

Heavy Quarks in CMS

Gerd J. Kunde

Heavy Quarks in CMS

The Compact Muon Solenoid Detector

Muon Reconstruction

Muon Detection: Drift Tubes – Cathode Strips – Resistive Plate Chambers

Muon Reconstruction cont.

- Large rapidity coverage:
 |η| < 2.4
- Excellent muon momentum resolution:
 - matching between μ -chambers and in the silicon tracker (only using the latter for momentum determination at low p_T)
 - strong magnetic field (3.8 T)

Two muon identifications:

- Global muon (outside-in):
 - High purity
 - Low efficiency for low momentum muon
- Tracker muon (inside-out):
 - Fake muon level high
 - Higher efficiency low momentum muon

EST 1943

Proton-Proton Dimuon Spectra

The Heavy Ion Run

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

Heavy Ion Data Taking with CMS

Heavy Ion Triggering on Collisions

- Maximize efficiency for high p_T probes
 - Muons
 - Jets
 - Photons/Electrons
- Record large Minimum Bias sample
- Additional triggers
 - Ultra Peripheral Collisions
 - Background monitoring
- Minimize backgrounds

9

HI Event Selection

- Level 1 trigger
 - Coincidence of two scintillator counters OR
 - Coincidence of two HF towers
 - Muons
- High Level Trigger
 - Jets
 - Muons
 - Photons
- Offline
 - Veto on scintillator beam halo
 - At least 3 HF towers on each side above threshold (E > 3 GeV)
 - Reconstructed pixel vertex with two or more tracks
 - Beam-scraping removal with pixel cluster vertex compatibility

HI Minimum Bias Event Sample

Quarkonia should melt in the Quark Gluon Plasma...

- J/ψ suppression has been seen at SPS and RHIC
 - Details are not completly understood, interplay of cold and hot effects
 - Regeneration of J/ψ from the (large) number of uncorrelated cc pairs would be a golden probe at LHC
- Only order 100 Upsilons seen at RHIC
 - Successive melting of the three bound states could act as a thermometer
- Weak bosons have not been observed at RHIC
 - Test of nuclear PDFs
 - Standard candle for other processes
 - Future Z-tagging (high luminosity)
- CMS will be able to study all of the above in detail

HI: High $p_T J/\psi \rightarrow \mu^+ \mu^-$

HI: High $p_T \Upsilon \rightarrow \mu^+ \mu^-$

HI: First $Z^0 \rightarrow \mu^+ \mu^-$ Candidate

CMS Experiment at LHC, CERN Data recorded: Tue Nov 9 23:51:56 2010 CEST Run/Event: 150590 / 776435 Lumi section: 183

Muon 0, pt: 29.7 GeV

First Z bosons detected by CMS in heavy-ion collisions November 18th 2010

Z bosons produced in collisions of heavy ions have been observed for the first time by the CMS experiment at CERN's Large Hadron Collider (LHC). CMS observed 10 events containing a distinctive candidate Z boson reconstructed from a pair of electrons or a pair of muons (see figures 1 and 2 respectively), whose invariant mass is consistent with the Z boson mass.

HI: $Z^0 \rightarrow \mu^+ \mu^-$

Proton-Proton Results

- LHC performance and mass spectrum
- J/ψ
 - Trigger selection
 - Efficiency, acceptance
 - Cross-sections
 - Non-prompt
- Upsilon
 - Data sample
 - Efficency, acceptance
 - Cross-sections

NATIONAL LABORATORY EST. 1943

p-p Dimuon Mass Spectrum

p-p Muon triggers

Two trigger levels

L1: hardware

muon system and calorimeters only

HLT: software

Matching of different sub-detectors. Fast local track reconstruction for muons Trigger requirements changing with increasing luminosity:

- Single muons: $p_T > 3$ GeV threshold at the startup Gradually increasing ($p_T > 7$ GeV at L ~ 10³¹ Hz cm⁻²)
- Double muons:
 L1 requirements only at the startup, no p_T threshold

allows to go down to zero quarkonium $\ensuremath{p_{T}}$ in the forward region

At L ~ 10³¹ Hz cm⁻² new strategies adopted for quarkonia (combination of L1 and HLT muons, or HLT muon and track in specific invariant mass regions... etc.)

p-p J/ψ Selection and Yields

GeV/c²

0.02

Events / (

800

700

600

500

400

300

200

100

0⊑ 2.6

2.7

2.8

2.9

3

3.1

3.2

 $\mu^{+}\mu^{-}$ invariant mass [GeV/c²]

data

 $\sigma = 40 \text{ MeV/c}^2$

signal+background

background-only

• Selections:

EST.1943

- Muons in acceptance window
- Track quality (n_{hits} , n_{hits} in pixels, χ^2 , $|d_{xy}|$, $|d_z|$)
- Muon quality (global fit χ^2 , track-muon segment angular matching)
- Di-muon vertex probability
- ~27000 events selected

L_{int} = 314 nb⁻¹

1.2 < |y_{1/10}| < 1.6

3.3

3.4

3.5

p-p J/ψ Resolution

- CMS already reached a similar quality after 6 *months* of data taking and "debugging"
- In a couple of weeks, with ~40 pb⁻¹ on tape, CMS will be able to do the physics analyses with around **2.5 million** J/ ψ dimuons, *after* offline quality selection cuts

p-p J/ψ Acceptance

• Acceptance is determined from MC:

$$A(p_{\mathrm{T}}, y, \lambda_{\theta}) = \frac{N_{\mathrm{det}}(p_{\mathrm{T}}, y, \lambda_{\theta})}{N_{\mathrm{gen}}(p_{\mathrm{T}}, y, \lambda_{\theta})}$$

- Strongly dependent on polarization assumptions for the prompt component (polarization not well known)
- Agreement to give result in 5 scenarios:
 - Isotropic
 - Extreme values of λ_{θ} (= ±1) in the helicity frame (along the QQ momentum)
 - Extreme values of λ_{θ} (= ±1) in the Collins-Soper frame (along the collision axis)
- Main systematic uncertainties coming from:
 - $-p_T$ smearing and calibration
 - uncertainty on final state radiation spectrum

 J/ψ acceptance in isotropic scenario 30 (GeV/c) 0.9 25 0.8 ، 1 1 20 0.7 0.6 15 0.5 0.4 10 0.3 0.2 5 0.1 2.4 Ιγ^{J/ψ,} n 1.2 1.8 0.6 'n

EST 1943

p-p Muon Tag&Probe

- Muon efficiency from data: the "tag-and-probe" method:
 - Require one well-identified muon in the event ("tag")
 - Another candidate muon, with looser criteria, is paired to it ("probe")
 - Compare resonance yields for all tag-probe pairs and for pairs where the probes pass a given selection.

p-p Inclusive J/ψ Cross-section

 $\sigma(pp \rightarrow J/\psi + X) \cdot BR(J/\psi \rightarrow \mu^+\mu^-) = 97.5 \pm 1.5(\text{stat}) \pm 3.4(\text{syst}) \pm 10.7(\text{luminosity}) \text{ nb}$

p-p Non-prompt J/ψ Fraction

Measurement of prompt/non-prompt component with a 2D fit to mass and "pseudo"-proper decay length

$$\ell_{xy} = \frac{L_{xy}^{J/\psi} \cdot M^{J/\psi}}{P_T^{J/\psi}} \qquad L_{xy} = \frac{\mathbf{u}^T \sigma^{-1} \mathbf{x}}{\mathbf{u}^T \sigma^{-1} \mathbf{u}^T}$$

 $L_{xy}^{J/\psi}$ is the transverse component of most probable decay length in lab system

Decay length parameterization:

- For prompt events, δ -function
- For <u>non-prompt events</u>, MC templates
- For <u>background events</u> a generic superposition of different contributions (symmetric + asymmetric with effective lifetimes)

all convoluted with 3-Gaussian resolution

Cross check with fit with the mean B-hadron lifetime left as a free parameter and found it to be $t_B = 1.32 \pm 0.07 \text{ ps}$, where the error is statistical only, consistent with the world average

p-p Non-prompt J/ψ Fraction cont.

Very little sensitivity to rapidity and energy (>2 TeV)

p-p Non-prompt J/ψ Fraction cont.

No sensitivity to rapidity nor energy (>2 TeV)

p-p J/ψ Theory Comparison

• Only with models that include feed-down decays

– PYTHIA

"PYTHIA 6.4 Physics and Manual", JHEP (2006) 05 026.

- FONLL Cascade

H. Jung Comp. Phys. Commun. 143 (2002) 100.

- Color Evaporation Model

F. Halzen, "Cvc for Gluons and Hadroproduction of Quark Flavors", *Phys. Lett.* B69 (1977) 105. doi:10.1016/0370-2693(77)90144-7.

H. Fritzsch, "Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics", *Phys. Lett.* **B67** (1977) 217. doi:10.1016/0370-2693(77)90108-3.

M. Gluck, J. F. Owens, and E. Reya, "Gluon Contribution to Hadronic J/psi Production", *Phys. Rev.* D17 (1978) 2324. doi:10.1103/PhysRevD.17.2324.

V. D. Barger, W.-Y. Keung, and R. J. N. Phillips, "On psi and Upsilon Production via Gluons", *Phys. Lett.* B91 (1980) 253. doi:10.1016/0370-2693(80)90444-X.

28

J/ ψ Theory Comparison cont. p-p

Comparison only with models that include feed down from higher states

nonprompt

p-p Upsilon Data Sample

Apr-Sep run: $\mathcal{L}=10^{31} cm^{-2} s^{-1}$, $\int \mathcal{L} dt=3.1\pm0.3 \ pb^{-1}$ Trigger : 2 muons at Hardware level, no p_T cut Offline muon identification:

- * track extrapolation matches hits in at least one μ -chamber
- track momentum : $p_T^{\mu} > 3.5 \text{ GeV if } |\eta| < 1.6$, $p_T^{\mu} > 2.5 \text{ GeV if } 1.6 < |\eta| < 2.4$
- track quality : $n_{\text{hits}} \ge 12, n_{\text{pixel}} \ge 1, \chi^2 < 5 \cdot \text{Ndf}, d_{xy} < 0.2 \, cm, d_Z < 25 \, cm$
- U selection
- two opposite-charge muons with
- $8 \le M_{\mu\mu} < 12 \,{\rm GeV}$
- probability of common vertex > 0.1%
- distance along Z < 2 cm
- rapidity

EST 1943

p-p Upsilon Efficiency Correction

• Trigger Efficiency * Tracking Efficiency * Muon Identification

 $\boldsymbol{\epsilon}(\mathsf{total}) = \boldsymbol{\epsilon}(\mathsf{trig}|\mathsf{id}) \times \boldsymbol{\epsilon}(\mathsf{id}|\mathsf{track}) \times \boldsymbol{\epsilon}(\mathsf{track}|\mathsf{accepted}) \equiv \boldsymbol{\epsilon}_{\mathsf{trig}} \times \boldsymbol{\epsilon}_{\mathsf{id}} \times \boldsymbol{\epsilon}_{\mathsf{track}}$

Tag&Probe and embedding for J/psi sample (statistics)

EST 1943

p-p Upsilon Acceptance Correction

Via Geant4 simulation of the CMS detector using \the upsilon "particle gun"

Very good acceptance even at low pt

p-p Upsilon Event Yield

- Fit epsilon/A corrected spectra in pt/eta bins
- Float yields, background shape parameters width and position of 1S peak
- Fix relative (1S) (2S,3S) mass difference to PDG

p-p Upsilon Cross-section Results

$$\frac{d\sigma\left(pp \to Y(nS)\right)}{dp_{T}}\Big|_{|y|<2} \mathcal{B}\left(Y(nS) \to \mu^{+}\mu^{-}\right) = \frac{N_{Y(nS)}^{fit}(p_{T};\mathcal{A},\varepsilon_{track},\varepsilon_{id},\varepsilon_{trig})}{\mathcal{L} \cdot \Delta p_{T}}$$

$$\begin{split} &\sigma(pp \to \mathrm{Y}(1\mathrm{S})\mathrm{X}) \cdot \mathcal{B}(\mathrm{Y}(1\mathrm{S}) \to \mu^+\mu^-) = (7.49 \pm 0.13(\mathrm{stat.})^{+0.67}_{-0.49}(\mathrm{syst.}) \pm 0.82(\mathrm{lumi.})) \ \mathrm{nb} \ ,\\ &\sigma(pp \to \mathrm{Y}(2\mathrm{S})\mathrm{X}) \cdot \mathcal{B}(\mathrm{Y}(2\mathrm{S}) \to \mu^+\mu^-) = (1.93 \pm 0.08(\mathrm{stat.})^{+0.19}_{-0.14}(\mathrm{syst.}) \pm 0.21(\mathrm{lumi.})) \ \mathrm{nb} \ ,\\ &\sigma(pp \to \mathrm{Y}(3\mathrm{S})\mathrm{X}) \cdot \mathcal{B}(\mathrm{Y}(3\mathrm{S}) \to \mu^+\mu^-) = (1.04 \pm 0.07(\mathrm{stat.})^{+0.12}_{-0.09}(\mathrm{syst.}) \pm 0.11(\mathrm{lumi.})) \ \mathrm{nb} \ . \end{split}$$

- Included Uncertainties
 - Detector effects
 - Statistics of the tag&probe sample
 - Luminosity (dominating)
- NOT Included
 - Polarization effects: +-20 % effect

p-p Upsilon p_t-dependent Cross-section

						Polarization Models			
$p_{\rm T}$ (GeV/c)	σ	stat./ σ	$\sum_{\text{syst}} / \sigma$	$\Delta \sigma / \sigma$	HX T	HX L	ČS T	CS L	
	Y(1S)				(y < 2)				
0 - 30	7.49	1.8	9(7)	14(13)	+16	-22	+13	-16	
0 - 1	0.31	8	10(8)	17 (16)	+16	-22	+17	-23	
1 - 2	0.91	5	9(7)	15(14)	+16	-20	+19	-24	
2 - 3	1.05	5	9(7)	15(14)	+15	-20	+19	-24	
3 - 4	0.90	6	10(8)	16(15)	+18	-23	+18	-23	
4 - 5	0.91	6	9(7)	15(14)	+18	-23	+16	-21	
5 - 6	0.83	6	9(6)	15(14)	+17	-23	+13	-19	
6 - 7	0.65	7	9(6)	16(14)	+17	-22	+11	-16	
7 - 8	0.52	7	9(7)	16(15)	+16	-22	+7	-10	
8 – 9	0.34	8	9 (6)	16(15)	+16	-22	+4	-5	
9 - 10	0.26	8	9(6)	17 (15)	+15	-21	+2	-1	
10 - 12	0.36	6	9(6)	15(14)	+15	-21	-1	+3	
12 - 14	0.18	8	9(6)	16(15)	+15	-20	-3	+7	
14 - 17	0.14	9	10(6)	17 (15)	+14	-19	-4	+9	
17 - 20	0.06	12	10(7)	19 (18)	+12	-18	-4	+9	
20 - 30	0.06	12	10(6)	19 (17)	+12	-17	-4	+10	
Y(2S)						17			
0 - 30	1.93	4.2	10(7)	15 (14)	+14	-19	+12	-15	
0 - 2	0.25	12	12 (10)	20 (19)	+14	-19	+17	-22	
2 - 4	0.49	8	13 (12)	19(18)	+12	-17	+18	-23	
4 - 6	0.42	10	11 (9)	18(17)	+16	-22	+15	-20	
6 - 9	0.41	9	10(7)	18 (16)	+15	-21	+9	-13	
9 – 12	0.21	10	10(6)	18(16)	+14	-20	+1	-0	
12 – 16	0.09	13	<u>10(7)</u>	20(19)	+14	-19	-2	+6	
16 - 20	0.04	18	11(8)	24(23)	+12	-18	-4	+9	
20 - 30	0.02	23	20(18)	33 (32)	+12	-17	-4	+11	
Y(3S)									
0 - 30	1.04	6.7	12 (9)	17 (16)	+14	-19	+10	-13	
0 - 3	0.26	14	11 (9)	21(20)	+13	-18	+16	-22	
3 - 6	0.29	14	19(18)	26(25)	+13	-18	+16	-21	
6-9	0.25	14	11 (9)	21 (20)	+15	-20	+10	-13	
9 - 14	0.16	12	10(8)	19 (18)	+14	-20	-1	+2	
14 - 20	0.05	17	11 (9)	23 (22)	+13	-18	-4	+9	
20 - 30	0.03	20	13 (10)	26(25)	+11	-16	-4	+9	

p-p Upsilon Cross-section cont.

p-p Upsilon Theory Comparisons

PYTHIA – FONLL Cascade - Color Evaporation Model

H. Jung Comp. Phys. Commun. 143 (2002) 100.

F. Halzen, "CVC for Gluons and Hadroproduction of Quark Flavors", *Phys. Lett.* **B69** (1977) 105. doi:10.1016/0370-2693(77)90144-7.

H. Fritzsch, "Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics", *Phys. Lett.* **B67** (1977) 217. doi:10.1016/0370-2693(77)90108-3.

M. Gluck, J. F. Owens, and E. Reya, "Gluon Contribution to Hadronic J/psi Production", *Phys. Rev.* D17 (1978) 2324. doi:10.1103/PhysRevD.17.2324.

V. D. Barger, W.-Y. Keung, and R. J. N. Phillips, "On psi and Upsilon Production via Gluons", *Phys. Lett.* **B91** (1980) 253. doi:10.1016/0370-2693(80)90444-X.

p-p Upsilon Tevatron Comparisons

Little sensitivity of p_t spectra to center of mass energy

Future

- For 7 TeV p-p collisions CMS collected a quarkonium event sample of around 2.5 M J/ ψ and 100 000 Y(1S) (only counting dimuons)
 - J/ ψ and Upsilon polarization, in several p_T and y intervals, over a broad phase space
 - χ_c over J/ ψ cross section ratio, using calorimeter-seeded photons
 - χ_{c1} over χ_{c2} cross section ratio, using tracker-seeded photon conversions
- For 2.76 TeV Pb-Pb collisions analyses of J/ψ and Upsilon are in progress and the first Z⁰ paper is being written ... plus there is a great future at higher luminosities

