Extracting bottom quark production cross section from p+p collisions at RHIC

Wenqin Xu

University of California, Los Angeles

International Workshop on Heavy Quark Production in Heavy-ion Collisions Purdue University, West Lafayette, Jan 2011

Contents

- STAR measurement of Non-Photonic Electron (NPE) spectrum
- Disentangle the Bottom contribution to NPE and get $N_{e_B}/(N_{e_B}+N_{e_D})$
- Calculate B->e, D->e spectra
- Model calculations and total cross section extrapolations

How to Measure Non-Photonic Electron (NPE) spectrum

• Non-photonic electron yield is calculated according to:

 $N(non - photonic \ electron) = N(inclusive \ electron) \cdot purity - N(photonic \ electron)/\epsilon$

Photonic electron (PHE) background is mainly from γ conversion and π^0 , η Dalitz decays.

•Identify the photonic electron via mass reconstruction and small mass cut, get its statistics using unlike-like method.

Does not depend on the accurate knowledge of the material budget.
There is an in-efficiency due to detector acceptance, etc.
ε: photonic electron

reconstruction efficiency

NPE cross section:

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{\mathcal{L}}\frac{1}{2\pi p_T \,\Delta p_T \,\Delta y} \frac{N_{npe}}{\epsilon_{rec} \,\epsilon_{trig} \,\epsilon_{eid} \,\epsilon_{BBC}}$$

STAR high pT NPE Measurements in 200GeV p+p collisions

Measurement done using TPC+EMC using run08 and run05 data. Run 2005: high material budget v.s. Run 2008: low material budget <

the Bottom Quark Contribution to NPE

A study on the azimuthal correlations between the non-photonic electrons and hadrons in pp collisions at $\sqrt{s} = 200$ GeV.

Compared against PYTHIA calculations to obtain the relative contributions of Bottom and Charm mesons.

the $N_{e_B}/(N_{e_B}+N_{e_D})$ ratio

Formulas to calculate B->e and D->e

$$N_{e_{B}} = (N_{e_{B}} + N_{e_{D}}) \cdot \frac{N_{e_{B}}}{N_{e_{B}} + N_{e_{D}}}$$

$$E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{B}} = E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{B} + e_{D}} \cdot \frac{N_{e_{B}}}{N_{e_{B}} + N_{e_{D}}}$$

$$E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{B} + e_{D}} = E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{NPE}} - E \frac{d^{3}\sigma}{d\vec{p}^{3}}\Big|_{e_{J,W}}$$
Measured J/W
by STAR and
PHENIX, fed
into PYTHIA
and decay into
electrons
P+p collisions at $\sqrt{s} = 200 \text{ GeV}$
Run8 and Run5 combined result
See Wei Xie's talk at HP10.

Invariant cross section of electrons from bottom and charm decays

M. Cacciari, R. Vogt, private communications

Scale up the FONLL Prediction

• FONLL [1] predicts:

$$\sigma_{b\bar{b}} = 1.87^{+0.99}_{-0.67} \mu b$$

• Data/FONLL ratio is fit to be 1.1±0.1(stat.)±0.3(sys.)

- Multiple it by 1.1: $\sigma_{b\bar{b}} = 1.87 \times 1.1 = 2.06 \mu b$

[1]:M. Cacciari, P. Nason and R. Vogt, Phys. Rev. Lett. **95, 20 122001 (2005);** M. Cacciari, R. Vogt, private communications

PYTHIA 6.409^[2] calculations MSEL=1

MSEL=5, everything else the same

MSEL=5

Mini-bias mode includes higher order diagrams, e.g. Flavor Excitation, etc See [2] and also E. Norrbin, T.Sjostrand, Eur.Phys.J.C17:137-161,2000

Other PYTHIA calculations

PYTHIA parameters	$\sigma_{B \to e}(nb)$	deviation
$\langle k_T \rangle = 2.0 \text{GeV(D)}; \text{Max.} k_T = 5.0 \text{GeV(D)}; \text{p.d.f} = \text{CTEQ5M1}$	41.4	0
$\langle k_T \rangle = 0.5 \text{GeV}; \text{Max.} k_T = 5.0 \text{GeV}(D); \text{p.d.f} = \text{CTEQ5M1}$	42.8	+3%
$\langle k_T \rangle = 1.5 \text{GeV}; \text{Max.} k_T = 10.0 \text{GeV}; \text{p.d.f} = \text{CTEQ5M1}$	39.6	-4%
$\langle k_T \rangle = 3.0 \text{GeV}; \text{Max.} k_T = 15.0 \text{GeV}; \text{p.d.f} = \text{CTEQ5M1}$	43.4	+5%
$\langle k_T \rangle = 4.5 \text{GeV}; \text{Max.} k_T = 20.0 \text{GeV}; \text{p.d.f} = \text{CTEQ5M1}$	37.1	-10%
$\langle k_T \rangle = 2.0 \text{GeV}(\text{D}); \text{Max.} k_T = 5.0 \text{GeV}(\text{D}); \text{p.d.f} = \text{CTEQ5L}(\text{D})$	41.1	-1%
CDF tuneA [3]	47.1	+14%

PYTHIA default

All of them use the default MSEL=1 mode.

*The intrinsic k_T is a Gaussian distribution with the width set by parp(91) and the upper cut off set by parp(93).
[3] http://www.phys.ufl.edu/~rfield/cdf/tunes/py_tuneA.html

Branch ratio Correction

particle	Admixture in PDG	in PYTHIA	B.R. in PDG	in PYTHIA
B^0	$(40.1 \pm 1.3)\%$	39.5%	$(10.33 \pm 0.28)\%$	10.52%
B^+	$(40.1 \pm 1.3)\%$	39.7%	$(10.99 \pm 0.28)\%$	10.47%
B^0_s	(11.3 ± 1.3) %	11.6%	$(7.9 \pm 2.4)\%$	10.53%
b-baryon	$(8.5 \pm 2.2)\%$	9.1%	$(\sim 9.3)\%$	9.24%
Admixture Average	_	-	$(10.86 \pm 0.35)\%$	10.4%

- The B[±], B⁰, B^s, B-baryons admixture and branch ratios in PYTHIA are close to PDG [4] values, based on measurements at LEP, Tevatron, Spps, etc.
- B[±],B⁰,B^s and B-baryons have similar semi-leptonic branch ratios and masses. So the result is not sensitive to the admixture.
- Estimated overall B.R.~ 10.4%

[4]:K. Nakamura *et al. (Particle Data Group), JPG* **37, 075021 (2010)**

Rapidity distribution correction

The total $b\overline{b}$ production cross sections Based on model calculations scaled to match STAR NPE measurements in p+p collisions at $\sqrt{s} = 200$ GeV:

PYTHIA, Mini-bias Mode:
$$\sigma_{b\bar{b}} = 1.38 \mu b$$
PYTHIA, MSEL=5 Mode: $\sigma_{b\bar{b}} = 1.88 \mu b$ FONLL×1.1: $\sigma_{b\bar{b}} = 2.06 \mu b$

With 12% (stat.) and 26% (sys.) experimental uncertainty.

backup

J/Ψ contribution

PHENIX:A. Adare *et al.* [*PHENIX Collaboration*], *Phys. Rev.* **D** 59 **82, 012001 (2010).** STAR:B. I. Abelev *et al.* [*STAR Collaboration*], *Phys. Rev.* **C** 61 **80, 041902 (2009).**

