A short review of AdS/CFT. A bottom up approach to QCD

Heavy Quark Diffusion in AdS/CFT

Georgios Michalogiorgakis

Purdue University

January 5th 2011

Georgios Michalogiorgakis Heavy Quark Diffusion in AdS/CFT

 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories.

► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- ► $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity
- $\frac{\lambda}{4\pi N_c} \leftrightarrow g_s$, Beyond the planar limit \rightarrow stringy "loops".

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity
- $\frac{\lambda}{4\pi N_c} \leftrightarrow g_s$, Beyond the planar limit \rightarrow stringy "loops".

•
$$g_{\mu\nu}(x,z
ightarrow 0) \leftrightarrow T_{\mu\nu}$$

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity
- $\frac{\lambda}{4\pi N_c} \leftrightarrow g_s$, Beyond the planar limit \rightarrow stringy "loops".
- $g_{\mu\nu}(x,z
 ightarrow 0) \leftrightarrow T_{\mu\nu}$
- $\phi(x, z \to 0) \leftrightarrow Tr[F^2 + susy]$

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity
- $\frac{\lambda}{4\pi N_c} \leftrightarrow g_s$, Beyond the planar limit \rightarrow stringy "loops".
- $g_{\mu\nu}(x,z
 ightarrow 0) \leftrightarrow T_{\mu\nu}$
- $\phi(x, z \to 0) \leftrightarrow Tr[F^2 + susy]$
- Fundamental string \leftrightarrow quark.

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity
- $\frac{\lambda}{4\pi N_c} \leftrightarrow g_s$, Beyond the planar limit \rightarrow stringy "loops".
- $g_{\mu\nu}(x,z
 ightarrow 0) \leftrightarrow T_{\mu\nu}$
- $\phi(x, z \to 0) \leftrightarrow Tr[F^2 + susy]$
- Fundamental string \leftrightarrow quark.
- A thermal state in the CFT \leftrightarrow Black hole in AdS.

- ► Large $N_c \mathcal{N} = 4$ SYM theory in four dimensions is equivalent to type IIB string theory on $AdS_5 \times S_5$.
- $\lambda'_{t \ Hooft} \leftrightarrow \frac{R^4}{\alpha'^2}$, Large $\lambda'_{t \ Hooft}$ limit \rightarrow IIB supergravity
- $\frac{\lambda}{4\pi N_c} \leftrightarrow g_s$, Beyond the planar limit \rightarrow stringy "loops".
- $g_{\mu\nu}(x,z
 ightarrow 0) \leftrightarrow T_{\mu\nu}$
- $\phi(x, z \to 0) \leftrightarrow Tr[F^2 + susy]$
- Fundamental string \leftrightarrow quark.
- A thermal state in the CFT \leftrightarrow Black hole in AdS.
- We can think of AdS/CFT as a tool to compute interesting quantities in field theory.

A short review of AdS/CFT. A bottom up approach to QCD

Comparing $\mathcal{N} = 4$ SYM with QCD?

 No confinement. Coupling doesn't run: it's a parameter you can dial. A short review of AdS/CFT. A bottom up approach to QCD

Comparing $\mathcal{N} = 4$ SYM with QCD?

- No confinement. Coupling doesn't run: it's a parameter you can dial.
- No chiral condensate.

Comparing $\mathcal{N} = 4$ SYM with QCD?

- No confinement. Coupling doesn't run: it's a parameter you can dial.
- No chiral condensate.
- All fundamental matter fields are in adjoint representation:
 A_μ, four Majorana fermions λ_i, six real scalars X_I.

Comparing $\mathcal{N} = 4$ SYM with QCD?

- No confinement. Coupling doesn't run: it's a parameter you can dial.
- No chiral condensate.
- All fundamental matter fields are in adjoint representation:
 A_μ, four Majorana fermions λ_i, six real scalars X_I.
- Many phenomenological models (AdS/QCD) improve on the previous points.

A short review of AdS/CFT. A bottom up approach to QCD

We wish to describe a hard heavy external quark

 We model the heavy quark by the end of a moving string. (Gubser:2006)

We wish to describe a hard heavy external quark

- We model the heavy quark by the end of a moving string. (Gubser:2006)
- We impose boundary conditions on the boundary of AdS for the string.

We wish to describe a hard heavy external quark

- We model the heavy quark by the end of a moving string. (Gubser:2006)
- We impose boundary conditions on the boundary of AdS for the string.
- The quark moves at a constant speed with energy provided by an external force.

A short review of AdS/CFT. A bottom up approach to QCD

The drag force is computed by measuring the momentum flux down the string. The position of \mathcal{I} is arbitrary because the energy-momentum current is conserved.

A short review of AdS/CFT. A bottom up approach to QCD

In blue: the trailing string of an external quark, following. The dashed line shows classical propagation of a graviton from the string to the boundary, where its behavior can be translated into the stress-energy tensor $\langle T_{mn} \rangle$ of the boundary gauge theory.

•
$$F = -\frac{\pi}{2}\sqrt{\lambda}T^2 \frac{v}{\sqrt{1-v^2}} = -\frac{p}{\tau}$$
,

$$\blacktriangleright F = -\frac{\pi}{2}\sqrt{\lambda}T^2\frac{v}{\sqrt{1-v^2}} = -\frac{p}{\tau} ,$$

and the diffusion time

$$\blacktriangleright F = -\frac{\pi}{2}\sqrt{\lambda}T^2\frac{v}{\sqrt{1-v^2}} = -\frac{p}{\tau} ,$$

and the diffusion time

$$\blacktriangleright \ \tau = \frac{2M_q}{\pi\sqrt{\lambda}T^2} \ .$$

$$\blacktriangleright F = -\frac{\pi}{2}\sqrt{\lambda}T^2\frac{v}{\sqrt{1-v^2}} = -\frac{p}{\tau} ,$$

- and the diffusion time
- $\blacktriangleright \ \tau = \frac{2M_q}{\pi\sqrt{\lambda}T^2} \ .$
- $au_{charm} \sim 2 fm \;, au_{bottom} \sim 6 fm \;, \; {\rm for} \; T = 250 {\it MeV} \;.$

 Similarly we can calculate the jet quenching parameter *q̂* from a Wilson loop (Liu, Rajagopal, Wiedemann:2006)

- Similarly we can calculate the jet quenching parameter \hat{q} from a Wilson loop (Liu, Rajagopal, Wiedemann:2006)
- $\blacktriangleright W \sim e^{-\frac{1}{4\sqrt{2}}\hat{q}L^{-}L^{2}}$

- Similarly we can calculate the jet quenching parameter *q̂* from a Wilson loop (Liu, Rajagopal, Wiedemann:2006)
- $\blacktriangleright W \sim e^{-\frac{1}{4\sqrt{2}}\hat{q}L^{-}L^{2}}$
- For $\mathcal{N} = 4$ we find $\hat{q} = \frac{\Gamma[3/4]}{\Gamma[5/4]} \sqrt{2\lambda} \pi^{3/2} T^3$.

- Similarly we can calculate the jet quenching parameter *q̂* from a Wilson loop (Liu, Rajagopal, Wiedemann:2006)
- $\blacktriangleright W \sim e^{-\frac{1}{4\sqrt{2}}\hat{q}L^{-}L^{2}}$
- For $\mathcal{N} = 4$ we find $\hat{q} = \frac{\Gamma[3/4]}{\Gamma[5/4]} \sqrt{2\lambda} \pi^{3/2} T^3$.
- For $\lambda = 5.5$ and T = 250 MeV, $\hat{q} = 2 GeV^2/fm$.

U.Gursoy, E.Kiritsis, L.Mazzanti, F.Nitti, G.M.

A new "string inspired" phenomenological model.

U.Gursoy, E.Kiritsis, L.Mazzanti, F.Nitti, G.M.

- A new "string inspired" phenomenological model.
- A running constant is introduced via the dilaton in five dimensions.

U.Gursoy, E.Kiritsis, L.Mazzanti, F.Nitti, G.M.

- A new "string inspired" phenomenological model.
- A running constant is introduced via the dilaton in five dimensions.
- ► Similar approach to the "hard wall" and "soft wall" models.

U.Gursoy, E.Kiritsis, L.Mazzanti, F.Nitti, G.M.

- A new "string inspired" phenomenological model.
- A running constant is introduced via the dilaton in five dimensions.
- Similar approach to the "hard wall" and "soft wall" models.
- The model consists of gravity plus a scalar in five dimensions.

A short review of AdS/CFT. A bottom up approach to QCD Some properties of the model Thermal transport and drag in this model

Some properties of the model.

The terms of the dilaton potential are determined by requiring:

- The terms of the dilaton potential are determined by requiring:
- Asymptotic freedom close to the boundary.

- The terms of the dilaton potential are determined by requiring:
- Asymptotic freedom close to the boundary.
- Matching the spectrum of the glueballs with the lattice.

- The terms of the dilaton potential are determined by requiring:
- Asymptotic freedom close to the boundary.
- Matching the spectrum of the glueballs with the lattice.
- Matching thermodynamics with lattice for high temperatures.

- The terms of the dilaton potential are determined by requiring:
- Asymptotic freedom close to the boundary.
- Matching the spectrum of the glueballs with the lattice.
- Matching thermodynamics with lattice for high temperatures.
- ► These conditions give a first order transition Hawking Page between the confined and the deconfined phase at $T_C \sim 250 MeV$.

Some thermodynamical quantities for the new model

The entropy and energy density and pressure for iHQCD. The points come from lattice results.

Some thermodynamical quantities for the new model

The conformal anomaly and the speed of sound for iHQCD. The points come from lattice results.

Drag force in iHQCD

The ratio of the drag force in iHQCD to the conformal $\mathcal{N} = 4$ SYM case is shown. For high velocities and high temperatures asymptotic freedom becomes important. For $\mathcal{N} = 4$ SYM the 't Hooft coupling is chosen to be 6.

Drag force in iHQCD

The ratio of the drag force in iHQCD to the conformal $\mathcal{N} = 4$ SYM case is shown. For high velocities and high temperatures asymptotic freedom becomes important. For $\mathcal{N} = 4$ SYM the 't Hooft coupling is chosen to be 6.

Diffusion in iHQCD

Diffusion time for the Charm quark, as a function of energy, for different ratios of the temperature to the IHQCD transition temperature Tc.

T, MeV	T _{equiv.}	T_{equiv}/T_C	$ au_{\it diff}$ Charm	$ au_{\it diff}$ Bottom
220	293	1.13	2.70 fm	8.64 fm
250	327	1.26	2.31 fm	7.04 fm
280	362	1.40	1.91 fm	6.09 fm
310	399	1.53	1.66 fm	5.31 fm
400	509	1.96	1.10 fm	3.51 fm
500	632	2.43	0.80 fm	2.56 fm

Table: In this table the diffusion times for the charm and a bottom quark are shown. Diffusion times have been evaluated at an energy of $E = 3 * M_q$ and at the equivalent temperature of the alternative scheme, shown in the third column.

A short review of AdS/CFT. A bottom up approach to QCD

Some properties of the model Thermal transport and drag in this model

Jet Quenching in iHQCD

Georgios Michalogiorgakis Heavy Quark Diffusion in AdS/CFT

 AdS/CFT provides us with tools to study strongly coupled plasmas.

- AdS/CFT provides us with tools to study strongly coupled plasmas.
- It can also address questions of dynamics!

- AdS/CFT provides us with tools to study strongly coupled plasmas.
- It can also address questions of dynamics!
- Many topics not covered in this talk:

- AdS/CFT provides us with tools to study strongly coupled plasmas.
- It can also address questions of dynamics!
- Many topics not covered in this talk:
- Langevin dynamics, quarkonium melting, conical emission, Mach cone...

- AdS/CFT provides us with tools to study strongly coupled plasmas.
- It can also address questions of dynamics!
- Many topics not covered in this talk:
- Langevin dynamics, quarkonium melting, conical emission, Mach cone...
- Recent review arXiv:1101.0618