## Introduction to Percolation N Giordano -- Purdue University

- What is percolation?
- The percolation threshold connection with phase transitions and critical phenomena
- Fractals and fractal scaling
  - ► upscaling from small to large scales
- Properties
  - ► conductivity
  - ► fluid flow
  - ► strength
- Open issues

[Recommended reference: Introduction to Percolation Theory, by Stauffer and Aharoni] What is Percolation?

• Consider percolation on a lattice



- Behavior depends on dimensionality (a lot) and lattice type (a little)
- Can also consider <u>continuum</u> percolation (more realistic for us, but not covered in these lectures)

### What is Percolation?

 Start with an empty lattice - then occupy sites at random



- Connected occupied sites form clusters
- Percolation is about the properties of these clusters -- size, connectivity, etc.

### Consider connectivity across the lattice

- Connectivity depends on concentration of occupied sites = p
- Connectivity changes a  $p_c$  ( $\approx 0.59$  for site percolation on a square lattice)

p = 0.40

$$p = 0.60$$









July, 2006

### $p_c$ is the "critical" concentration for percolation

- A "connectivity" phase transition occurs at  $p_c \sim 0.59$
- A spanning cluster first appears at  $p_c$
- Many properties are singular at  $p_c$

p = 0.40









p = 0.80

July, 2006

### $p_c$ depends on lattice type

•  $p_c$  is also different for site versus bond percolation

| Lattice          | Site     | Bond    |
|------------------|----------|---------|
| Honeycomb        | 0.6962   | 0.65271 |
| Square           | 0.592746 | 0.50000 |
| Triangular       | 0.500000 | 0.34729 |
| Diamond          | 0.43     | 0.388   |
| Simple cubic     | 0.3116   | 0.2488  |
| BCĊ              | 0.246    | 0.1803  |
| FCC              | 0.198    | 0-119   |
| d = 4 hypercubic | 0.197    | 0-1601  |
| d = 5 hypercubic | 0.141    | 0-1182  |
| d = 6 hypercubic | 0.107    | 0-0942  |
| d = 7 hypercubic | 0.089    | 0-0787  |





## Why is $p_c$ special?

- Consider the forest fire problem
- Each occupied site is a tree
- Start a fire at one site or on one edge
- How long does it take for a fire to burn out?
- How many trees are burned?



 $p \approx p_c$ 

The burn-out time diverges at  $p_c!$ 

- An example of singular behavior at the percolation transition
- Singularity is due to the connectivity of the infinite cluster at  $p_c$



July, 2006

## The spanning cluster is very tenuously connected

• The spanning cluster can be spoiled by removing only a few (1!) sites



 $p \approx p_c$ 

### Strange properties at $p_c$

- The spanning cluster is infinite (since it spans the system) but contains a vanishing fraction of the occupied sites!
- Forms a fractal



July, 2006

# Focus on just the spanning (critical) cluster at $p_c$

- Remove all sites that are not part of the infinite cluster
- The spanning cluster contains
  large holes
- Need a way to describe the geometry of this cluster





Random media summe

Define the effective (fractal) dimensionality of a cluster

- Consider how the mass varies with r
- *m* varies as a power law

 $m(r) \sim r^{d_f}$ 

- *d* ~ *r*<sup>2</sup> for a "regular 2-D cluster
- *d<sub>f</sub>* < 2 for the spanning cluster at *p<sub>c</sub>*
- => fractal cluster

July, 2006



### fractal scaling



### What makes a fractal cluster different?

- Just having holes and cracks is not enough
- Presence of "holes" and "cracks" on all length scales

p = 0.60



## Can construct regular fractals using recursive algorithms

- Called Sierpinski "gaskets"
- Useful for analytic theory
- For cluster (a) exact  $d_f = \log 8 / \log 3 = 1.893$



## **Consider properties**

- Size of largest connected cluster
  - relevant to oil extraction
- Conductivity near  $p_c$ 
  - most theory for electrical conductivity
  - ➤ can also consider fluid "conductivity"
- Mechanical properties
  - rigidity (Young's modulus)
  - ► sound propagation

#### Properties of infinite cluster above $p_c$

• fraction of sites in largest cluster

 $F \sim (p - p_c)^{\beta} \beta \sim 5/36 \text{ (2D)}, 0.41 \text{ (3D)}$ 



### Conductivity vanishes at $p_c$

Near p<sub>c</sub> the conductivity vanishes as a power law

$$\boldsymbol{\sigma} \sim (p - p_c)^{\mu} \rightarrow 0 \text{ at } p_c$$

- $\mu$  = 1.30 (2D) 2.0 (3D)
- different behavior than cluster properties





Scaling of the electrical conductivity with system size at  $p_c$  $\sigma \sim (L - L_c)^{\mu/\nu} \rightarrow 0$  at  $p_c$ 

• Exponents are not independent

July, 2006



## **Elastic properties**

 System can be "floppy" (shear modulus = 0) even above p<sub>c</sub>



- "Rigidity" threshold can be above  $p_c$ !
- Bonding bending forces move transition back to p<sub>c</sub> but behavior is still complicated

### Behavior of elastic moduli above $p_c$

- with purely central forces (no bond bending) elastic constants go to zero above p<sub>c</sub>
- with bond bending get crossover behavior



### "First order"-like behavior

- *f* = fraction of floppy modes
- in some cases f' is discontinuous -- a first order transition



## Open issues

- Properties away from p<sub>c</sub> may be of greatest interest
  - > we shouldn't focus only on  $p_c$
- Real systems may not be truly random
  - ➤ must consider how they are made
  - etching or erosion of a solid will have a different p<sub>c</sub> than a randomly occupied system
  - cracks "propagate" and spread

## Summary

- Percolation is a type of phase transition
- Singular behavior at  $p_c$ 
  - characterized by critical exponents
  - exponents depend on property and dimensionality
- Elastic properties very interesting
  - can affect elastic moduli and sound propagation
- Real percolative media can be more complicated
  - ► how system is produced affects geometry

### References

- General reference:
  - D. Stauffer and A. Aharony, <u>Introduction to</u> <u>Percolation Theory</u>, 2nd edition (Taylor and Francis, 1992)
- Rigidity percolation:
  - ► Feng and Sen, Phys Rev Lett <u>52</u>, 216 (1984)
  - ► Jacobs and Thorpe, Phys Rev E<u>53</u>, 3682 (1996)
  - ➤ Thorpe, et al., J. Non-Crystalline Solids <u>266-269</u>, 859 (2000)