
Numerical Methods for Partial 
Differential Algebraic Systems of 

Equations 
C.T. Miller

University of North Carolina



Scope

Linear solvers
Nonlinear solvers
Algorithms
Examples from mathematical geosciences 



Approximation of PDAE’s

Model 
Formulation

Discrete 
Approximation

Nonlinear
Solver

Linear Solver
• Many model forms exist
• Each approximation component 
has a variety of methods
• Advantages and disadvantages 
for choices made for each 
component
• Algorithmic considerations are 
important as well



Elliptic Equation Example



Elliptic Equation Example

Assume a second-order FDM approximation 
was used as the discrete operator
Also assume that the domain is regularly 
shaped and discretized
Solve the algebraic system using Gaussian 
elimination
Consider the computational requirements to 
compute the approximation for a 100 x 100 
grid in 2D and a 100 x 100 x 100 grid in 3D



Elliptic Equation Example

Chief computational issues involve memory, CPU 
time, and more completely computational 
efficiency
2D computational requirements are 800 MB and 
11 min on a 1 Gflop machine
3D computational requirements are 8 TB and 21 
years! 
Lessons: 
1. Computational performance can be an issue even for 

relatively simple problems
2. Scaling of methods and algorithms should be 

considered when choosing methods
3. Need to consider and exploit special features possible 

for model



Elliptic Equation Example



Work Scaling

Work depends upon number and cost of 
operations
Some useful equalities for assessing work are



Gaussian Elimination Work



Comparison of Computational Work



Elliptic Example Implications

In 2D storage reduced from 800 MB to 16 
MB and CPU time reduced from 11 min to 
0.2 sec---clearly acceptable
In 3D storge reduced from 8 TB to 160 GB 
and CPU reduced from 21 years to 2.31 
days---work might be acceptable but storage 
is not based on current standards



Ponderables

What are the implications for the scaling of 1D 
problems using a similar discrete operator?
What would be the implications of needing to 
perform pivoting to reduce numerical round-off 
error?
What guidance applies for the mapping of the local 
discrete operator to the global system?
What simple observation would allow us to reduce 
the storage and work estimates for the banded case 
by an additional factor of 2?



Algebraic Solver Observations

Even for a simple elliptic model, a compact 
discrete operator, and an intermediate 
discretization level---direct methods of 
solution are untenable
Storage considerations are even more severe 
than work limitations 
The direct methods considered are relatively 
inefficient candidates for parallel 
processing, which is the chief strategy for 
increasing computational performance  



Sparse Storage

Our example problem, and many others that 
occur routinely in computational science, 
are not only banded and symmetric but also 
very sparse
We took partial advantage of this for banded 
systems, but still had to live with fill in
Iterative methods endeavor to approximate 
the solution of linear systems taking 
advantage of the sparse nature
Special storage schemes are needed to do so



Sparse Storage Schemes

Many schemes exist
Store only non-zero entries
Must be able to reconstruct initial matrix 
and perform common matrix-vector 
operations
Some examples include primary storage,  
linked list, and specific structure based 
approaches



Primary Storage



Primary Storage Implications 



Ponderables

Show the primary storage scheme meets our 
requirements for a valid approach
What would be the implication of using 
primary storage for the elliptic example in 
1D?
What approaches might further reduce the 
storage required?



Iterative Solution Approaches

Seek approaches that in general can operate 
on linear systems stored in a sparse format
Two main classes exist: (1) stationary 
iterative methods, and (2) nonstationary
iterative methods
A primary contrast between direct and 
iterative methods is the approximate nature 
of the solution sought in iterative 
approaches



Stationary Iterative Method Example



Stationary Iterative Methods

Theorem: Conditions for the convergence and rate 
of convergence of this and related methods can be 
proven
Similar related methods such as Gauss-Seidel and 
successive over-relaxation can converge much 
faster and have a similar computational expense 
per iteration, which is on the order of one sparse 
matrix-vector multiply
These methods have special significance and use 
as preconditioners for non-stationary iterative 
methods and as the basis of multigrid methods



Conjugate Gradient Method



Conjugate Gradient Method



Conjugate Gradient Method

Theorem: Convergence can be proven to occur in 
at most n iterations for SPD systems
Sufficiently accurate solution can usually be 
obtained in many fewer iterations depending upon 
the distribution of the eigenvalues of the matrix
Preconditioning can greatly increase the rate of 
convergence
PCG methods can be shown to converge optimally 
at a rate of n log(n)



Non-Symmetric Systems

GMRES is a related krylov subspace method for 
non-symmetric systems for which convergence can 
also be proven
The expense of GMRES typically leads to 
simplifications of the general algorithm in the way 
of restarts
Alternative krlov-subspace methods, such as 
BiCGstab, have proven useful in practice, even 
though they are not amenable to proofs of 
convergence
Suggested references: Kelley (SIAM, 1995) and 
Barrett et al. (Templates, SIAM, 1994)



Nonlinear Models



Nonlinear Models

Nonlinear models are very common
Nonlinear algebraic problems results from 
discrete representations
Solution requires an iterative approach 
leading to increased complexity and expense
Convergence issues are more difficult for 
nonlinear problems than for linear problems
A few methods are commonly used



Picard Iteration



Picard Iteration

Nonlinear iteration proceeds until convergence at 
each time step
Theorem: Rate of convergence is linear
For many problems of interest in hydrology, 
Picard iteration has proven to be robust
Method is relatively cheap computationally per 
iteration and easy to implement
Also known as fixed-point iteration, successive 
substitution, or nonlinear Richardson iteration



Newton Iteration



Newton Iteration



Newton Iteration

Theorem: Close to the solution, Newton iteration 
converges quadratically
[J] may be expensive to compute or not accessible
The ball of convergence of Newton’s method may 
be small
Each nonlinear iteration requires the solution of a 
linear system of equations, which may be 
accomplished directly or more commonly 
iteratively---resulting in nested iteration



Newton Iteration

If [J] cannot be compute analytically, it can be 
formed using a finite difference approximation
If [J] is costly to compute, it can be reused over 
multiple iterations, which is known as the chord 
method
Inexact Newton methods result when the iterative 
linear solution tolerance is functionally dependent 
upon the magnitude of f



Newton Iteration/Line Search



Newton Iteration/Line Search

Accept Newton direction but not the step 
size
If step size doesn’t produce a sufficient 
decrease in ||f|| reduce the magnitude of the 
step by ½ (Armijo’s rule) or a local 
quadratic/cubic model
Continue until a sufficient decrease is found
Close to the solution, full Newton steps and 
thus quadratic convergence is expected



Algorithms

MOL approaches---formal decoupling of 
spatial and temporal components
Operator splitting methods---approximate 
the overall operator as a sum of operators 
acting on components of the original 
problem
Adaptive methods in time, space (h, p, r, h-
p) and space-time 



Split-Operator Approaches



Sequential Split-Operator Approach



Split-Operator Approaches

Variety of algorithms exist with tradeoffs of 
complexity and accuracy
Splitting error can range from O(Δt) to zero
Allow combining methods well suited to 
individual components---hyperbolic and 
parabolic parts, linear and nonlinear parts, 
etc
Can lead to reductions in overall size of 
solve for any component and advantages for 
parallel algorithms 



Computation and Algorithms

D. E. Keyes, Columbia 
University

• Advances in 
algorithmic 
efficiency rival 
advances in 
hardware 
architecture
• Consider 
Poisson’s 
equation on a 
cube of size N=n3

• If  n=64, this 
implies an overall 
reduction in flops 
of ~16 million
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Computation and Algorithms

D. E. Keyes, Columbia 
University

year

relative 
speedup



Where to go past O(N) ?

D. E. Keyes, Columbia 
University

Hence, for instance, algebraic multigrid (AMG), 
obtaining O(N) in  indefinite, anisotropic, or
inhomogeneous problems
Since O(N) is already optimal, there is nowhere further 
“upward” to go in efficiency, but one must extend 
optimality “outward”, to more general problems

AMG Framework
Rn

Choose coarse grids, 
transfer operators, and 
smoothers to eliminate 

these “bad” components 
within a smaller 

dimensional space, and 
recur

error easily 
damped by 
pointwise 
relaxation

algebraically 
smooth 

error



Computational Performance

TOP500 SUPERCOMPUTER SITES 
(http://www.top500.org/ )

• Current peak performer is the 
DOE’s BlueGene/L at LLNL, 
which has 131,072 processors 
and peaks at 367,000 GFLOPs

• Number 10 on the current list 
is Japan’s Earth Simulator with 
has 5,200 processors and peaks 
at 40,960 GFLOPs, which was 
built in 2002

• Number 500 on current list is a 
1028 Xeon 2.8 GHz processor 
IBM xSeries cluster, which 
peaks at 5,756.8 GFLOPs



Richards’ Equation Formulation



Richards’ Equation Formulation



Richards’ Equation Formulation



Richards’ Equation Formulation



Standard Solution Approach 

Mixed-form of RE
Arithmetic mean relative permeabilities
Analytical evaluation of closure relations
Low-order finite differences or finite 
element methods in space
Backward Euler approximation in time
Modified Picard iteration for nonlinear 
systems
Thomas algorithm for linear equation 
solution



Algorithm Advancements 

Spline closure relations
Variable transformation approaches
Mass conservative formulation
DAE/MOL time integration
Spatially adaptive methods
Nonlinear solvers
Linear solvers



DAE/MOL Solution to RE



DAE/MOL Solution to RE



DAE/MOL RE

• Temporal truncation error 
comparison

• Mixed-form Newton iteration, line 
search

• Heuristic adaptive time stepping

• DASPK first and fifth order 
integration

• Reference: Tocci et al. (1997), AWR



SAMOL Algorithm



Infiltration Test Problem

• VG-Mualem psk relations 

• Dune sand medium

• Drained to equilibrium   

• First-kind boundary 
conditions

• Simulation time in days



SAMOL Simulation Profile



Comparison of RE Results



Computational and Algorithm Performance 



Dissolution Fingering Example



Conservation Equations and Constraints



Simulation of Dissolution Fingering

Two-phase flow and species transport
Complexity in flow field must be resolved
Separation of time scales
Adaptive methods in space useful



Current Research Foci

Locally conservative methods
Higher-order methods in space and time
Integral equation methods
Multiscale methods
Problem solving environments


