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Why do NLO 
computations?

• Leading-order pQCD is notoriously difficult to 
match with RHIC data
(low viscosity, heavy vs. light E loss, small g2 needed in jet quenching...)

-> How much of this is due to pQCD systematics?

• Learn what physical effects might take over
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Setup

• Imagine a very weakly coupled QGP

• Imagine a very heavy quark (think bottom)

• Has radiative & collisional E loss. Focus on 
collisional.

• This can be done cleanly by sending M to 
infinity: reduce to Langavin dynamics

dpi

dt
= −ηD pi + ξi(t) , 〈ξi(t)ξj(t′)〉 = κ δijδ(t − t′) .
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What’s new at NLO?
• Reminder:  LO is

- 2->2 scattering
- Need (electric) screening at soft p
- IR log divergent at soft p

q

p p

q

κ ∝ g4T 3(log
T

mD
+ C)
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What’s new at NLO (II)
• Multiple scattering (2->3, 3->2)

• Multiple scattering (3->3)

...
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What’s new at NLO (III)

• Virtual corrections (HTL)
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Why 3->3 is O(g) ?
q

p p

q

Take a LO scattering with q~mD

Will be disturbed if a collision with 
q’>mD occurs at same time

Cross-section ~g4/mD2, duration ~1/mD,
probability ~ g4T3/mD3 ~ g
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General comment on 
real+virtual

• Consider a simple example

• e+e- -> hadron, at NLO in QCD (T=0)

Total: +σ(0) 3αsCF

4π
Same will be true here:
real and virtual corrections equally important.
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Technical slides

• We need a systematic power counting: HTL

• Kappa becomes E-E correlator

• Only four diagrams at NLO (=2loops):

E(t) E(0)

2

2

FIG. 1: Leading-order contribution to heavy quark diffusion
and its correspondence to scattering processes. On the left
the double line represents the Wilson line; on the right it is
the heavy quark external states.

in covariant and Coulomb gauges[14])

(2) ⇒ CHg2

3

∫

d3p

(2π)3
p2 G> 00(ω = 0, p), (3)

where CH = 4
3 is the Casimir of the heavy quark’s repre-

sentation. This Wightman correlator can be evaluated in
terms of the squared matrix elements of t-channel scat-
tering processes involving the heavy quark, as illustrated
in Fig. 1. These are the only processes which contribute
in our case, Compton-like processes being suppressed in
the low velocity limit. The result reduces to [8]

κLO ≡ g4CH
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Here p is the transferred momentum and q is the energy
of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2

D
= g2T 2(Nc + Nf/2)/3.

The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD % T , the in-
tegral is dominated by q ∼ T and p in the parametric
range mD

<∼ p <∼ T . The strict leading-order evaluation
of Eq. (4) yields

κ ' CHg4T 3

18π

[

Nc

(

ln
2T

mD

+ξ

)

+
Nf

2

(

ln
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+ξ

)]

, (5)

with ξ = 1
2 − γE + ζ′(2)

ζ(2) ' −0.64718.

When the exchange momentum p is hard, p >∼ T , then
higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.

Another source is associated with overlapping scatter-
ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.

P

Q

R
PQ

R

(A) (B)

Q

P P

Q

(C) (D)

FIG. 2: Diagrams required at NLO. The double line is the
Wilson line; otherwise all propagators are soft and HTL re-
summed and all vertices include the HTL vertex. All lines
attached to the Wilson line are longitudinal.

We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
2T

mD

+ξ

]

+
Nf ln 2

2
+

NcmD

T
C

)

(6)
with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line
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the heavy quark external states.
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We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
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with O(g2) corrections. There is no O(g) NLO correction
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Braaten, Pisarski

Casalderry-Solana& Teaney,...
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``Blowing up’’ HTL diagrams

2 *

+ ...+

There are four diagrams like this, both of us authors 
computed them numerically.
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Result

Braaten& Thoma
Svetitsky
Moore& Teaney

Our computation

κ = CHg4T 3

18π

{(
Nc+

Nf

2

) (
ln 2T

mD
+ξ

)
+ Nf ln 2

2

+NcmD
T C

+O(g2)
}

C ≈ 2.3302

Tuesday, January 4, 2011



Result
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Why is the correction large?
• Don’t use soft limit (HTL) of       self-energy

Π00(p, ω = 0)/m2
D

HTL

Π00

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6 p/T
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The importance of screening

Lesson: Use full leading-order self-energies

q2 dΓ
dq

αs = 0.3

q/T

Coulomb gauge
self-energy

HTL

 0
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 0.006

 0.008

 0.01

 0.012

 0.014

 0  1  2  3  4  5  6  7  8

No screening

1/(q2 + m2
D)2

(Similar to jet
broadening

SCH PRD79:065039)
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Partial resummation
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PRELIMINARY
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More on <EE>
• One can define a Euclidean <EE>(tE) along the 

Polyakov loop

Laine,Moore,Philipsen & Tassler

- One can define a real-time <EE>(t) spectral function

- The two are related by the usual analytic continuation
Laine,Moore,SCH

- Spectral function has no sharp peak

- Some measurements have been done
(H. Meyer 1012.0234)
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Conclusion

• PT has a tiny convergence radius 

• That NLO is to be increased is a robust prediction.
Expected to be generic for soft physics in general eta/s, q-hat,...

• Some effects can be resummed & reasonable 
extrapolation to T ~ few Tc can be attempted
(w/help from lattice)

Prospects for predicting, using PT, transport 
coefficients in the QGP:
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