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[1] We simulate two-fluid-phase flow at the pore scale using a lattice Boltzmann (LB)
approach. Using a parallel processing version of the Shan-Chen model that we developed,
we simulate a set of ideal two-fluid systems and a model two-fluid-phase porous
medium system comprised of a synthetic packing with a relatively uniform distribution of
spheres. We use the set of ideal two-phase systems to validate the approach and provide
parameter information, which we then use to simulate a sphere-pack system. The sphere-
pack system is designed to mimic laboratory experiments conducted to evaluate the
hysteretic capillary pressure saturation relation for a system consisting of water,
tetrachloroethylene, and a glass bead porous medium. Good agreement is achieved between
the measured hysteretic capillary pressure saturation relations and the LB simulations when
comparing entry pressure, displacement slopes, irreducible saturation, and residual
entrapment. Our results further show that while qualitatively similar results are obtained
when comparing systems consisting of 1200 spheres and 150 spheres, there is a significant
difference between these two levels, suggesting a lower bound on the size of a representative
elementary volume. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1831 Hydrology:

Groundwater quality; 1832 Hydrology: Groundwater transport; 1875 Hydrology: Unsaturated zone;
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1. Introduction

[2] Multiple-fluid-phase (hereinafter simply multiphase)
porous medium systems occur routinely in nature and are of
significant interest within the water resources community.
While the standard approach for modeling such systems
relies upon a porous medium continuum scale representa-
tion [Aziz and Settari, 1979; Abriola and Pinder, 1985;
Abriola, 1988; Mayer and Miller, 1990; Miller et al., 1998],
a significant body of work considers the more fundamental
pore scale [Lenormand and Zarcone, 1988; Cushman, 1990;
Adler, 1992; Celia et al., 1995; Lowry and Miller, 1995;
Ferréol and Rothman, 1995; van Genabeek and Rothman,
1996; Pereira, 1999; Hilpert and Miller, 2001]. While the
majority of the pore-scale work has consisted of network
models [e.g., Koplik and Lasseter, 1982; Blunt and King,
1991; Oren and Pinczewski, 1995; Dillard and Blunt, 2000;
Man and Jing, 2000; Blunt, 2001; Hilpert et al., 2001,
2003; Thompson, 2002], a growing interest is evolving in
the use of lattice Boltzmann (LB) models for single [Succi
et al., 1989; Martys et al., 1994; Hou et al., 1995; Bosl et

al., 1998; Maier et al., 1998; D. Zhang et al., 2000; Pan et
al., 2001] and multiphase flow [Rothman and Keller, 1988;
Shan and Chen, 1994; Paunov et al., 1996; Martys and
Chen, 1996; Rothman and Zaleski, 1997; Chen and Doolen,
1998; Martys and Douglas, 2001; Hazi et al., 2002].
[3] LB models are growing in popularity because they

provide a convenient means to simulate the true pore
geometry of a porous medium system for both single-fluid
and multiphase flow. Network models, by contrast, rely
upon idealizations of the pore morphology and topology
[Blunt, 2001]. We believe that the pore morphology and
topology of real porous medium systems are extremely
complex and that accurate pore-scale resolution of the
porous medium will enable accurate and fruitful pore-scale
simulations for a variety of fundamental purposes. However,
while LB models have significant promise, they have
received relatively little use in the water resources field.
We believe that several reasons exist for the present situa-
tion: (1) LB modeling is a fairly recent method that is still
evolving, so fewer codes have been developed for it than for
traditional porous medium continuum and pore network
modeling approaches [van Genabeek and Rothman, 1996;
Desplat et al., 2001; Miller and Gray, 2002]; (2) determin-
ing the pore structure of a porous medium is still extremely
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difficult in its own right and the subject of significant
investigative research [Lin and Cohen, 1982; Yao et al.,
1993; Soll et al., 1994; Spanne et al., 1994; Baldwin et al.,
1996; Sederman et al., 1997; Mantle et al., 2001]; and
(3) LB models are computationally very expensive—requir-
ing efficient parallel implementations of the algorithms and
access to large amounts of supercomputer time in order to
simulate multiphase porous medium systems with sufficient
resolution to provide meaningful results [Kandhai et al.,
1998; Miller et al., 1998; Hilpert and Miller, 2001].
[4] These considerations notwithstanding, four general

types of lattice Boltzmann models have been advanced to
simulate multiphase flow systems. The first type is the so-
called RK LB model for immiscible two-phase flow pro-
posed by Gunstensen et al. [1991] and based on the original
lattice gas model by Rothman and Keller [1988]. Gunsten-
sen et al. used colored particles to distinguish between
phases and applied a perturbation step so that Laplace’s
law is approximately recovered at an interface. The color
model was further developed by later studies [Grunau et al.,
1993], but it has serious limitations. One of the most
significant problems is that the model is not rigorously
based upon thermodynamics, so it is difficult to incorporate
microscopic physics into the model [Boghosian and
Coveney, 2000; He and Doolen, 2002].
[5] The second type of LB approach (SC model) used to

model multicomponent fluids was derived by Shan and Chen
[1993, 1994] and later extended by others [Shan and Doolen,
1996; Martys and Chen, 1996; Martys and Douglas,
2001]. In the SC model, a nonlocal interaction force
between particles at neighboring lattice sites is introduced.
The net momentum, modified by interparticle forces, is not
conserved by the collision operator at each local lattice
node, yet the system’s global momentum conservation is
exactly satisfied when boundary effects are excluded [Shan
and Doolen, 1996]. Hou et al. [1997] compared the above
two types of models for simulating a static bubble in a two-
fluid system and concluded that the SC model is a major
improvement over the RK model. The main drawback of the
SC model, however, is that it is not well-established
thermodynamically. One can not introduce temperature
since the existence of any energy-like quantity is not known
[He and Doolen, 2002; Hazi et al., 2002].
[6] The third type of LB model for multiphase flow is

based on the free-energy (FE) approach, developed by Swift
et al. [1995, 1996], who imposed an additional constraint on
the equilibrium distribution functions. The FE model con-
serves mass and momentum locally and globally, and it is
formulated to account for equilibrium thermodynamics of
nonideal fluids, allowing for the introduction of well-
defined temperature and thermodynamics [Nourgaliev et
al., 2003]. The major drawback of the FE approach is the
unphysical non-Galilean invariance for the viscous terms in
the macroscopic Navier-Stokes equation. Efforts have been
made to restore the Galilean invariance to second-order
accuracy by incorporating the density gradient terms into
the pressure tensor [e.g., Holdych et al., 1998; Kalarakis et
al., 2002, 2003].
[7] The fourth type of LB model has evolved from efforts

to derive a thermodynamically consistent multiphase theory
based upon the continuous Boltzmann equation [e.g., Luo,
1998; He et al., 1998, 1999; Ihle and Kroll, 2000; R. Zhang

et al., 2000; He and Doolen, 2002; Luo and Girimaji,
2003]. This new class of model overcomes the unphysical
features involved in the previous three types of multiphase
LB models. While the preliminary work performed on this
new class of model is encouraging, this type of model is still
in active development, and it has not yet been extended to
porous medium systems.
[8] The first three types of LB models have been

employed increasingly for multiphase porous medium sys-
tems: to simulate the displacement of immiscible droplets in
a channel [Kang et al., 2002]; to study dispersion in two-
phase flow through reconstructed porous media [Bekri and
Adler, 2002]; to investigate relative permeability [Martys
and Chen, 1996]; to study the contact line in a capillary tube
[Fan et al., 2001]; to model residual fluid entrapment
[Buckles et al., 1994; Ferréol and Rothman, 1995]; and to
study contact angle hysteresis in capillary tubes [Hazlett
and Vaidya, 2002]. However, most of these works were
based either on two-dimensional models with simple geom-
etries, or lacked quantitative comparison with experimental
studies. Very few studies [Martys and Chen, 1996; Yang et
al., 2000; Tolke et al., 2002; Bekri et al., 2003] have
reported simulations of multiphase flow in three-dimension-
al porous medium systems, in part because of the compu-
tational limitations noted above. To the best of our
knowledge, no detailed comparisons between LB simula-
tions and laboratory experiments for capillary pressure-fluid
saturation relations have been reported in the peer-reviewed
literature for three-dimensional multiphase systems.
[9] The specific objectives of this work are (1) to develop

an efficient, parallel LB code capable of simulating two-
fluid-phase flow in porous medium systems; (2) to validate
our code by simulating a range of simple two-fluid systems;
(3) to use simulation results from simple systems to guide
parameter identification for more complex systems; (4) to
investigate the discretization level necessary to achieve
essentially resolution-independent results for two-fluid-
phase flow in porous media; (5) to explore the domain size
needed to obtain a representative elementary volume; and
(6) to compare LB simulations with well resolved experi-
mental measurements of hysteretic capillary pressure satu-
ration relationships in two-fluid phase porous medium
systems.

2. Simulation Model

2.1. Model Description

[10] We implemented the SC LB model [Shan and Chen,
1993, 1994] in three dimensions for a two-fluid-phase
porous medium system, which is considered isothermal.
The SC model allows for fluid phases with different
wettabilities, densities, and viscosities. This model advances
particle probabilities in time on a regular three-dimensional
lattice, corresponding to 15 fixed velocity vectors per fluid
phase, or component, using both an advection and a
collision operator. The distribution function values,
corresponding to probabilities, and model constants can in
turn be used to deduce fluid densities and velocities. These
results, together with model parameters, then help us
discover fluid viscosities, the overall fluid velocity, pres-
sure, and the contact angle between a wetting phase in
contact with both the solid phase and the nonwetting fluid.
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[11] The LB equation for the kth fluid is given by [Shan
and Chen, 1993]:

f ki xþ ei; t þ 1ð Þ � f ki x; tð Þ ¼ 1

tk
f
k eqð Þ
i x; tð Þ � f ki x; tð Þ

h i
;

i ¼ 0; 1; . . . ; 14

ð1Þ

where fi
k (x,t) is the distribution function of the kth fluid

component, which specifies the number of fluid particles of
the species k at lattice location x and time t traveling in the
ith direction; ei is a lattice velocity vector that corresponds
to allowable directions of the velocity vector; tk is the
relaxation time of the kth fluid. The right-hand side of
equation (1) represents the collision term, which is
simplified to the equilibrium distribution function fi

k(eq) by
the so-called BGK (Bhatnagar-Gross-Krook), or the single-
time relaxation approximation [Bhatnagar et al., 1954].
[12] The set of velocity vectors are defined as

ei ¼

0; 0; 0ð Þ; i ¼ 0

�
d1;i � d2;i; d3;i � d4;i; d5;i � d6;i

�
; i ¼ 1; . . . ; 6

�
1� 2 d8;i þ d10;i þ d12;i þ d14;i

� �
;

1� 2 d8;i þ d10;i þ d11;i þ d13;i
� �

;

1� 2 d8;i þ d9;i þ d12;i þ d13;i
� ��

; i ¼ 7; . . . ; 14

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

where dj,i is the Kronecker delta function. Equation (2)
implies ~e0j j ¼ 0; eij j ¼ 1 for i = 1, . . ., 6, and eij j ¼

ffiffiffi
3

p
for

i = 7, . . ., 14.
[13] The macroscopic fluid density rk, fluid velocity vk

and common velocity v are obtained by

rk x; tð Þ ¼
P

i f
k
i x; tð Þ;

vk x; tð Þ ¼
P

i f
k
i x; tð Þei=rk x; tð Þ;

v x; tð Þ ¼
P

k rkvk=tk
� ��P

k rk=tk
� �

:

ð3Þ

[14] The functional form of the equilibrium distribution
fi
k(eq) = f(rk, vk(eq)) has the following form for the purpose of
recovering the Navier-Stokes equation for each fluid com-
ponent [Chen et al., 1992; Hou et al., 1997]:

f
k eqð Þ
i

¼
rklk

7þ lk
� 1

3
rkvk eqð Þ � vk eqð Þ; i ¼ 0

wi

�
rk

7þ lk
þ 1

3
rk ei � vk eqð Þ
 �

þ 1

2
rk ei � vk eqð Þ
 �2

� 1

6
rkvk eqð Þ � vk eqð Þ

�
; i ¼ 1; . . . ; 14

8><
>:

ð4Þ

where wi = 1 for i = 1, . . ., 6, and wi = 1/8 for i = 7, . . ., 14. lk

in equation (4) is an adjustable parameter that can be chosen
in the admissible range limited by numerical stability.
[15] When the above equilibrium distribution function is

chosen, the pressure of a pure kth fluid component Pk is
given by [Shan and Chen, 1993; Hou et al., 1997]

Pk ¼ Ck
s

� �2
rk ¼ 3

7þ lk
rk : ð5Þ

In equations (4) and (5), lk is a parameter that is related to
the speed of sound Cs

k. The corresponding kinematic
viscosity vk is (2tk � 1)/6. With the long-range interparticle
forces included in the model, besides the momentum change
of the kth fluid due to the collisions with other fluids, there
exists an extra momentum change due to interaction forces.
Hence the equilibrium velocity vk(eq) in equation (4) is
defined as [Shan and Chen, 1993, 1994]

rkvk eqð Þ ¼ rkvþ tkFk ; ð6Þ

where Fk is the total interaction force on the kth fluid
component, including the fluid-fluid and fluid-solid
interactions.

2.2. Fluid-Fluid Interaction Force

[16] In the SC model, nearest-neighbor interactions are
used to define the interparticle forces. Ff�f

k (x), the fluid-
fluid interaction force on kth fluid at site x is the sum of the
forces between the kth fluid particle at x and the k0th fluid
particles at neighboring sites x0

Fk
f�f xð Þ ¼ �yk xð Þ

X
x0

Gkk 0 x; x
0ð Þyk 0 x0ð Þ x0 � xð Þ; ð7Þ

where yk(rk), the so-called ‘‘effective mass’’ [Shan and
Doolen, 1995], is a function of local density and Gkk’

represents the strength of the interpartical force. In our
study yk = rk is used for simplicity; other choices of yk

lead to different equations of state for the composite fluid
[Shan and Chen, 1994; Shan and Doolen, 1995]. In
equation (7), Gkk0 = Gk0k is a symmetric matrix based upon
a Green’s function of the form

Gkk 0 x; x
0ð Þ ¼

g if x� x0j j ¼ 1

g=
ffiffiffi
3

p
if x� x0j j ¼

ffiffiffi
3

p

0 otherwise;

8>>>><
>>>>:

ð8Þ

where g is the fluid-fluid interaction coefficient. By choos-
ing the sign and the magnitude of g properly, fluids can
separate so that immiscible flow behavior motivated by
interfacial tension can be simulated [Hou et al., 1997].

2.3. Fluid-Solid Interaction Force

[17] The interaction force between the kth fluid at site x
and the solid wall at site x0 is formulated as [Martys and
Chen, 1996]:

Fk
f�s xð Þ ¼ �rk xð Þ

X
x0

Gks x; x
0ð Þs x0 � xð Þ: ð9Þ

At the fluid-solid interface, the solid is regarded as a phase
with constant density s, which is 1 for a solid and 0 for a
pore. To be consistent with the fluid-fluid interaction
coefficient, we let

Gks x; x
0ð Þ ¼

gks if x� x0j j ¼ 1

gks=
ffiffiffi
3

p
if x� x0j j ¼

ffiffiffi
3

p

0 otherwise;

8>>>><
>>>>:

ð10Þ
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where gks represents the interactive strength between the kth
fluid and the solid phase. One can choose the sign and the
magnitude of gks to distinguish the different wetting prop-
erties of pure fluids. The sign of gks shows whether
component k is attractive (negative sign) or repulsive
(positive) to the solid phase. By adjusting the gks for each
fluid, a desired contact angle q between a fluid-fluid
interface and a solid, as illustrated in Figure 1, can be
obtained.
[18] With the presence of interparticle forces Fk = Ff�f

k +
Ff�s

k , the collision operator does not conserve momentum
locally, as shown in equation (6). Nevertheless, since Gkk0

defined in equation (8) is a symmetric matrix, the momen-
tum of the whole fluid system is conserved, provided that
only fluid-fluid interactions are considered and that there is
no net momentum flux from the boundary conditions [Shan
and Doolen, 1995]. We ignore the external body force in the
model because the systems of concern in this work are
dominated by capillary forces.
[19] The continuity and momentum conservation equa-

tions for the whole fluid can be obtained by the Chapman-
Enskog expansion [Shan and Chen, 1993; Shan and
Doolen, 1995]. With the above definition of the fluid-fluid
interaction force and the lattice structure, we can derive the
following equation of state in a straightforward manner:

P ¼
X
k

Ck
s

� �2
rk

" #
Iþ 2þ 8ffiffiffi

3
p

� �X
k

1� 1

2tk

� �X
k 0

gykyk 0 ;

ð11Þ

where P is the overall fluid pressure. The second term on
the right-hand side of equation (11), which represents a
nonideal gas law, depends explicitly on the fluid-fluid
interaction force Ff�f

k . Note that the fluid-solid interaction
force Ff�s

k exists only on the fluid-solid interface, so it does
not affect the macroscopic fluid equations [Kang et al.,
2002]. The overall fluid velocity u is defined as ru =
�k�i fi

kei +
1
2
�kF

k [Shan and Doolen, 1995], where r =
�kr

k is the total density of the fluids.

3. Experimental System

[20] A primary goal of this work is to compare two-fluid-
phase LB simulations with experimental measurements of a
hysteretic capillary pressure-saturation (P � S) relation; we
summarize briefly a series of NAPL-water displacement

experiments reported by Hilpert et al. (2001), which we
used for this purpose. A 1-m long 
 2.5 cm-diameter
porous medium column was used to examine the capillary
P � S relation in a glass bead packing, labeled as GB1b.
Dyed tetrachloroethylene (PCE) and water were the non-
wetting phase (NWP) and wetting phase (WP), respectively.
The bottom and the top of the column were connected to a
constant pressure NWP and WP reservoirs, respectively.
Various vertical equilibrium saturation profiles were
obtained by successive changes of the reservoir elevations.
Provided that the porous medium is homogeneous through-
out the long vertical column, the column approach is
analogous to a retention-cell experimental procedure with
no gravity effect [Schiegg, 1979, 1990] in which the P � S
relation is measured by using step changes in the elevation
of the constant-head fluid reservoirs. Table 1 summarizes
the properties of the experimental GB1b system.
[21] Constitutive relations for multiphase flow in porous

media are dominated by capillary forces at the pore scale.
Gravity and viscous forces also contribute to multiphase
flow behavior. To evaluate the effect of these forces for the
experimental system considered, three nondimensional var-
iables, the capillary number Ca, which describes the ratio of
viscous forces to capillary forces, the viscosity ratio M, and
the Bond number Bo, which describes the ratio of gravity
forces to capillary forces, are often used and defined as
[Mayer and Miller, 1992]:

Ca ¼ vwmw=g

M ¼ mn=mw

Bo ¼ gc rn � rwð ÞR2=g

ð12Þ

where vw is the aqueous phase Darcy velocity, gc is the
gravitational constant, and R is the mean pore radius. The
values of M and Bo are listed in Table 1. Viscous forces
were insignificant because of the quasi-static nature of the
experiments and the small incremental steps taken in the
redistribution process.

4. Model Calibration

[22] The primary physical parameters that must be
determined in the two-phase LB model include densities
and viscosities of fluids, as well as the fluid-fluid and
fluid-solid interaction coefficients. To calibrate these non-
dimensional model parameters, two types of numerical
experiments were conducted: bubble tests in the absence

Figure 1. Contact angle between a fluid-fluid interface
and a solid wall. Here g represents the interfacial tension
between fluids, and q denotes the contact angle.

Table 1. Properties of the Experimental GB1b Multiphase System

Property Value

Arithmetic diameter D (mm) 0.1156 ± 0.0121
Porosity f 0.356 ± 0.002
NWP and WP dyed PCE and water
NWP density rn (g/cm

3) 1.613 ± 0.002
WP density rw (g/cm3) 0.998 ± 0.002
NWP viscosity mn (cp) 1.844
WP viscosity mw (cp) 1.0
Interfacial tension g (dyn/cm) 36.23 ± 0.21
Viscosity ratio M 1.844
Bond number Bo 8.9 
 10�5
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of a solid phase and displacement tests of one fluid by
the other in axially symmetric tubes.

4.1. Bubble Test

[23] Test problems were simulated for both two-dimen-
sional and three-dimensional bubbles. The domain size in
the two-dimensional bubble test was 64 
 64 
 3 lattice
units, with a cylindrical NWP bubble with a circular cross
section in the xy plane located in the middle of the domain.
For the three-dimensional bubble test, the domain size was
64 
 64 
 64 lattice units with a spherical NWP bubble
inside. Periodic boundary conditions were used in all three
directions. Initially, a NWP bubble with a certain radius was
immersed totally in the WP. At steady state, in the absence
of a solid phase and body forces, each fluid phase has a
constant pressure at the interface. The pressure difference Pc

across the fluid interface is related to the radius R of the
steady state NWP bubble by Laplace’s law [Bear, 1972]:

Pn � Pw ¼ Pc ¼ c
g

R
c ¼ 1 for 2-D; c ¼ 2 for 3-Dð Þ ð13Þ

[24] The model parameters needed for the bubble test
were initial densities rn and rw both inside and outside the
bubble, relaxation times tn and tw, equilibrium distribution
parameters ln and lw, and the fluid-fluid interaction coef-
ficient g. To distinguish between nondimensional model
variables and the physical quantities, the latter are marked
with a superscript *. Common dimensional equations are:
v* = v0v, r* = r0r, P* = r0v0

2P, R* = l0R and v* = v0l0v = v0l0
(2t � 1)/6, where variables with a subscript 0 are the
characteristic variables used to represent a physical system.
[25] We matched the dynamic viscosity ratio M between

fluids, which is an important parameter for fluids displace-
ment [Dias and Payatakes, 1986]:

M ¼ mn*
mw*

¼ nn* rn*
nw* rw*

¼ 2tn � 1ð Þ rn
2tw � 1ð Þ rw

ð14Þ

There are two ways to achieve the desired dynamic viscosity
ratio: one is to match both the density ratio and kinematic
viscosity ratio (for simplicity, we call it case 1); the other is to
assume the same nondimensional density for both fluids and
match the dynamic viscosity ratio desired by adjusting the
kinematic viscosity of the two fluids (case 2), which is a
reasonable approach if body forces are neglected, as they are
in this work because of capillary force dominance.
[26] For case 1, in which both ratios match real values, we

chose tn = 1, so tw was computed as 0.94 according to
equation (14). We further let rn = 150, hence rw was 93.
According to equation (11), we chose ln and lw from the
following, in order to have equal pressures for the pure fluid
phases:

3

7þ ln

rn ¼
3

7þ lw

rw: ð15Þ

Realizing that l cannot be arbitrarily chosen because of its
effect on numerical stability for this model, we let lw = 1, so
ln = 5.9.
[27] For case 2, in which the density ratio was not

matched, we let rn = rw = 150 and ln = lw = 2, the same

l value used in our previous single-phase LB model [Pan et
al., 2001]. We also chose tw = 1 and tn = 1.42 to match M.
[28] The initial fluid densities in case 1 were rn = 150 and

rw = 0 inside the bubble, and rn = 0 and rw = 93 outside. In
case 2, similar values were used other than rw = 150 outside
the bubble. Those initial densities differed from that of Hou
et al. [1997], who claimed that there must be a small
amount of WP fluid inside the bubble and a small amount
of NWP fluid outside the bubble for numerical stability. We
did not experience the instability problem with initially zero
NWP and WP densities outside and inside the bubble,
respectively. Compared to Hou et al.’s setting, we observed
slightly larger fluctuations of fluid densities during the first
ten iterations, after which the fluctuation decreased to a
negligible level. Steady state was considered to be achieved
when the following criterion was satisfied:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x u x; tð Þ � u x; t � 50ð Þ½ �2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x u x; tð Þ2
q < 10�6: ð16Þ

[29] In simulations of both cases, the fluid interaction
coefficient g was set to 0.001. If g was less than 0.001, the
interaction force between fluids was not large enough to
produce the desired phase separation, while a larger g value
(g > 0.0012) led to larger spurious velocities at the fluid-
fluid interface, and consequently negative distribution func-
tions, and numerical instability. Negative distribution
functions were more likely to occur for case 1 where a
larger value of l was used (ln = 5.9) than for case 2.
[30] At steady state, the fluid pressures across the inter-

face were determined by equation (11). To test Laplace’s
law, shown in equation (13), we carried out simulations with
various initial bubble radii. Radius R of the steady state
bubble was calculated as described by Hou et al. [1997].
The pressure differences across the interface are plotted with
respect to R in Figure 2, which shows good agreement with
Laplace’s law for both cases. The slope of the linear fit is
the nondimensional interfacial tension g, which was deter-
mined as 14.68 for case 1 and 22.71 for case 2.
[31] Although both cases with different parameter set-

tings agree well with Laplace’s law, we chose to follow the
case 2 approach for all subsequent work reported herein. We
based this choice upon the physical equivalence of the two
methods for the systems of concern and the more stable
nature of the simulations under case 2 conditions.

4.2. Two-Fluid Displacement Test in Capillary Tubes

[32] With the presence of the solid phase, two more
important parameters, namely nonwetting-solid and wet-
ting-solid interaction coefficients gns and gws, should be
determined to ensure the desired static contact angle.
Because the experimental system was assumed to be totally
water-wet, the contact angle q was set to zero. To ensure this
condition was met, we carried out fluid displacement
simulations on simple capillary tubes for which the physical
behavior is known analytically and depends upon the
contact angle.
4.2.1. Setup of Displacement Simulation
[33] Figure 3 illustrates our simulation approach that aims

to mimic the quasi-static experimental displacement experi-
ments performed and described in section 3. We added
NWP and WP reservoirs, consisting of two additional layers
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of void space, at both horizontal ends of the simulated
system. In addition, to be consistent with the experimental
setup, we simulated a water-wet porous plate with a check-
board lattice comprised of alternating voxels of solid and
void space, which is illustrated in Figure 3.
[34] The boundary conditions of the three-dimensional

simulations were periodic except for the horizontal x direc-
tion. Fixed pressure boundary conditions (equivalent to
fixed densities) were applied to the first layer of the NWP
reservoir and to the last layer of the WP reservoir. The fixed
density boundary conditions were implemented by updating
the distribution functions after each collision step with the
equilibrium distribution functions that have zero velocity
and the desired densities. Because the curved boundaries of
the solid phase in the porous media were digitized into a
regular lattice using a zigzag staircase approach, the bound-
ary conditions at fluid-solid interfaces were applied directly
by the bounce-back scheme for the no-slip boundary con-
dition by reflecting fluid particles moving toward a solid
boundary back toward the fluid node from which they
originated. This approach is second-order accurate, but does
introduce a discretization error for the spherical solid phase
particles of interest in this work. Lattice refinement studies
were used to ensure convergence of this approximate
discrete approach.
[35] To simulate the primary drainage (PD) process, we

started from zero capillary pressure, which was achieved by
fixing NWP and WP densities in the first layer of the NWP
reservoir to be 150 and 0, respectively, and 0 and 150 in the
last layer of the WP reservoir, respectively. Then the
capillary pressure Pc was increased incrementally by
decreasing the WP density in the WP reservoir and keeping
all other fluid densities on the boundaries constant at their
original values. This process resulted in stable, well-
behaved numerical simulations. Driven by the pressure
gradient, NWP entered the medium and displaced the WP
in the initially WP-saturated porous medium. Imbibition
processes were simulated by decreasing the Pc. Because the
NWP density in the NWP reservoir did not change during
the simulation, we considered a lattice node as being
occupied by NWP when NWP density at this node wasFigure 2. Test of Laplace’s law: (a) case 1 and (b) case 2.

Figure 3. Setup of the two-fluid displacement simulation. The left side of the medium domain locates
the nonwetting phase reservoir, and the right side locates the wetting phase reservoir. A porous plate is
located between the flow domain and wetting phase reservoir, which serves as a capillary barrier to NWP
exit. Black and white blocks in the porous plate stand for the solid and fluid spaces, respectively.
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larger than half of the fixed NWP reservoir density, other-
wise this node was assumed to be WP occupied. To mimic
quasi-static displacement experiments, LB simulations pro-
ceeded solving at a discrete set of time steps until steady
state was achieved after each adjustment in Pc. Steady state
was determined when either equation (16) was satisfied, or
the number of voxels occupied by each fluid remained
unchanged after 400 time steps.
4.2.2. Test Results
4.2.2.1. Flow Through Capillary Tubes
[36] We designed three test problems for flow through

cylindrical capillary tubes with cross sections of different
shapes, for which the behavior of the fluid displacement can
be calculated analytically. The first type of tube had a
square-shaped pore geometry, and the length of the pores
was 4, 8, and 16 lattice units for domain sizes 163, 323, and
643, respectively. The pore space in the second type of tube
had a rectangular cross section. Again, we studied three
resolution levels with domain sizes of 163, 323, and 643

lattice units, in which the length L1 and width L2 of the
rectangular pore space were 12 
 6, 24 
 12, and 48 
 24
lattice units, respectively. It is known that the mean radius
of curvature R = 1/(2/L1 + 2/L2) for the case of zero contact
angle [Bear, 1972]. The third type of capillary tube had a
cross section shown in Figure 4, i.e., the pore space was
formed by four grains of uniform radius. For this geometry,
we generated three domains of 203, 403, and 603 voxels,
with corresponding grain radii Rg being 5, 10, and 15 lattice
units. We know that the inscribed radius of the pore space
R ¼

ffiffiffi
2

p
� 1

� �
Rg.

[37] On the basis of simulation results and numerical
stability considerations, we chose gns = �0.02 and gws =
0.02 to ensure a zero contact angle. These parameter values
differ from the results of Fan et al. [2001], who found that
gns and gws have to be small compared with the fluid-fluid
interaction parameter g. Figure 5 plots the nondimensional

pressure Pc0 = PcR/g versus the wetting phase saturation Sw
for the three capillary tubes, obtained from LB simulations.
We obtained good agreement of the simulated and analytical
NWP entry pressure, which is the minimum pressure

Figure 4. Cross section of the third type of capillary tube.
The dark section in the middle is the pore space.

Figure 5. Primary drainage curves obtained by fluid
displacement simulations in capillary tubes with cross
sections of different shapes: (a) square-shaped cross section,
(b) rectangular cross section, and (c) a pore space formed by
the intersection of four uniform circles, as shown in Figure 4.
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needed to initiate the WP displacement; the analytical entry
pressure is 2.0 according to Laplace’s law. We did not see a
strong discretization effect on NWP entry in Figure 5a
and 5b, because the digital representation of the square-
shaped or rectangular pore space is exact. We did observe
discretization effects on the shape of the PD curves for all
three types of pore geometries; for increasing discretization
levels, the shoulder of the PD curve at the entry point
becomes shaper.
[38] We also obtained good agreement between the LB

prediction and the analytical value for the amount of WP in
the corner of the pore channel. As shown in Figure 6, the
WP saturation Sw for a pore channel with rectangular cross
section can be computed as:

Sw ¼ f Pcð Þ ¼ 4 1� p=4ð ÞR2=Ap ð17Þ

where Ap is the area of the pore cross section, and R is the
radius of curvature corresponding to a Pc. For example, in a
medium with a rectangular pore space consisting of a 24 

12 lattice units, the WP saturation is computed analytically

as 0.05 at Pc = 11.0, which corresponds to a radius of
curvature R = 4.1, because g = 22.71 from the previously
reported bubble test. The LB simulation predicted the WP
saturation also as 0.05, and, for a more finely resolved
medium of 48 
 24 lattice units, a WP saturation of 0.04
was computed, as shown in Figure 5b (at PcR/g = 3.8).
4.2.2.2. Flow Through a Channel With Two Different
Throat Diameters
[39] We then simulated the PD process in a medium

with a more complicated pore geometry, containing two
pore throats, whose radii were 6 and 4 lattice units,
respectively. Figure 7 illustrates the medium geometry
and the steady state NWP distribution patterns at different
Pc. From the interfacial tension coefficient g determined
from the previous bubble test, we estimated entry pres-
sures Pc for both throats as 7.5 and 11.25, respectively.
These estimates are consistent with the simulation results
shown in Figure 7.
[40] We monitored the behavior of Ca during the fluid

displacement simulation. Ca was computed on the outlet
porous plate layer, the pore space of which was entirely
occupied by the wetting phase. In Figure 8 we show the
time evolution of Ca during the simulation, including five
step changes of Pc. Figure 8 shows clearly that Ca drops
down to 10�5 to 10�6 when the simulation approached
steady state at each capillary pressure step. However, Ca did
not further approach zero, because in the SC LB model
there always exists nonzero velocity in the interface region,
which has been called a spurious current [Hou et al., 1997].
Ca was computed to support the use of an adaptive pressure
step change scheme to save computational time during fluid
displacement simulations. Instead of using a uniform cap-
illary pressure step change �Pc between quasi-static steps,
we chose �Pc depending upon the Ca computed after
quasi-static convergence at a given Pc by

�Pc;lþ1 ¼
�Pc;l if Ca > 10�6

2�Pc;l otherwise:

8<
: ð18Þ

where l is an index for the set of Pc simulated. We found
that we could save >20% of the computational time by
using the above adaptive approach without significantly

Figure 6. Amount of wetting phase in the corner of a
rectangular pore space.

Figure 7. Patterns formed by a nonwetting phase displacing a wetting phase at different capillary
pressures. The medium had pore throats with diameters 12 and 8 lattice units, respectively. The
transparent blue isosurface represents the interface between the pore space and the solid phase. The
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changing our results. Thus we applied the approach in the
following porous medium simulations.

5. Simulation of Two-Phase Flow Displacement in
Porous Media

5.1. Two-Phase Flow Through an Idealized Sphere
Packing Porous Media

[41] We used the above noted parameters to simulate two-
fluid-phase flow through porous media. We emphasize that
the set of the model parameters is not unique, the determi-
nation of which was based upon the analysis of results from
the specific tests described above, considerations of sim-
plicity, and numerical stability.
[42] As a validation step for our approach and our

estimated parameter values, we first applied the LB model
to an idealized porous medium. The medium consisted of
8 spheres of equal diameter, packed as shown in Figure 9.
We discretized the medium with lattices of 203, 303, 403,
and 803 units with sphere radii Rg = 5, 7.5, 10, and 20 lattice
units, respectively. Primary drainage simulations were per-
formed for all four discretization levels.
[43] Figure 10 shows the relationship between the capil-

lary pressure, Pc0 = PcRg/g, as a function of WP saturation
Sw. From Figure 10 we observed that at a discretization level
Rg = 7.5, the LB simulation for the PD process approaches
convergence. In addition, LB simulations predict that the
NWP entry Pc0 is approximately 5, so one can estimate that
PcR/g is close to the analytical value of 2 because the pore
throat radius R is given analytically by R ¼

ffiffiffi
2

p
� 1

� �
Rg.

5.2. Two-Phase Flow Through a Simulated
Porous Medium

[44] After validating the LB model for two-phase flow in
simple channels and an ideal porous medium, we then
performed simulations in a simulated porous medium, which
was intended to be representative of the experimental GB1b
medium described in section 3. The experimental GB1b
medium was represented using a random sphere pack gener-
ated by Hilpert and Miller [2001] using the algorithm and

code developed by Yang et al. [1996]. Simulated porous
media can be readily generated using this approach and
matched to the porosity and probability density function
measures of the grain size for a real porous medium. Of
course, this is an idealized step since the real media were not
perfect spheres and the packing generated only approximately
matched the macroscopic measures of the experimental
media and not the exact morphology and topology of the
pore space in the experimental system. Good agreement
between simulated sphere packs and macroscopic measures

Figure 8. Time evolution of capillary number during a
fluid displacement simulation with five step changes of
capillary pressure.

Figure 9. An idealized porous medium packed with eight
spheres of equal diameters.

Figure 10. Primary drainage curves for the idealized
porous medium shown in Figure 9.
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typically available for experimental data were achieved here
and in other work performed using this approach [Yang et al.,
1996; Pan et al., 2001].
[45] Table 2 shows the properties of the simulated pack-

ing that represents the experimental GB1b porous medium.
The packing contains 9,532 spheres. The output of the
sphere-packing code (centers and diameters of the spheres)
was then used to generate three-dimensional digital repre-
sentations of the porous medium. Four levels of discretiza-
tions, containing 1283, 2563, 3843, and 5123 voxels, were
generated for the sphere pack used in this work.
[46] The experimentally examined capillary pressure

head hc* (in units of height of water) can be expressed in
terms of nondimensional variables:

hc* ¼ Pc*

rw*g
¼ Pcg*

gl0rw*g
¼ PcNg*

gLrw*g
: ð19Þ

In equation (19), Pc*l0/g* = Pc/g is used, and so is l0 = L/N,
where l0 is the characteristic length, L is the length of the
medium, and N is the discretization level in lattice units. As
described previously, the interfacial tension g* between
water and PCE is known to be 36.23 dyn/cm (at 20�C), and
the nondimensional interfacial tension g = 22.71.
5.2.1. Discretization Effects
[47] We first study how the PD simulation results were

affected by the resolution level. Because of computational
limitations, we took a 1/64 subdomain of the entire GB1b
sphere-pack for this study, which contained approximately
150 spheres; spheres in the system pack were allowed to
cross boundaries for any subset of the domain. The lattice
sizes used to simulate the subdomain were 323, 643, 963,
and 1283, which correspond to the number of lattice nodes
per mean sphere diameter, or z, being 6.5, 13.0, 19.5, and
26.0, respectively. The capillary pressure increment was
chosen such that there were about 15 points along a PD
curve. Figure 11 shows the PD curves for varying levels of
discretizations for the 1/64 subdomain of the GB1b sphere
pack. The capillary pressure is presented as the height of a
corresponding water column hc*.
[48] The mean pore throat radius in a random packing of

uniform spheres is approximated by [Ng et al., 1978]

Rth i ¼ 0:21D; ð20Þ

from which one can estimate that the NWP entry pressure
head is hc* = 2g*/(0.21Drw*g). To estimate the entry
pressure of the sphere pack representing the GB1b pack
using this equation, we assumed D stands for the arithmetic
mean grain diameter D and then calculated the NWP entry
as hc* = 30.4 cm. This estimate fall about mid way between
the experimental results and the simulated results.
[49] Discretization effects occur because the digital pore

space is not self-similar as the resolution changes. It is not
surprising that the coarser discretization results in a lower

NWP entry pressure, because larger digital pore spaces are
more likely to be generated by the coarser discretization
than by finer ones. The observation is consistent with our
previous investigation, which showed that a coarser discre-
tization yields a larger saturated permeability of a porous
medium [Pan et al., 2001]. As shown in the Figure 11, we
observed that the simulated PD curve approached conver-
gence if the number of lattice nodes per mean sphere
diameter satisfied the inequality z � 13.0. This result also
agrees with our previous investigations [Pan et al., 2001],
which found that the saturated permeability becomes essen-
tially discretization-independent if z > 12, for packings of
both spheres with a uniform size distribution and spheres
with a nonuniform size distribution with a relative standard
deviation of sphere diameters up to 65%.
[50] We also obtained good agreement between the sim-

ulated P-S curve and the experimental data. We expected
some discrepancy between them because the experiments
were performed for the entire medium in a long column
[Hilpert et al., 2001], while the LB simulations were based
on a cubic subdomain consisting of only about 150 spheres,
which we expect to be smaller than the size needed for a
representative elementary volume (REV). Hilpert and Miller
[2001] applied primary drainage simulations using a pore-
morphology-based approach on the same GB1b porous
medium and suggested that a domain corresponding ap-
proximately to 2500 spheres is considered to be a REV.
5.2.2. Hysteretic P � S Curve
[51] Because of computational limitations, we used a 1/64

subset of the entire GB1b sphere pack to simulate main
imbibition (MI) and scanning curves originated from the PD
curve. The subdomain had about 150 spheres, a nondimen-
sional domain length, L/�D, of 5.1, and 643 voxels, resulting in
a resolution of z = 13.0 and a mean pore throat radius of
approximately 2.7 lattice units, estimated using equation (20).
In Figure 12 we show the distributions of NWP during
primary drainage and main imbibition simulations, in which
the capillary pressure head was initialized from zero, first
increased incrementally to 78-cm water and then decreased
back to 3-cm water.
[52] Figure 13 shows the simulated PD, MI, and imbibi-

tion scanning curves for a subdomain with 643 voxels. The

Table 2. Sphere-Packing Realizations for GB1b Porous Medium

Property Value

Arithmetic mean diameter D (mm) 0.1149
Arithmetic standard deviation sD (mm) 0.0116
Porosity f 0.356
Domain length L (mm) 2.35
Number of spheres 9,532

Figure 11. Influence of spatial discretization on primary
drainage curve for the GB1b porous medium system.
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scanning curve was obtained by starting the imbibition
process from hc* = 46.5 cm on the drainage curve.
Figure 13 shows encouraging agreement between the
experimental observations and the LB simulations, includ-
ing: (1) a good match of the irreducible WP saturation of
around 0.04; (2) agreement within about 5% for the NWP
residual saturation; (3) capillary pressures for NWP entry
that are within a factor of about two; (4) minimum slopes
for PD that are within 5%; and (5) the absence of
intersection between the main imbibition and the imbibi-
tion scanning curves. However, the imbibition scanning
curve does not match closely with experimental data. We
expected these results because our simulation domain is
relatively small, and the sequence of invading pores is
critical to simulate imbibition processes.
[53] To investigate the effect of domain size on drainage

and imbibition processes, we performed a simulation on a
domain containing around 1200 spheres (L/D = 10.2) with
1283 voxels (z = 13.0). The results are plotted in Figure 13.

Compared with the smaller domain, the P-S curve simu-
lated for the larger domain shows a slightly lower irre-
ducible saturation, a smaller residual NWP saturation, and
a significantly different MI curve, which is closer to the
experimental data than the smaller simulated domain. To
the best of our knowledge, this is the first time that LB
simulations have been performed for such a large system,
compared to experimental capillary pressure saturation
data, and used to examine the size of REV needed to
achieve converged results. Because of the computational
limitations, we can only use this to suggest a lower bound
on the size of REV. Further work along these lines is
clearly needed.

6. Discussion and Summary

[54] We have studied the use of the Shan-Chen lattice
Boltzmann approach for modeling immiscible two-fluid-
phase flow in porous medium systems, including those

Figure 12. Distributions of nonwetting phase during a primary drainage and main imbibition simulation
for the GB1b porous medium system. The transparent blue isosurface indicates the interface between the
pore space and the solid phase. Red represents the nonwetting fluid. For clarity of illustration the wetting
fluid water is not shown, and the pore space that is not red is considered as being occupied by water.
(a) Primary drainage simulation started from hc* = 0, at the equilibrium state Sw = 1; (b) Sw = 0.97 at hc* =
26.7 cm H2O; (c) Sw = 0.88 at hc* = 40.0 cm H2O; (d) Sw = 0.05 at hc* = 77.3 cm H2O; (e) Main
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represented by idealized sphere packs intended to mimic an
experimental system for which an extensive data set existed.
Adjustable parameters in the LB model were determined to
match known physical behavior for multiphase systems.
The LB model was calibrated to account for different fluid
properties, such as densities, viscosities and wetting prefer-
ences. By mimicking the experimental two-phase displace-
ment processes, hysteretic P-S relations obtained from LB
simulations on random packings of spheres show encour-
aging agreement when compared to experimental data.
[55] The present work is a first step toward enhancing the

understanding of multiphase flow mechanisms at the pore
scale. We believe that a variety of further investigations on
multiphase porous medium flow are possible by using this
approach. For example, one can study nonwetting phase
trapping as a function of geometry, wettability, viscosity,
and capillary number by systematically investigating the
pore-scale mechanisms of imbibition, such as snap-off.
Other applications include the investigation of the effect
of the viscosity ratio on the relative permeabilities and
dynamic capillary pressure-fluid saturation relations. We
believe that significant fundamental understanding can be
achieved through such investigations.
[56] While our simulation results are encouraging,

challenges for current two-phase LB flow models remain.
First, the applications of the LB model to multiphase
flow is limited by the admissible range of fluid properties
due to restricted numerical stability. Chin et al. [2002]
found that using the SC model, numerical instabilities
occur when the viscosity ratio between phases becomes
larger than 10. Even though the stability issue of the LB
methods has not been well understood, this problem has
been considered [Worthing et al., 1997; Lallemand and
Luo, 2000]. It was shown by Lallemand and Luo [2000]
and d’Humieres et al. [2002] that a multiple-relaxation-
time (MRT) LB model, which separates relaxations for
the kinetic modes, is more stable than the BGK LB
model, which uses a single-time relaxation approximation.
In addition, a more accurate treatment of boundary

conditions at solid-fluid interfaces, which combines the
bounce-back scheme and spatial interpolations of first or
second order to realize the locations of boundaries with
arbitrary curvatures, can be incorporated for further
improvement of numerical stability and a more rapid
convergence [Bouzidi et al., 2001; Lallemand and Luo,
2003]. We believe such studies are important next steps
in the evolution of LB modeling of multiphase porous
medium systems.
[57] Finally, computational limitations are of great con-

cern when applying LB simulations for multiphase porous
medium systems, even using large-scale parallel computing.
Our simulator is written in Fortran 90 using the Message
Passing Interface (MPI) library. Though the portability of
the code has been tested with a variety of compilers on
different parallel platforms, the parallel machine we primar-
ily used was an IBM RS/6000 SP with 720 375 MHz
Power3-II processors. Our work suggests that simulating
primary drainage and imbibition scanning curves (typically
20 points) in a porous medium domain with 643 voxels
requires more than 4,000 CPU hours and 70 MBs of RAM,
while simulating a primary drainage curve (typically
10 points along the curve) in a porous medium domain
with 1283 voxels requires around 50,000 CPU hours. As a
result, we cannot currently afford to simulate larger
domains, which would yield results closer to an REV.
Because the lattice is uniform, many lattice points fall
within the solid phase, and thus do not possess active
distributions of fluid probabilities. In order to reduce com-
putational time and memory requirements, we have recently
developed a new and efficient parallel code that disregards
the solid lattice points [Pan, 2003].
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