will be i
dexed by a superscript identifying the gap. This provides
exhaustive scheme for labeling the superlattice criti
points. In the off-diagonal Fibonacci superlattice, the t
largest gaps are degenerate in size. Each of these is iden
as first generation gaps, followed by successive genera
pairs of gaps. Although the density of states of the diago
superlattice is asymmetric with respect to the center of
band, it follows the same scaling behavior, and its gaps
be designated by the same nomenclature scheme.

Using this nomenclature, it should possible to ident
experimentally the first several generations ofM0-type criti-
cal points in a spectrum. The general trend is expected t
approximately valid, i.e., that the larger gaps will have as
ciated with them the strongest modulation signatures. H
ever, since this trend is based on a one-carrier treatment,
expected to hold in general, but to fail in detail on
electron-hole interaction effects are considered. In a perio
superlattice, the oscillator strength of the excitonic tran
tions in a miniband tends to concentrate strongly at the lo
energyM0 critical point.

21We can expect many-body effec
to produce the same tendency in a quasiperiodic superlat
Therefore, the general aspect of the spectrum will be de
mined by the multifractal distribution of one-carrier critic
points, but the strength of the transitions will be primar
influenced by many-electron effects, which will induce a b
in the spectrum, augmenting the low-energy transitions
broadening the higher-lying transitions in the quasiba
This preferential distribution of the oscillator strength at t
low-energy critical points will determine the general appe
ance of the electrotransmission spectra.

III. MODULATION SPECTROSCOPY

We have experimentally investigated several different
bonacci superlattices, together with a purely periodic sup
lattice as a control structure. In all structures the superlat
barriers are made of Al0.3Ga0.7As and the superlattice con
sists of 100 periods. The off-diagonal superlattice FSL No
has a quasiperiodic barrier-width sequence, of 25- and 1
barriers, the longer barriers being more numerous. In
mixed diagonal and off-diagonal structure FSL No. 3, in a
dition to a quasiperiodic barrier-width sequence~18- and
25-Å barriers, the shorter barriers being more numero!,
compositional quasiperiodicity was incorporated into t
wells by the introduction of 1% Al fraction in the more nu
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merous wells. Growths FSL Nos. 2 and 3 both had 75
wells. In the diagonal structure FSL No. 4 the GaAs w
widths are equal to either 62 or 75 Å~shorter wells are more
numerous!, with the barriers 16 Å wide. Finally, the periodi
control superlattice~PSL No. 1! had 62-Å GaAs wells and
16-Å barriers. The building blocks for each of the superl
tices are given in detail in Table I.

All structures were grown by molecular-beam epitaxy;
Al0.5Ga0.5As layer was included to serve as a stop etch. T
samples were epoxied onto glass slides and the subst
were removed using a wet chemical etch,25 so that transmis-
sion measurements could be made. Gold contacts w
evaporated onto each sample with a spacing of 1 mm
apply an electric field in the plane of the wells. The sam
geometry is identical to the geometry of transverse-field p
torefractive quantum wells.

Electroabsorption measurements at liquid helium te
peratures were performed using a Janis Supervaritemp
cal cryostat. An ac electric field was applied in the plane
the quantum wells up to fields as high as 4 kV/cm. T
transmitted and electromodulated light were detected usin
preamplified Si photodiode and lock-in detection, with t
lock-in amplifier referenced either to a chopper or to t
applied ac electric field.

An electric field applied parallel to the quantum wells~in
the Franz-Keldysh geometry! induces a change in the tran
missionDT through exciton lifetime broadening or excito
ionization. The detected electromodulated signal is direc
related to the change in absorption due to the applied ele
field, and for small modulation the dependence is given
DT/T5LDa, whereL is the thickness of the semiconduct
heterostructure andT is the zero-field transmission. Measu
ing the differential transmissionDT/T therefore provides a
way of determining the change in the absorption coeffici
of the excitonic transition, which is directly correlated wi
the transition oscillator strength. The differential transm
sion is also the quantity of interest when using semicond
tor heterostructures as photorefractive electroop
modulators14,26 for light diffraction and optical processing
For such applications, the diffraction efficiency is the mo
important parameter, and its magnitude and spectral de
dence are determined by the magnitude and spectral de
dence of the differential transmission.

Apart from the transition oscillator strengthf , the change
in absorption depends on the zero-field linewidth of the tr
sition G0 , the variation of the linewidthDG(E) with the
applied electric fieldE, and also on the saturation of th
broadening with field. The electroabsorption depends
these factors as



-
xi
nt
n
ce
e
ci
ied

l
it
-

ia
e

s
f
g
rla
-
ci
rg
th
-

la
g
e
nt
es
w
e

o
h
e
m
p
ie
u

is
no
lc

e
et
to
ne
ta
In
a
o
a
ti
io

ype
s
and
n-
ur

tua-
that
the
in
to

om
be
hift

re
d no

-
inal
gidly
nsi-
ts of

56 1991FIBONACCI SUPERLATTICES
Da~E!} fDG~E!/G0
2. ~2!

The excitonic oscillator strengthf is a measure of the tran
sition probability, and in the simplest model, in the appro
mation where carrier correlation effects are not taken i
account, is quantified by the overlap of the conduction ba
and valence band carrier wave functions. The field-indu
broadening describes the ionization enhancement of the
citon under an applied electric field. Qualitatively, the ex
ton ionization probability increases with increasing appl
electric field, up to the point whenDG(E) saturates. The
zero-field linewidth of the transitionG0 depends on therma
broadening and on the interaction of the given transition w
lower-lying continua~Fano resonance!. In real systems, fac
tors such as sample variations~well- or barrier-width fluc-
tuations! or microscopic electric fields produced by mater
damage27 can inhomogeneously increase the exciton lin
width.

Taking these factors into account, the general feature
the electrotransmission spectrum can be described as
lows. It has been shown that the excitonic oscillator stren
tends to concentrate in the lower-energy part of the supe
tice miniband.28 Therefore, due to this preferential distribu
tion of the oscillator strength, the strongest transition os
lator strengths will be associated with the lower-ene
quasiband critical points. The increased interaction of
higher-energy critical points with lower continua will pro
duce larger Fano broadeningG0 of these transitions. The
field-induced broadening will also vary across the super
tice miniband; qualitatively, the excitons with lower bindin
energy will broaden and saturate faster than the high
binding-energy excitons, associated with the critical poi
following the larger quasigaps. The combined effect of th
factors will be that the sharpest and strongest transitions
occur at the lower energies in the miniband, and the high
lying transitions will be weaker and broader.

A. Periodic superlattice

We examined a periodic superlattice structure, as a c
trol for quantifying deviations from ideality due to growt
effects such as interface roughness, and for the purpos
testing our numerical model on a relatively simple syste
The absorbance and electroabsorption low-temperature s
tra are shown in Fig. 3, with the predicted transition energ
for the heavy- and light-hole excitons derived from the n
merical model. The absorbance is defined as ln(1/T)/L, where
T is the transmission andL is the sample thickness, and
proportional to the absorption of the sample but does
take into account Fresnel reflections at interfaces. The ca
lations for all superlattices have been performed within
transfer-matrix approach,13,29 using the nominal superlattic
parameters, which have not been adjusted to provide a b
fit. Table II shows the experimental transition energies,
gether with the calculated assignments. The transition e
gies have been given a rigid shift to align the fundamen
transition energy with the lowest experimental transition.
calculating the transition energies, we have taken into
count the strain introduced by the differential contraction
the glass substrate through a rigid shift of the gap, and
additional splitting of the light- and heavy-hole bands, es
mated from known expansion coefficients and deformat
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potentials for GaAs and glass.30,31The heavy- and light-hole
excitonic features dominate the sample. The saddle-t
M1 critical points for the light- and heavy-hole miniband
appear as inflection points in the absorption spectrum,
there is good agreement with the predicted critical point e
ergies. The spectra show that, within the resolution of o
measurements~which ranges between 0.1 and 0.2 meV!,
there is no observable spectral structure due to layer fluc
tions and interface roughness. Therefore we conclude
the longer periods of our Fibonacci superlattices render
spectral features relatively insensitive to small variations
layer widths. More sensitive techniques should be able
detect the spectral lines due to such factors.32

The three Fibonacci superlattices we have studied go fr
off-diagonal to mainly diagonal quasiperiodicity, as can
seen from the quasiperiodic variation of the transfer and s
integrals among the superlattices~Table III!. FSL No. 2 is

FIG. 3. Absorption~a! and differential transmission~b! spectra
of the periodic control superlattice. The indicated critical points a
calculated using the nominal parameters of the superlattice an
adjustable parameters, neglecting exciton effects.

TABLE II. Critical points of the periodic superlattice heavy
and light-hole minibands. The calculations have used the nom
superlattice parameters, but the transition energies have been ri
shifted to align the calculated and experimental fundamental tra
tions. The calculated energies have been corrected for the effec
strain but not for the exciton Rydberg.

Measured transition
energy~eV! Assignment label

Calculated transition
energy~eV!

1.5733 n51 HH M0 1.5733
1.5867 n51 LH M0 1.5850
1.6219 n51 HH M1 1.6150
1.6558 n51 LH M1 1.6569
1.7340 n52 HH M1 1.7484
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1992 56M. DINU, D. D. NOLTE, AND M. R. MELLOCH
almost purely off-diagonal, as characterized by the variat
dt i j , calculated to be'2.2 meV. The corresponding diago
nal variationdsi j is negligible, as in all the superlattice
however, in any real superlatticedsi j can never be exactly
zero, and therefore any real quasiperiodic superlattice
some degree of diagonal quasiperiodicity. For FSL No. 3
diagonal termd« i58.1 meV is more significant than th
transfer integrals; likewise, FSL No. 4 is strongly diagon
This trend can also be perceived in the complexity of
measured spectra.

B. Off-diagonal quasiperiodicity

The absorption and electromodulation spectra for the
diagonal Fibonacci superlattice FSL No. 2 are shown in F
4. Also shown in the figure are the assigned transition lab
in accordance with the notation convention described in S
II C. The transition energies are calculated starting from
one-carrier quasibands in both the conduction and vale

FIG. 4. The ~a! absorption and~b! differential transmission
spectra of the off-diagonally quasiperiodic Fibonacci superlat
FSL No. 2. The off-diagonal quasiperiodicity preserves the sym
try of the energy band, and leads to few prominent transitions.
transitions between major critical points in the quasiband are
beled following the convention introduced in Fig. 1~a!.

TABLE III. Characteristic energy variations in the four F
bonacci superlattices, with the notation from Eq.~1!. The table
shows the change in the respective energy between the two typ
blocks in the superlattice. All energies are given in meV.

Structure ud« i u udt i i u udsii u

Fibonacci SL No. 2 0.0 2.21 0.33
Fibonacci SL No. 3 8.10 2.21 0.33
Fibonacci SL No. 4 11.74 5.73 0.38
n

as
e

.
e

f-
.
s,
c.
e
ce

bands. The correspondence between the measured and c
lated transition energies is shown in Table IV. Transitio
are assumed to take place betweenM0 critical points in the
conduction and valence bands. The transition energies do
include the exciton binding energies. Implicit in our assig
ments are ‘‘selection rules’’ that eliminate from conside
ation all but a few possible transitions. Even in a one-car
approximation, the oscillator strength of a given transiti
can still be estimated from the overlap integrals of the c
responding electron and hole envelope functions.33 Based on
this analysis, we found that the strongest transitions oc
mostly between equivalent~i.e., having the same rank in th
gap hierarchy! M0-type critical points in the energy quas
bands. In this sense, the off-diagonal Fibonacci superlat
still approximately preserves the well-knownn5n8 selec-
tion rule that is obeyed in the case of isolated quantum we

As can be seen from Fig. 4, the symmetry of the qua
bands in the case of the off-diagonal superlattice leads
relatively small number of transitions. This is a conseque
of the simplicity of the symmetrical hierarchy.

C. Combined diagonal and off-diagonal quasiperiodicity

The electroabsorption and absorption spectra for
mixed diagonal and off-diagonal superlattice FSL No. 3 a
shown in Fig. 5. The correspondences between the stron
transitions and the calculated transition energies are i
cated, and the numerical values are shown in Table V. A
the case of FSL No. 2, the lowest-energy light-hole exci
transition is an adjustable parameter in the assignme
However, the lowest-energy light-hole transition can be u
ambiguously identified to occur at 1.578 eV by compari
the absorption spectra of a sample with biaxial strain wit
strain-free~freestanding! sample. Unlike the case of the off
diagonal superlattice, the lack of inversion symmetry in t
quasiband together with the increased superlattice coup
lead to the appearance of ‘‘forbidden’’ transitions, i.e., tra
sitions between nonequivalentM0-type critical points in the
quasibands. For instance, the feature at 1.5713 eV is at
uted to a transition between theM0

0 critical point in the elec-
tron quasiband and theM0

2 critical point in the heavy-hole

e
-
e
-

of

TABLE IV. Critical points of the Fibonacci superlattice FS
No. 2. The calculated energies use the nominal superlattice pa
eters, but have been corrected through a rigid shift to accoun
deviations from the nominal thicknesses. The exciton binding en
gies have not been included in the calculated values.

Measured transition
energy~eV! Assignment label

Calculated transition
energy~eV!

1.5612 HH M0
0 1.5612

1.5624 HH M0
23, M0

2 1.5621, 1.5633
1.5670 HH M0

21 1.5676
1.5732 LH M0

0 1.5767
1.5749 HH M0

1 1.5740
1.5767 LH M0

2 1.5804
1.5826 LH M0

21 1.5877
1.5863 LH M0

4 1.5902
1.5943 LH M0

1 1.5992
1.6072 LH M1

0 1.6094
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quasiband~labeled HHM0–2 in our notation!. The agree-
ment between the assignments and the observed transitio
good, also showing that in the case of this superlattice
one-carrier tight-binding treatment captures the distinct
features of the electromodulation spectra. The numbe
spectral features observed is larger due to a more com
cated hierarchy in the density of states.

D. Strong diagonal quasiperiodicity

The strongly diagonal Fibonacci supperlattice FSL No
is interesting because it exhibits both stronger interwell c

FIG. 5. The ~a! absorption and~b! differential transmission
spectra of the combined diagonal and off-diagonal quasiperio
Fibonacci superlattice FSL No. 3. The important transitions
shown with their attributed critical points. The diagonal quasipe
odicity removes the symmetry of the quasiband density of sta
and leads to a richer distribution of gaps evident in the spectra

TABLE V. Critical points of the Fibonacci superlattice FSL N
3. The calculated energies have used the nominal superlattice
rameters but have been corrected through a rigid shift to accoun
deviations from the nominal thicknesses. The exciton binding e
gies have not been included in the calculated values.

Measured transition
energy~eV! Assignment label

Calculated transition
energy~eV!

1.5665 HH M0
0 1.5665

1.5675 HH M0
2 1.5684

1.5713 HH M0
022 1.5714

1.5772 HH M0
21 1.5788

1.5791 LH M0
0 1.5824

1.5835 LH M0
2 1.5860

1.5888 HH M0
1 1.5868

1.5960 LH M0
21 1.5959

1.6067 LH M0
1 1.6100

1.6145 LH M0
22 1.6174
s is
e
e
of
li-

4
-

pling and more pronounced quasiperiodicity compared w
the other two Fibonacci superlattices. The absorption
electromodulation spectra for the FSL No. 4 superlattice
shown in Figs. 6~a! and 6~b!. The spectra exhibit a large
number of transitions, the most important of which are ide
tified as described for the Fibonacci superlattice FSL No
Table VI shows the transition assignments of the strong
experimental transitions. The hierarchy of critical points
similar in the two diagonal superlattices, and the identific
tion of the salient transitions relies on the same oscilla
strength arguments. A peculiarity of the Fibonacci super

ic
e
-
s,

FIG. 6. The ~a! absorption and~b! differential transmission
spectra of the mainly diagonal quasiperiodic Fibonacci superlat
FSL No. 4. The large diagonal quasiperiodicity destroys the sy
metry of the energy quasiband, and leads to a multitude of tra
tions of comparable intensity. The transitions between the m
critical points in the quasiband are labeled following the desig
tions of Fig. 2~c!.

a-
or
r-

TABLE VI. Critical points of the Fibonacci superlattice FS
No. 4. The calculated energies use the nominal superlattice pa
eters, but have been corrected through a rigid shift to accoun
deviations from the nominal thicknesses. The exciton binding en
gies have not been included in the calculated values.

Measured
transition~eV! Assignment label

Calculated transition
energy~eV!

1.5639 HH M0
0 1.5639

1.5698 HH M0
022 1.5697

1.5773 LH M0
0 1.5794

1.5825 LH M0
2 1.5854

1.5919 HH M0
1 1.5920

1.5954 LH M0
21 1.6002

1.6043 LH M0
1 1.6219

1.6217 LH M0
22 1.6358
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1994 56M. DINU, D. D. NOLTE, AND M. R. MELLOCH
tice FSL No. 4 is the strong dependence of the spectral
tribution of electromodulation intensity on applied field. Th
electroabsorption spectra corresponding to three different
plied fields are shown in Fig. 7. The intensity of the elect
modulation signal of the higher-energy transitions satura
for small applied electric fields. Also apparent in Fig. 6 is t
sharpness of the lower-lying features, and especially tha
the feature we attribute to the (M0–2)HH transition, occurring
between theM0

0 critical point in the electron quasiband an
the M0

22 critical point of the heavy hole quasiband; th
sharpness is probably due to the absence of a continuum
which the transition energy can have a degeneracy. The
terplay between the dependences of electric field sensit
and linewidth on transition energy and the tendency of
oscillator strength to concentrate at the lower energies
duces a complicated dependence of the modulated signa
function of electric field across the energy quasibands.

IV. DISCUSSION

The guiding principle we have used in assigning transit
labels to observed features in the electromodulation spe
is that complexity in a spectrum is inversely correlated w
feature importance, i.e., the most prominent features are
to early generations of the Fibonacci superlattice, and
tures that appear in later generations have lower promine
in the spectrum. This principle follows naturally from th
fractal nature of the energy spectrum, correlated with
previously discussed excitonic effects, broadening mec
nisms, and electric-field sensitivity dependence, which
tend to relatively augment the low-energy critical points f
lowing larger quasigaps to the disadvantage of the high
lying transitions or those following smaller quasigaps. T
superlattices we have studied span different degrees of
formance to these principles. For the weaker coupling
bonacci superlattices FSL No. 3 and especially FSL No
these arguments seem to be valid because the lower-en
excitonic transitions, either light hole or heavy hole, alwa
show higher electroabsorption. Also, as the field is increas
the relative intensities of the transitions do not change, in
cating a slowly varying sensitivity to field across the qua
bands. The heuristic arguments we have proposed beg
break down in the case of the stronger coupling diago
Fibonacci superlattice FSL No. 4; the transitions in this
perlattice show different field dependence and satura
across the quasibands.

To summarize, the fractal nature of the one-carrier ene
te
s-
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quasibands gives rise to multiple critical points in the abso
tion and electroabsorption spectra. The dominant features
due to critical points in the one-carrier quasibands t
emerge in low-order generations of the Fibonacci seque
and their hierarchy can therefore be understood within
simple one-carrier model. The details of the electroabso
tion spectrum are due to many-electron interactions, wh
determine the distribution of oscillator strength in the qua
band and augment the low-energy transitions. A helpful d
tinction can be made between diagonal and off-diagonal q
siperiodicity: the asymmetry of the diagonally disorder
quasiband induces a more complicated distribution of g
and critical points and leads to the relaxation of the selec
rules obeyed in periodic and off-diagonal superlattices.

FIG. 7. The electroabsorption spectra at three different app
electric fields for the mainly diagonal quasiperiodic superlatt
FSL No. 4. The interplay between sensitivity to field and oscilla
strength produces a complicated field dependence of trans
strengths across the quasiband.
s.
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