Heavy Quark and Spin Physics in p+p and e+n Collisions

Jianwei Qiu Brookhaven National Laboratory

Workshop on "Heavy quark production in heavy-ion collisions" Purdue University, IN, January 4 – 6, 2011

Outline

□ Why spin?

Role of heavy quark production in spin physics

□ Single spin asymmetry of heavy quark production

- beyond the probability - QCD quantum interference

□ Heavy quark is an excellent probe of glue at EIC

Summary and outlook

Spin

□ Spin of an elementary particle:

An intrinsic quantum property of the particle

□ Spin of a composite particle:

Angular momentum when the particle is at rest

Spin in QCD:

$$S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)$$

Quark angular momentum operator:

$$\vec{J}_q = \int d^3x \left[\psi_q^{\dagger} \vec{\gamma} \gamma_5 \psi_q + \psi_q^{\dagger} (\vec{x} \times (-i\vec{D})) \psi_q \right] \implies J_q(\mu) \to \frac{1}{2} \Delta q(\mu) + L_q(\mu)$$

♦ Gluon angular momentum operator:

$$\vec{J}_g = \int d^3x \left[\vec{x} \times (\vec{E} \times \vec{B}) \right] \qquad \qquad \Longrightarrow \quad J_g(\mu) \to \Delta G(\mu) + L_g(\mu)$$

The decomposition is not unique!

Jaffe-Manohar, Ji, Chen et al, Wakamatsu, ...

- link individual pieces to other observables?

Proton Spin

□ Complexity of the proton state:

□ Asymptotic limit:

$$J_q(\mu \to \infty) \Rightarrow \frac{1}{2} \frac{3N_f}{16 + 3N_f} \sim \frac{1}{4}$$

$$J_g(\mu \to \infty) \Rightarrow \frac{1}{2} \frac{16}{16 + 3N_f} \sim \frac{1}{4}$$

Ji, 2005

□ Proton spin structure:

Intrinsic parton's spin:

vs. dynamical parton motion:

$$\begin{split} \Sigma(Q^2) &= \sum_{q} \left[\Delta q(Q^2) + \Delta \bar{q}(Q^2) \right], \ \Delta G(Q^2) \\ L_q(Q^2), \ \ L_g(Q^2) \\ \end{split}$$
 If they could be measured separately

Cross sections and asymmetries

Cross section:

Scattering amplitude square – Probability – Positive definite A function of in-state and out-state variables: momentum, spin, ...

□ Spin-averaged cross section:

$$\sigma = \frac{1}{2} \left[\sigma(\vec{s}) + \sigma(-\vec{s}) \right]$$
 – Positive definite probability

□ Asymmetries or difference of cross sections:

$$A(\vec{s}) = \frac{\Delta\sigma(\vec{s})}{\sigma} = \frac{\sigma(\vec{s}) - \sigma(-\vec{s})}{\sigma(\vec{s}) + \sigma(-\vec{s})} \qquad \Delta\sigma(\vec{s}) = \frac{1}{2} \left[\sigma(\vec{s}) - \sigma(-\vec{s})\right]$$

Difference of two probabilities – Not necessary positive! Chance to see quantum interference directly

Connecting hadrons to QCD partons

Do not see partons in the detector!

□ Factorization - approximation:

 $\xrightarrow{P_A \ S_A} \begin{array}{c} p_C \ S_C \\ \hline P_B \ S_B \ P_X \end{array}$

QCD parton dynamics

(Diagrams with more active partons from each hadron!)

Single active parton from each hadron!

A Probability ~ A Product of probabilities!

Hadron vs parton spin states

□ Partonic dynamics is insensitive to the hadron spin:

But, it is sensitive to parton's spin state !

 $\langle p, \vec{s} | \mathcal{O}(\psi, A) | p, \vec{s} \rangle - \langle p, -\vec{s} | \mathcal{O}(\psi, A) | p, -\vec{s} \rangle = \langle p, \vec{s} | \left[\mathcal{O}(\psi, A) - \mathcal{PTO}^{\dagger}(\psi, A) \mathcal{T}^{-1} \mathcal{P}^{-1} \right] | p, \vec{s} \rangle$

□ Hadron matrix element of different parton operators:

New information on hadron's partonic structure

- complimentary to spin-averaged experiments

Unpol:
$$\langle p, \vec{s} | \overline{\psi}(0) \frac{\gamma \cdot n}{p \cdot n} \psi(yn) | p, \vec{s} \rangle$$
 $\langle p, \vec{s} | F^{+\alpha}(0) F^{+\beta}(yn) | p, \vec{s} \rangle (-g_{\alpha\beta})$
Pol: $\langle p, \vec{s} | \overline{\psi}(0) \frac{\gamma \cdot n \gamma_5}{p \cdot n} \psi(yn) | p, \vec{s} \rangle$ $\langle p, \vec{s} | F^{+\alpha}(0) F^{+\beta}(yn) | p, \vec{s} \rangle (i\epsilon_{\alpha\beta})$

Probe of QCD quantum interference

Contribution from intrinsic parton's spin

	DSSV – 2008: $\Delta f_j^{1,[x_{\min}-1]}$ at $Q^2 = 10 \text{GeV}^2$					
		$x_{\min}=0$		$x_{\min} = 0.00$		
		best fit	$\Delta \chi^2 =$	$= 1 \qquad \Delta \chi$	$\chi^2/\chi^2 = 2\%$	
	$\Delta u + \Delta \bar{u}$	0.813	$0.793 \stackrel{+}{_{-}}$	$0.011 \\ 0.012 $ 0.	$793 \begin{array}{c} +0.028 \\ -0.034 \end{array}$	
$\Delta d + \Delta ar{d}$		-0.458	-0.458 $-0.416 + 0.011 \\ -0.009$		$-0.416 \begin{array}{c} +0.035 \\ -0.025 \end{array}$	
	$\Delta ar{u}$		0.036 0.028 +		$028 \begin{array}{c} +0.059 \\ -0.059 \end{array}$	
Δd		-0.115	-0.089 +	·0.029 ·0.029 -0.	$.089 \begin{array}{c} +0.090 \\ -0.080 \end{array}$	
	$\Delta \bar{s}$	-0.057	-0.006 +	·0.010 ·0.012 -0	$.006 \ ^{+0.028}_{-0.031}$	
	Δq	-0.084	0.013 +	0.106 0.120 0.	$013 \begin{array}{c} +0.702 \\ -0.314 \end{array}$	
	$\Delta\Sigma$	0.242	0.366 +	0.015 0.018 0.	$366 \begin{array}{c} +0.042 \\ -0.062 \end{array}$	
$\Box \text{ Hirai-Kumano} - 2008: \qquad \qquad \begin{array}{c c} \text{Analysis set} & \text{DIS} & \text{RHIC } \pi^0 & \text{E07-011} \\ \hline \text{A} & \text{O} & - & - \end{array}$						07-011
at $Q^2 = 1 \text{ GeV}^2$				B O C O	0 -	0
	Set A		Set B		Set C	
P	ositive N	lode Posi	tive	Node	Positive	Node
$\Delta\Sigma = 0.2$	$4 \pm 0.07 0.22$	± 0.08 0.26	+ 0.06 0	$.25 \pm 0.07$	0.24 ± 0.05	0.22 ± 0.05
$\Delta G = 0.6$	$3 \pm 0.81 0.94$	± 1.66 0.40	$\pm 0.28 -0$	$.12 \pm 1.78$	0.63 ± 0.45	0.94 ± 1.09

RHIC measurement of ΔG

Small asymmetry leads to small gluon "helicity" distribution

Future RHIC measurement of ΔG

□ STAR – multiple channels – inclusive jet:

\Box **PHENIX** – multiple channels – γ :

Role of heavy quark production in p+p

□ Gluon fusion dominates heavy quark production:

Provide the complimentary constraint on ΔG But, unlikely to be the channel to give the best precision on ΔG

 \Box A_N – beyond leading collinear parton approximation:

 \diamond P_{T} distribution of open Charm meson production

- tri-gluon correlation
- \diamond Heavy quarkonium production
 - Sensitivity on the production mechanism

Open charm meson production

□ Tri-gluon correlation function:

\diamond interference between a single gluon and a double gluon states

$$T_{G}(x,x) = \int \frac{dy_{1}^{-} dy_{2}^{-}}{2\pi} e^{ixP^{+}y_{1}^{-}} \frac{1}{xP^{+}} \langle P, s_{T} | F^{+}_{\alpha}(0) \left[\epsilon^{s_{T}\sigma n\bar{n}} F^{+}_{\sigma}(y_{2}^{-}) \right] F^{\alpha+}(y_{1}^{-}) | P, s_{T} \rangle$$

♦ Different color contractions

$$T_G^{(f)}(x,x) \propto i f^{ABC} F^A F^C F^B = F^A F^C (\mathcal{T}^C)^{AB} F^B$$
$$T_G^{(d)}(x,x) \propto d^{ABC} F^A F^C F^B = F^A F^C (\mathcal{D}^C)^{AB} F^B$$

\Box P_T distribution of charm meson:

SSA of D-meson production at RHIC

□ Model for tri-gluon correlation functions:

SSA of D-meson production at RHIC

P_T dependence: $\sqrt{s} = 200 \text{ GeV}$ $\mu = \sqrt{m_c^2 + P_{h\perp}^2}$ $m_c = 1.3 \text{ GeV}$

Nonzero A_N = tri-gluon correlation = "direct" interference Separate $T_G^{(f)}$ and $T_G^{(d)}$ by the difference between D and \overline{D}

Heavy quark production in e+p/n

\Box Better probe of $\triangle G$ – future EIC:

PHENIX decadal plan

SSA of D-meson production in e+p/n

\Box SSA for D⁰ production (λ_f only):

- \diamond Derivative term dominates, and small ϕ dependence
- \diamond Asymmetry is twice if $T_G^{(f)} = + T_G^{(d)}$, or zero if $T_G^{(f)} = T_G^{(d)}$.
- \diamond Opposite for the D meson
- \diamond Asymmetry has a minimum ~ z_h ~ 0.5

SSA of D-meson production in e+p/n

\Box SSA for D⁰ production (λ_f only):

♦ SSA is a twist-3 effect, it should fall off as $1/P_T$ when $P_T >> m_c$ ♦ For the region, $P_T \sim m_c$, $\tilde{t} = (m_t - a)^2 - m_t^2 - \frac{1 - \hat{z}}{2}$

$$A_N \propto \epsilon^{P_h s_\perp n\bar{n}} \frac{1}{\tilde{t}} = -\sin\phi_s \frac{P_{h\perp}}{\tilde{t}}$$

$$\tilde{t} = (p_c - q)^2 - m_c^2 = -\frac{1 - \hat{z}}{\hat{x}}Q^2$$

 $\hat{z} = z_h/z, \quad \hat{x} = x_B/x$

EIC is ideal for studying TMDs

□ SIDIS has the natural kinematics for TMD factorization:

 $\ell(s_e) + p(s_p) \to \ell + h(s_h) + X$

Natural event structure: high Q and low p_T jet (or hadron)

□ Separation of various TMD contribution by angular projection:

Lepton plane vs hadron plane

$$\begin{aligned} A_{UT}(\varphi_h^l, \varphi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} & A_{UT}^{C} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) & \longrightarrow & A_{UT}^{Si} \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) & & A_{UT}^{P} \end{aligned}$$

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_s) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_s) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_s) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

Gauge invariance and universality of PDFs

□ Gauge link – QCD phase:

Summation of leading power gluon field contribution produces the gauge link: $\Phi(x,y) = \Phi(x,y)$

$$\Phi_n(\infty, y^-) = \mathcal{P} \exp\left(-ig \int_{y^-}^{\infty} d\lambda \, n \cdot A(\lambda n)\right)$$

Gauge invariant PDFs:

$$\phi(x,p,s) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle p,s | \overline{\psi}(0)_j \widehat{\Gamma}_{ji} \Phi_n^{\dagger}(\infty,0) \Phi_n(\infty,y^-) \psi_i(y^-) | p,s \rangle$$

Collinear PDFs:"Localized" operator with size ~ 1/xp ~ 1/Q"localized" color flow

□ Universality of PDFs – predictive power of pQCD:

Gauge link should be process independent!

Process dependence of TMDs

□ The form of gauge link is a result of factorization:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S} | \overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\text{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp}) | p,\vec{S} \rangle$$

- SIDIS: $\Phi_n^{\dagger}(\{+\infty,0\},\mathbf{0}_{\perp})\Phi_{\mathbf{n}_{\perp}}^{\dagger}(+\infty,\{\mathbf{y}_{\perp},\mathbf{0}_{\perp}\})\Phi_n(\{+\infty,y^-\},\mathbf{y}_{\perp})$
- DY: $\Phi_n^{\dagger}(\{-\infty, 0\}, \mathbf{0}_{\perp})\Phi_{\mathbf{n}_{\perp}}^{\dagger}(-\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\})\Phi_n(\{-\infty, y^-\}, \mathbf{y}_{\perp})$

For a fixed spin state:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

SSA of J/ ψ production at RHIC

 \Box Sensitive to color neutralization of J/ ψ production:

Final-state interaction proportional to color dipole moment of the heavy quark pair

□ If neglect final-state interaction – "color singlet" pair:

- \diamond TMD factorization with the phase from initial-state interaction
- \diamond A_N at low P_T is proportional to the gluon Sivers function
 - PHENIX data indicates that gluon Sivers does not vanish
- ♦ Sign change of gluon Sivers function PT invariance
 - Opposite sign A_N for J/ψ in SIDIS only if the pair is in octet?!

SSA of J/ψ production at e+p/n

□ SSA requires a phase from final-state interaction

 $Q^2 \gtrsim M_{J/\psi}^2$

♦ Ward identity – TMD fact.♦ Pair "behaves" like a gluon

□ SSA requires a phase from final-state interaction

Collins et al.

Feng

- \diamond Potential pinch singularity
- Spectator pair interaction
 - (prevents sum of final-states)
- No TMD for color octet!?

More theory work needed!

TMD vs collinear factorization

□ They cover different kinematic regimes:

Ji,Qiu,Vogelsang,Yuan, Koike, Vogelsang, Yuan

Two factorization are consistent in the overlap region where

 $\Lambda_{\rm QCD} \ll p_T \ll Q$

TMD

Collinear Factorization

"Formal" operator relation between TMD distributions and collinear factorized distributions:

spin-averaged: $\int d^2 k_{\perp} \Phi_f^{\text{SIDIS}}(x,k_{\perp}) + \text{UVCT}(\mu_F^2) = \phi_f(x,\mu_F^2)$ Transverse-spin: $\frac{1}{M_P} \int d^2 k_{\perp} \vec{k}_{\perp}^2 q_T(x,k_{\perp}) + \text{UVCT}(\mu_F^2) = T_F(x,x,\mu_F^2)$

But, TMD factorization is only valid for low $k_T - TMD$ PDFs at low k_T Even a node at low p_T could be allowed !

Diffractive production of quarkonium

D Exclusive production of J/ψ :

Collins, etc.

with $\xi = (P' - P) \cdot n/2$ and $t = (P' - P)^2 \Rightarrow -\Delta_{\perp}^2$ if $\xi \to 0$

□ Collinear factorization – Gluon GPD:

 $\langle k^2
angle \propto Q_s^2 \ll Q^2$ Need EIC for a sufficient phase space in t

□ Parton spatial distribution – Fourier transform of GPDs:

$$f(x,q_T) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i\vec{\Delta}_T \cdot \vec{q}_T} H_f(x,\xi=0,\Delta_T)$$

No factorization for diffractive production in p+p !

Summary

- □ After > 35 years, we have learned a lot of QCD dynamics, but, only at very short-distance - less than 0.1 fm, and limited information on non-perturbative parton structure
- Heavy flavor production at EIC with polarization provides more direct information on glue
- □ Understanding proton spin could provide the first complete example to describe the fundamental properties of hadrons
- The program of measuring transverse spin asymmetries at EIC, which is complementary to RHIC, provides a new domain to test QCD dynamics, in particular, the parton's transverse motion

Thank you!

Backup slices

Leading power collinear factorization

□ One collinear parton per hadron in hard collision:

Production of an off-shell heavy quark pair:

Approximation: on-shell heavy quark pair + hadronization

$$\sigma_{AB\to J/\psi} = \sum_{\text{states}} \int d\Gamma_{Q\bar{Q}} \left[\frac{d\hat{\sigma}(Q^2)}{d\Gamma_{Q\bar{Q}}} \right] F_{\text{states}(Q\bar{Q})\to J/\psi}(p_Q, p_{\bar{Q}}, P_{J/\psi})$$

Different models \Leftrightarrow Different assumptions/treatments on how the heavy quark pair becomes a quarkonium?