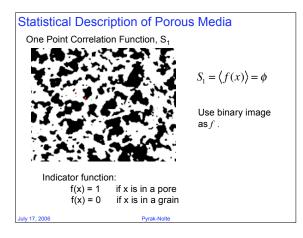


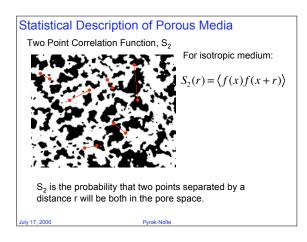
Characterizing Porous Media

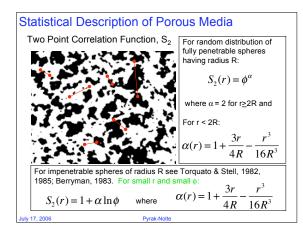
Pore Size Distribution:

$$\int_{\partial}^{\infty} \alpha(\delta) d\delta = 1$$

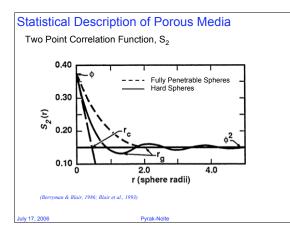

 α is the fraction of total pore space that has a pore diameter of δ and $\delta\text{+}d\delta$

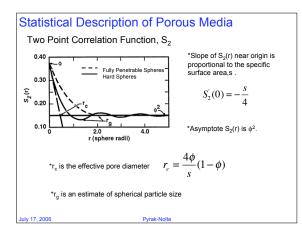
Cummulative Pore Size Distribution:

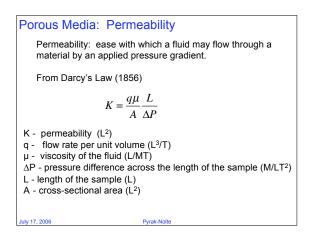

$$f(\delta) = \int_{\partial}^{\infty} \alpha(\delta) d\delta$$
 $f(0) = 1$

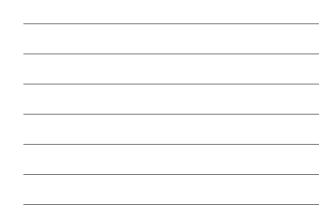

 $f(\delta)$ is the fraction of that have a pore diameter larger than $\delta.$

Pyrak-Nolte









Packing The	eory to	Model P	orous Me	edia		
Simple Cul	bic	Cubic Tetrahedral				
from Mitchell, J., 1993, Fundamentals of Soil Sehavior, 2nd Edition, John Viley & Sons, Toronto)	é	Tetragonal Sphenoidal				
Pyrami	dal	Layer Spacing $(R = radius)$	Tetrahe	Porosity		
Simple Cubic	6	(R - 1aulus)	Volume of Unit 8R ³	(%)	0.91	
Oubical-Tetrahedral	8	2.R	$4\sqrt{3R^3}$	39.54	0.91	
rented rented tur	10	$R\sqrt{3}$	6R ³	39.54	0.65	
	10			50.19	0.45	
Tetragonal-Sphenoidal Pyramidal	12	$R\sqrt{2}$	$4\sqrt{2R^3}$	25.95	0.34	

