Heavy Quarkonia Measurements with STAR

Thomas Ullrich for the STAR Collaboration January 5, 2011 International Workshop on Heavy Quark Production in Heavy-ion Collisions Purdue University

STAR Detector & Analysis Techniques

Upfront

STAR's Quarkonium Program (for now):

- Golden channel for Quarkonia is $\overline{Q}Q \rightarrow e^+e^-$
- Strength:
 - Y measurements over all p_T
 - J/ψ measurements at high-p_T
 - Sampling of full luminosity (trigger)
- Current weaknesses:
 - ► Low S/B ratio for J/ ψ at low-p_T
 - ▶ Moderate mass resolution for Y 1,2,3 S states
 - possible but requires large statistics
 - Feed-down from B can be measured only indirectly
 - Need to improve statistics
- Future improvements:
 - ► Time-of-flight provides improved e ID at low-p_T
 - Vertex detectors (direct measure of B feed-down)
 - µ+µ- at mid-rapidity (MTD)

TPC: $|\eta| \le 1$ ($|\eta| \le 1.3$ possible), $0 < \phi \le 2\pi$ Tracking $\Rightarrow p_T$, η , ϕ dE/dx \Rightarrow PID (incl. electron ID)

TPC: $|\eta| \le 1$ ($|\eta| \le 1.3$ possible), $0 < \phi \le 2\pi$ Tracking $\Rightarrow p_T$, η , ϕ dE/dx \Rightarrow PID (incl. electron ID)

... and how they are used (trigger)

Y Trigger

- L0: high-tower $E_T > 3.5$ GeV (p+p) or 4.0 GeV (d+Au, Au+Au)
 - alternatively: trigger patch 4×4 towers (p+p only)
- L2: software algorithm building pairs from EMC towers
 - ► E₁, E₂, $\cos(\theta) \Rightarrow M_{inv}$
 - Rejection ~ 10⁵ in p+p

... and how they are used (trigger)

High-p_T J/ ψ Trigger

- L0: *single* high-tower E_T > 3-4 GeV
 - ▶ alternatively: topology trigger (2 high towers separated \geq 60°)

Low-p_T J/ ψ Trigger

- not implemented L0/L2 provide too little rejection
- use minimum bias data sets instead (\Rightarrow low $\int Ldt$)

New: Higher Level Trigger

- Computer farm with fast algorithm using tracking (TPC) & calorimeter data
- Still in R&D phase but used in parallel during energy scan

Example: Y reconstruction

- TPC: track reconstruction
 - M_{inv} peaks at ~ 2 × trigger E_T threshold
 - dominated by h⁺h⁻ pairs

Example: Y reconstruction

- TPC: track reconstruction
 - M_{inv} peaks at ~ 2 × trigger E_T threshold
 - dominated by h⁺h⁻ pairs
- TPC tracks extrapolate to EMC
 track-cluster match if distance R
 < 0.04 in η-φ

Example: Y reconstruction

- TPC: track reconstruction
 - M_{inv} peaks at ~ 2 × trigger E_T threshold
 - dominated by h⁺h⁻ pairs
- TPC tracks extrapolate to EMC
 track-cluster match if distance R
 < 0.04 in η-φ

Electron ID cuts

- E/p EMC energy vs TPC momentum
- dE/dx in TPC: no_e of matched tracks

7

Signal extraction

$$S = N_{+-} - 2\sqrt{N_{++}N_{--}} \frac{A_{+-}}{\sqrt{A_{++}A_{--}}}$$

- Describing the line shape
 - Crystal ball function accommodates detector resolution and bremsstahlung: f(m; α, n, (m), σ)

STAR's new detector ...

ToF: $|\eta| \le 0.9$, $0 < \phi \le 2\pi$, MRPC technology Timing resolution < 100 ps Improve electron ID at low-p_T

Run 10 data taken with full ToF

Analysis in progress

... and how they are used (ToF)

- TOF: e PID for p_T < 3 GeV/c
- High electron purity: 99%
- Efficiency \geq than 60% (std. cuts)

Time-of-Flight Detector is an enormous asset for STAR's dilepton physics program

STAR detectors in the near future ...

See X. Dong's talk tomorrow

• Heavy Flavor Tracker (HFT)

- ▶ $|\eta| \le 1, 0 < \phi \le 2\pi$
- PXL: 2 layers of thinned (50 µm)
 CMOS pixel detectors (2.5, 8 cm)
- IST: layer of low mass silicon strippad sensors (17 cm)
- SSD: layer of double-sided silicon strip sensors at a radius of 23 cm
- Distinguish prompt quarkonia from B feed-down (B \rightarrow J/ ψ + X)
- Muon Telescope Detector (MTD)
 - Acceptance: 45% at $|\eta|$ <0.5
 - MRPCs covers magnet iron bars
 - 6 interaction length (yoke)
 - 117 modules, 1404 readout strips, 2808 readout channels
 - Optimal resolution for Y 1,2,3 S despite increased material (HFT)

J/ψ Results

High-p_T J/ ψ production

STAR, PRC80, 041902(R), 2009

- Steady improvements due to higher L & improved trigger
- SVT/SSD detectors taken out before run 2008
 - 7-10 times less X/X₀
- Spectra for 2009 data soon

High-p_T J/ψ: p+p spectra

CEM:

M.~Bedjidian et al., hep-ph/0311048;

R. Vogt private communication.

• MRST

- Curve includes feed-down from $\chi_c + \psi'$
- Leaves no (little) room for B feed-down
- varying m_R, m_µ, k_T can heal this

High-p_T J/ψ: p+p spectra

NNLO* CS:

P. Artoisenet et al., PRL 101, 152001, J.P. Lansberg private communications.

- Only CS contributions, but go to higher orders, partially with loops, partially with just tree-level higher order diagrams.
- Curve does not include feeddown from χ_c + ψ' (ψ' available)
- χ_c might be large because of high x_T range of STAR data
- Leaves room for substantial feeddown
- Still too low at p_T > 10 GeV/c
 - CO needed?

High-p_T J/ψ: p+p spectra

CO+CS in NRQCD:

G. Nayak, et al., PRD68, 034003 and private communications

- LO calculations
- direct J/ψ (singlet and octet)
- CO dominating
- color octet matrix elements from P. Cho, A. Leibovich, PRD 53:6203,1996
- Curve does not include feeddown from χ_c + ψ' (χ_c available)
- Leaves little to no room for feeddown

J/ψ in p+p: x_T Dependence

$$E\frac{d^3\sigma}{dp^3} = g(x_T)/s^{n/2}$$

In parton model:

n is related to number of point-like constituents taking active role in interaction

n=8: diquark scattering n=4: QED-like scattering

 $\mathbf{x}_{q} \approx \mathbf{x}_{g} \approx \mathbf{x}_{T}$

- π and p at p_T>2 GeV/c: n=6.6±0.1 (PLB 637, 161(2006))
- J/ψ at high p_T: n=5.6±0.2 (the power parameter close to CS+CO prediction)
- low & high-p_T J/ ψ production dominated by different processes?

Assessing feed-down from B mesons

So far at RHIC no Si-Det. to tag B decays. Need alternative!

Method 1

- Comparing measured J/ ψ spectra with NLO b calculations + b FF + B \rightarrow J/ ψ + X decay kinematic
- Considerable uncertainties in absolute normalization from NLO calculations (m_{μ} , m_{R} , M_{b} , PDF) and ψ' , χ_{c} feeddown

<u>Method 2</u>

- Use J/ ψ -h correlations ($\Delta \phi$)
 - Interpretation is model dependent (here PYTHIA)
 - B fragmentation is hard and rather well known
 - ► Good S/B with STAR at high-p_T makes this possible

High-p_T J/ ψ -h Correlations: PYTHIA/LO

- PYTHIA 8 with STAR HF-tune v1.1
- > J/ ψ tuned to describe measured RHIC spectra with emphasis on low-p_T (PHENIX) where B feed-down is smallest
- B tuned with parameters m_µ, m_R, M_b, ..., from latest calculations (M. Cacciari et al.)

- p_T(J/ψ) > 5 GeV/c, p_T(h) > 0.5 GeV/c
- soft processes added to mock up underlying event (minor effect)
- little difference between CO/S: confirm studies at LHC by Bargiotti & Vagnoni (LHCb-2007-042) and Kraan (arXiv:0807.3123)
- Pronounced near-side for B feed-down (moderate recoil in away-side)

Constraining bottom contribution

Latest results on B feed-down

- New results consistent with previous results
- No significant beam energy dependence
- Away side: Consistent with h-h correlation

Latest results on B feed-down

Latest results on B feed-down

- New results consistent with previous results
- No significant beam energy dependence
- Away side: Consistent with h-h correlation

No significant \sqrt{s} dependence! Why?

PYTHIA 8:

- while individual spectra not well described should show scaling if it originates in LO behavior
- studies show that LHC & Tevatron are close but RHIC has clearly different magnitude
- but same shape !

High-p_T J/ψ: R_{AA}

STAR Cu+Cu 0-20%: R_{AA}(p_T>5) = 1.4±0.4±0.2

- The only hadron measured to be not suppressed ?
- Contrast to open charm. CS vs. CO? Formation Time?
- 2-component models describes the overall "trend"

A look into the (near) future

- Beam energy scan: 39 GeV Au+Au
 - Expect ~1000 (13σ) J/ψ from full MB data
 - Able to cover p_T range 0-5 GeV/c
 - Reference data available from Fermi Lab Experiments and ISR
- 200 GeV p+p
 - J/ψ polarization study in progress
- 200 GeV Au+Au
 - J/ψ v₂ in progress

Results

Some thoughts ...

Reality check: What have we learnt about medium from J/ψ ?

- IMHO: not much when compared to flow, spectra & high-p_T
- Studies need to go on (augmented by LHC results)
- Interpretation difficult
 - production mechanism?
 - \blacktriangleright feed-down from B and χ_c states?
 - recombination?
 - energy loss (see open heavy flavor)?
 - Ife and formation time effects?
 - co-mover absorption?

Study of Y states avoid many of these difficulties

- Ratios: $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$ are powerful tools
- No recombination (dN/dy too small), no co-mover-absorption (σ too small), less E-loss (m_b \gg m_c), feed-down only from χ_b states
- Caveat: Experimentally difficult but possible given enough L

Y in p+p 200 GeV

 $L = 7.9 \pm 0.6 \text{ pb}^{-1}$

 $N_{\gamma}(8 \le m \le 11) = S - DY-bb = 61\pm 20(stat.)$ $N_{\gamma}(total) = 67\pm 22(stat.)$

$$\sum_{n=1}^{3} \mathcal{B}(n\mathbf{S}) \times \sigma(n\mathbf{S}) = \frac{N}{\Delta y \times \epsilon \times \mathcal{L}}$$

$$\sum_{n=1}^{3} \mathcal{B}(nS) \times \sigma(nS) = 114 \pm 38 \stackrel{+23}{_{-24}} \text{pb}$$

$$\left(\sigma_{DY} + \sigma_{b\bar{b}}\right)_{|y|<0.5,8 < m_{ee} < 11 \,\text{GeV/c}^2} = 38 \pm 24 \,\text{pb}$$

STAR Y vs. theory and world data

consistent with pQCD and world data trend

Y in d+Au 200 GeV

 $\Upsilon(1S+2S+3S) + DY + \overline{b}b$: raw yield (7<m<11) = 172 ± 2(stat.)

Strong signal (8σ)

$$R_{dA} = 0.78 \pm 0.28(stat) \pm 0.20(sys)$$

Consistent with N_{bin} scaling

Y in Au+Au 200 GeV

Year 2007 8<m<11 GeV/c² Includes: Υ, Drell-Yan, bb

0-60% 4.6σ significance 95 Signal counts 1.11x10⁹ events

0-10%
3.5σ significance
47 Signal counts
1.78x10⁸ events

Y Yield Extraction 0-60% Centrality

How solid is the signal in $\Upsilon(1S+2S+3S)$ in 0-60% centrality?

Y yield determined by:

 $\Upsilon(8.5 < m < 11 \text{ GeV/c}^2) = N_{+-} - 2\sqrt{N_{++}N_{--}} - \int DY + \overline{bb} = 64 \pm 16(\text{stat}) \pm 25(\text{sys})$

assume N_{bin} scaling

Y RAA: constraining T/Tc?

- 0-60%= 0.78±0.32(stat) ± 0.22(sys,Au+Au) ±0.09(sys,p+p)
- 0-10%= 0.63±0.44(stat) ± 0.29(sys,Au+Au) ±0.07(sys,p+p)

No constraints from data yet: need considerably more statistics

Summary

Heavy Flavor

STAR's quarkonium program is in full swing

• J/ψ

- ▶ focus on high-p_T
- spectra in 200 GeV p+p measured
- R_{AA} (Cu+Cu) at high-p_T consistent with unity
- ▶ B feed-down in p+p through J/ ψ -h correlations
- RHIC energy scan: due to good S/B solid signal at 39 GeV

• Υ

- first cross-section measured in p+p
 - consistent with pQCD calculations
- d+Au: R_{dAu} = 0.78 ± 28(stat) ± 20(sys)
- Au+Au:
 - 0-60%= 0.78±0.32(stat) ± 0.22(sys,Au+Au) ±0.09(sys,p+p)
 - 0-10%= 0.63±0.44(stat) ± 0.29(sys,Au+Au) ±0.07(sys,p+p)
- More statistics needed but we are well on our way