

High order Monte Carlo DGLV heavy quark energy loss with dynamic interactions in expanding diffuse A+A systems

Alessandro Buzzatti Columbia University

Collab. Miklos Gyulassy

ollaboration

January 5th, **2011**

Light and Heavy Quarks R_{AA}

DGLV is not sufficient to explain electron data observed at RHIC

need to increase Radiative Energy losses for charm and bottom quarks

Opacity expansion: DGLV, MD

- DGLV (M. Djordjevic and M. Gyulassy, Nucl. Phys. A 733, 265, 2004)
 - Energy loss is obtained as a series in powers of opacity L/λ
 - Assumes static scattering centers, modeled by Yukawa potential
- MD (Magdalena Djordjevic) (Djordjevic, Heinz / Phys.Rev.Lett.101:022302,2008)
 - Dynamical model: includes recoils of scattering centers
 - New effective potential: $\frac{1}{(q^2+\mu^2)^2} \rightarrow \frac{1}{q^2(q^2+\mu^2)}$
 - No magnetic screening at order gT
 - Diagrams evaluated in Thermal Field Theory, only first order in opacity has been computed

• Multigluon emission included via Poisson ansatz

Dynamical model in details

- $\omega = \frac{(k+q)^2 + \chi}{xE}$
- $\rho(z) = \theta(L z)/L$ (normalized uniform scattering center distribution)
- $\chi \equiv M^2 x^2 + m_g^2 (1-x)$ with $m_g^2 = \frac{\mu^2}{2}$

•
$$\frac{1}{\lambda_{static}} = \sigma_{qg}\rho_q + \sigma_{gg}\rho_g = \frac{1}{\lambda_{dynamical}} \left(\frac{Zeta[3]}{\pi^2} \left(6 + \frac{3}{2}n_f\right)\right) = \frac{1}{\lambda_{dynamical}}c_{nf}(n_f)$$

NOTE: Pure gluonic medium in our computations ($n_f = 0$)

Fluctuations

Include effects of fluctuations of the number of emitted gluons via Poisson ansatz

In the approximation that the fluctuations of the gluon number are uncorrelated, the spectrum of the total radiative energy loss fraction, $\epsilon = \sum_i \omega_i / E$, can be expressed via a Poisson expansion $P(\epsilon, E) = \sum_{n=0}^{\infty} P_n(\epsilon, E)$ with $P_1(\epsilon, E) = e^{-\langle N^g \rangle} \rho(\epsilon, E)$ and

$$P_{n+1}(\epsilon, E) = \frac{1}{n+1} \int_{x_0}^{1-x_0} dx_n \ \rho(x_n, E) P_n(\epsilon - x_n, E)$$
$$= \frac{e^{-\langle N^g(E) \rangle}}{(n+1)!} \int dx_1 \cdots dx_n \ \rho(x_1, E) \cdots \rho(x_n, E) \rho(\epsilon - x_1 - \cdots - x_n, E) \ .$$

The form of this spectrum guarantees that the mean value is

$$\int_0^\infty d\epsilon \ P(\epsilon,E)\epsilon = \frac{\Delta E}{E} \quad .$$
 Gyulassy, Levai, Vitev / Phys.Lett.B538:282-288,2002

$$P(\varepsilon) = P_0 \delta(\varepsilon) + P(\varepsilon)|_0^1 + P_{stop} \delta(1-\varepsilon)$$
Contributes to R_{AA}
Contributes to $\frac{\Delta E}{E}$

laboration

DGLV vs MD – xdN/dx

(T)

BRICK problem, En = 20GeV, T~250MeV

laboration

- Collinear approximation: $x_E = x_+ \left(1 + O\left(\frac{k_T}{x_+E^+}\right)^2\right)$
 - DGLV formula has the same functional form for x_E or x_+
 - Different kinematic limits: $k_T^{max} = x_E E$

$$k_T^{max} = 2EMin[x_+, 1 - x_+]$$

Heavy Quark Workshop – Purdue University January 5th, 2011 BRICK – Probability distributions

En = 20GeV, T~250MeV

laboration

- For short path lengths, $P(\varepsilon)$ for u and b quarks are similar

Alessandro Buzzatti – Columbia University

BRICK – Energy loss

En = 20GeV, T~250MeV

- The energy loss for both up and bottom quarks is enhanced by a factor ~2
- $\Delta E_{up} \simeq \Delta E_{bottom}$ for $L \lesssim 2fm$
- Charm quark behavior is similar to light quarks Alessandro Buzzatti – Columbia University

1.0

2

3

 (ΔE_b) . $\mu_m \rightarrow 0$, but likely not enough.

Brick length L (fm)

2

3

2

3

Jan **1D Bjorken Expanding geometry**

 Consider a diffuse Woods-Saxon nuclear density profile (for Au+Au central collision)

- The bulk sQGP density profile is computed from the participant transverse density ρ_p :

Initial rapidity density (~1000 RHIC)

$$\rho_{QGP}(x, y, \tau) = \frac{1}{\tau + \tau_0} * \frac{dN}{dy} * \rho_p(x, y)$$

Formation time (0.5 fm/c) <

- The jet production profile is given by the binary collision density T_{AA} :

$$\rho_{Jet}(x, y) = \sigma_{in} T_{AA}(x, y)$$

Inelastic cross section

Implementation of the geometry

 From ideal Boson/Fermion gas statistics, we can obtain the temperature profile of the QGP:

$$\mu[x, y, \tau] = \sqrt{4\pi\alpha} * T[x, y, \tau] = \sqrt{4\pi\alpha} * \left(\frac{\pi^2}{Zeta[3]} \frac{1}{16} \rho_g[x, y, \tau]\right)^{1/3}$$
$$\frac{1}{\lambda_{dyn}[x, y, \tau]} = \frac{1}{c_{nf}(0)} \sigma_{gg} \rho_g[x, y, \tau] = \frac{1}{c_{nf}(0)} \frac{\frac{9}{2}\pi\alpha^2}{\mu[x, y, \tau]^2} \rho_g[x, y, \tau]$$
$$T[0, 0, 0] \simeq 450 MeV (RHIC)$$

$$\frac{\Delta E_{\rm dyn}}{E} = \frac{C_R \alpha_s}{\pi} \frac{L}{\lambda_{\rm dyn}} \int dx \, \frac{d^2 k}{\pi} \, \frac{d^2 q}{\pi} \, \frac{\mu^2}{q^2 (q^2 + \mu^2)} \left(1 - \frac{\sin(\frac{(k+q)^2 + \chi}{xE^+} L)}{\frac{(k+q)^2 + \chi}{xE^+} L} \right) \frac{2(k+q)}{(k+q)^2 + \chi} \left(\frac{(k+q)}{(k+q)^2 + \chi} - \frac{k}{k^2 + \chi} \right) \left(\frac{1 - \frac{\sin(\frac{(k+q)^2 + \chi}{xE^+} L)}{\frac{(k+q)^2 + \chi}{xE^+} L} \right) \frac{2(k+q)}{(k+q)^2 + \chi} \left(\frac{(k+q)}{(k+q)^2 + \chi} - \frac{k}{k^2 + \chi} \right) \frac{1}{(k+q)^2 + \chi} \left(\frac{1 - \frac{1}{k} \frac{1}{k$$

Energy loss and R_{AA}

First compute the fluctuations: $x \frac{dN}{dx} \rightarrow P(\varepsilon)$

- $\frac{\Delta E}{E} = \int \frac{d\phi}{2\pi} d^2 x_0 * \rho_{Jet}(x_0, \phi) * \int_0^1 d\varepsilon * \varepsilon * P(\varepsilon; x_0, \phi)$
- $R_{AA} = \int \frac{d\phi}{2\pi} d^2 x_0 * \rho_{Jet}(x_0, \phi) * \int_0^1 d\varepsilon * (1-\varepsilon)^n * P(\varepsilon; x_0, \phi)$

ollaboration

Energy loss and R_{AA}

First compute the fluctuations:
$$x \frac{dN}{dx} \rightarrow P(\varepsilon)$$

• $\frac{\Delta E}{E} = \int \frac{d\phi}{2\pi} d^2 x_0 * \rho_{Jet}(x_0, \phi) * \int_0^1 d\varepsilon * \varepsilon * P(\varepsilon; x_0, \phi)$
• $R_{AA} = \int \frac{d\phi}{2\pi} d^2 x_0 * \rho_{Jet}(x_0, \phi) * \int_0^1 d\varepsilon * (1 - \varepsilon)^n * P(\varepsilon; x_0, \phi)$

ollaboration

Energy loss and R_{AA}

First compute the fluctuations:
$$x \frac{dN}{dx} \rightarrow P(\varepsilon)$$

• $\frac{\Delta E}{E} = \int \frac{d\phi}{2\pi} d^2 x_0 * \rho_{Jet}(x_0, \phi) * \int_0^1 d\varepsilon * \varepsilon * P(\varepsilon; x_0, \phi)$
• $R_{AA} = \int \frac{d\phi}{2\pi} d^2 x_0 * \rho_{Jet}(x_0, \phi) * \int_0^1 d\varepsilon * (1 - \varepsilon)^n * P(\varepsilon; x_0, \phi)$

Elastic energy loss

1. $P_{el}(\varepsilon) = \delta(\varepsilon - \varepsilon_{el})$

•

- 2. $R_{AA}^{rad+el} = \int_0^1 d\varepsilon \, d\varepsilon' (1 \varepsilon \varepsilon')^n P_{rad}(\varepsilon) P_{el}(\varepsilon')$ $\approx (1 - n\varepsilon_{el}) R_{AA}^{rad}$
- Pion R_{AA} has contribution from both light quarks and gluons $R_{AA}^{\pi} = \frac{1}{2} \left(R_{AA}^{l} + R_{AA}^{g} \right)$
 - Estimate for gluons is simply given by color factor $R_{AA}^{gluons} \approx \left(1 - \frac{9}{4}\varepsilon^{eff}\right)^n = \left(1 - \frac{9}{4}(1 - R_{AA}^{light})^{1/n}\right)^n$
- Electron R_{AA} has contribution from charm and bottom $R_{AA}^{e} = \frac{1}{2}(R_{AA}^{c} + R_{AA}^{b})$

ollaboration

January 5th, 2011

Schematic R_{AA}

The probability of losing a fractional

Proper inclusion of Elastic Energy loss

$$P(\varepsilon) = \int dx P_{rad}(\varepsilon) P_{el}(x - \varepsilon)$$

$$= e^{-\langle N_c \rangle} \delta(\varepsilon) + N e^{-\frac{(\varepsilon - \overline{\varepsilon})}{4T\overline{\varepsilon}}} \qquad \text{We consider gaussian fluctuations of the Elastic Energy loss centered at } \overline{\varepsilon}$$

$$= P_{el}(\varepsilon) = e^{-\langle N_c \rangle} \delta(\varepsilon) + N e^{-\frac{(\varepsilon - \overline{\varepsilon})}{4T\overline{\varepsilon}}} \qquad \text{We consider gaussian fluctuations of the Elastic Energy loss centered at } \overline{\varepsilon}$$

$$= P_{el}(\varepsilon) = e^{-\langle N_c \rangle} \delta(\varepsilon) + N e^{-\frac{(\varepsilon - \overline{\varepsilon})}{4T\overline{\varepsilon}}} \qquad \text{We consider gaussian fluctuations of the Elastic Energy loss centered at } \overline{\varepsilon}$$

$$= P_{el}(\varepsilon) = e^{-\langle N_c \rangle} \delta(\varepsilon) + \overline{P}(\varepsilon)$$

The leading logarithmic expression for the Elastic Energy loss is given by

$$\frac{dE}{dx} = -C_R \pi^2 \alpha^2 T^2 \log \left(\frac{4pT}{E - p + 4T}/\mu\right)$$

Alessandro Buzzatti – Columbia University

TG model (Thoma, Gyulassy / Nucl. Phys. B 351) 18

R_{AA} (p_T) – II

• Obtain $W(p_f, p_i; x_{\perp}, \varphi)$, the probability for a Jet produced at x_{\perp} with direction φ and momentum p_i to exit the plasma with momentum p_f .

Then average over the initial pp production spectrum:

$$\frac{d\sigma^{AA}}{dp_f}(p_f; x_{\perp}, \varphi) = \int dp_i \, \frac{d\sigma^{pp}}{dp_i}(p_i) \, W(p_f, p_i; x_{\perp}, \varphi)$$

• We get R_{AA} averaging over the Jet production profile:

$$R_{AA}(p) = \frac{\int dx_{\perp} d\varphi \, \rho_{Jet}(x_{\perp}) \, \frac{d\sigma^{AA}}{dp}(p)}{\frac{d\sigma^{pp}}{dp}(p)}$$

PRELIMINARY

though the effect is small.

the results

Higher orders in opacity might further improve

The dynamical model helps reducing the difference

between light and heavy quark energy loss, even

- Ouark mass M (GeV)
- Adding the effects of a non uniform Bjorken expanding geometry we flatten the mass dependence of R_{AA}
 - Need to flavor tag heavy quark hadrons
 - Identifying c and b could put the last word on pQCD heavy quark problem
- Charm and light quark behavior is almost equal
 - Possibility to reveal gluon contribution to pion R_{AA}

