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Abstract. A new kind of percolation problem is described which differs from ordinary 
percolation theory in that it automatically finds the critical points of the system. The 
model is motivated by the problem of one fluid displacing another from a porous medium 
under the action of capillary forces, but in principle it may be applied to any kind of 
invasion process which proceeds along a path of least resistance. The name invasion 
percolation is proposed for this new process. Similarities to, and differences from, ordinary 
percolation theory are discussed. 

1. Introduction 

The standard theory of percolation (Broadbent and Hammersley 1957, Frisch and 
Hammersley 1963) has been shown to have application to a broad variety of physical 
problems. Interestingly, although the above authors motivated their studies of percola- 
tion with examples involving transport in random media, their theory is really one of 
static properties of the medium. The purpose of this paper is to describe a new form 
of percolation theory which explicitly takes into account the transport process taking 
place. 

The new form of percolation which we discuss was motivated by the study of the 
flow of two immiscible fluids in porous media (Chandler et a1 1982), although the 
emphasis of this paper will be entirely on the percolation theory aspects of the process. 
We will first describe the physical context of the model in brief. Then we will present 
results from computer simulations which realise the model. Finally, we shall attempt 
to set the model in a more general context and raise some interesting questions 
suggested by the model. 

Many porous media may be represented conveniently as a network of pores joined 
by narrower connecting throats (Lin and Cohen 1982). In an idealised medium the 
network may be viewed as a regular lattice in which the sites and bonds of the lattice 
represent pores and throats respectively. For simplicity, in three dimensions we may 
think of the pores as spheres and the throats as cylinders. Randomness of the medium 
may be incorporated by assigning random numbers to the sites and bonds to represent 
the sizes of these pores and throats. 

Let us consider the process of a non-wetting fluid, say oil, being displaced from 
such a medium by a wetting fluid, say water, at constant but infinitesimal flow rate. 
In this limit, viscous forces are completely dominated by the capillary forces acting 
at the oil-water interfaces. The capillary forces are such as to make the water 
spontaneously displace the oil, and in fact in order to keep the flow rate infinitesimal 
a negative pressure gradient must be placed across the system. The capillary forces 
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are strongest at the narrowest places in the medium. Thus if all the throats are smaller 
than all the pores, the water-oil interface moves quickly through the throats, but gets 
stuck entering the larger pores. It is consistent with both a simple theoretical model 
and experimental observations to represent this motion as a series of c‘iscrete jumps 
in which at each time step the water displaces oil from the smallest available pore. 
Simulation of the process in a given realisation of the lattice thus consists of following 
the motion of the water-oil interface as it advances through the smallest available pores. 

An important feature which arises in this displacement process is trapping of the 
oil. As the water advances it is possible for it to completely surround regions of oil, 
i.e., disconnect finite clusters from a connected cluster of oil which reaches to the exit 
face of the sample. This is one origin of the phenomenon of ‘residual oil’, a great 
economic problem in the oil industry. Since the oil is incompressible, we must introduce 
a new rule that water cannot invade trapped regions of oil. As we shall see, this rule 
has a significant effect of the percolation problem described in the next section. 

The problem of the displacement of one fluid by another in a porous medium 
under the action of capillary forces, and its connection with percolation theory, has 
been studied by a number of authors (de Gennes and Guyon 1978, Lenormand 1980, 
Larson et a1 1981). The present work differs from these in that it is a specific 
dynamical model on the microscopic scale which describes the displacement process 
at constant flow rate, rather than at constant applied pressure. It is this feature which 
leads to the dynamical rule of advancing the interface at the point of least resistance, 
as opposed to advancing all interfaces up to some chosen threshold resistance, and 
for which we suggest the new name invasion percolation. In the presence of the 
trapping rule, the distinction between constant flow rate and constant pressure becomes 
very important, at least from the point of view of simulation, because invasion 
percolation implies a unique time sequence of advances of the interface, and hence 
a unique way of deciding whether or not a given portion of the displaced fluid becomes 
trapped. By contrast, at a given applied pressure, the interface can advance in many 
places, and different time orderings can lead to different trapping configurations. 

In the above discussion it was argued that the advance of the interface was 
determined by the sizes of the pores, which are the sites in our lattice analogue of 
the medium. There is another version of the model, representing the case of a 
non-wetting fluid displacing a wetting one, in which the advance is determined by the 
sizes of the connecting throats, i.e. the bonds of the lattice. In fact this was the version 
of the model originally considered by Chandler et al. In the absence of trapping, this 
bond version can be reduced to the site version by the usual bond to site transformation, 
but with trapping a difference arises because it is natural to adopt the convention that 
a site becomes occupied by the invading fluid, and hence unavailable to the displaced 
fluid, whenever any of its connecting bonds becomes invaded. The question of trapping 
thus becomes a correlated site-bond problem, analogous to a correlated percolation 
problem (Blumberg et a1 1980). Despite this complication, it is found that the bond 
version of the problem is qualitatively very similar to the site case discussed in this 
paper. 

2. Percolation model 

In terms of our lattice model of the porous medium, we may construct a computer 
simulation of the displacement process as follows. Since the process in question need 
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not necessarily be fluid flow, we shall adopt a different nomenclature in which water 
is termed the invader and oil the defender. Let us assign a random number, drawn 
from a uniform distribution on the unit interval [0, 11, to each site in the lattice. In 
the initial configuration, the defender forms a spanning cluster, while the invader 
resides entirely in some compact region. Starting from such an initial configuration, 
the invader grows at each time step by displacing the defender from that site on the 
interface which has the smallest random number. It is assumed that the displaced 
defender has an ‘escape route’ to some boundary (or even local) sink or sinks. 

The choice of initial configuration depends on the problem one has in mind. One 
natural choice is to have the invader grow from a single point into an infinite medium; 
detailed Monte Carlo results for this geometry will be presented elsewhere. Here we 
will consider a geometry which is more appropriate to a laboratory two-fluid flow 
experiment: a finite domain with the invader initially occupying one side or face of 
the lattice. To be definite, we will consider a lattice of size L x 2L in two dimensions 
or L x L x 2L in three dimensions, with periodic boundary conditions on the sides and 
the invader initially occupying one edge or face at the end. The defender must then 
escape from the opposite edge or face of the lattice. The main quantities of interest 
will be the fraction of sites which become occupied by the invader, and the distribution 
of random numbers of those sites. In order to eliminate end effects as much as 
possible, these quantities will be measured over the central L x L or L x L x L region. 
All our simulations will be done for four lattices: honeycomb, square and triangular 
in two dimensions, and simple cubic in three dimensions. For reference, the accepted 
percolation thresholds (in ordinary percolation) for these lattices are shown in table 1. 

Table 1. Percolation thresholds in ordinary percolation for the four lattices considered 
in this paper. The value pc = 0.5 for the triangular lattice is exact (Sykes and Essam 1963). 
For the other values see for example Djordjevic et a1 (1982), Sur et a[  (1976). 

Lattice Pc 

Honeycomb 0.6962 
Square 0.5923 
Triangular 0.5000 

Simple Cubic 0.3115 

Many of the results and observations of this paper are based on our Monte Carlo 
simulations of the process. These simulations are performed on comparatively small 
lattices: L,,, = 100 in two dimensions and L,,, = 30 in three dimensions, and therefore 
cannot be expected to give accurate values for critical exponents. Their main purpose 
is rather to indicate the general features of the phenomenon, and in particular to 
show the effect of the trapping rule mentioned in the introduction. While some 
improvement in the Monte Carlo work is doubtless possible, there are two features 
of invasion percolation which make it much more time consuming to simulate than 
ordinary percolation: 

(a) The move selection algorithm involves searching a list of random numbers. 
Thus the time taken to generate an invasion percolation cluster of n sites grows at 
least as fast as n In n .  
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(b) In the presence of the trapping rule, it is necessary to check after each move 
whether a trap has taken place. This cannot be determined locally, but rather involves 
a global search of the system. 
It is interesting to compare the growth of the invader with the growth which would 
occur in ordinary percolation theory. Let us first do this in the absence of the trapping 
mechanism discussed earlier, as would be appropriate for the displacement of an 
infinitely compressible fluid by an incompressible one (Larson and Morrow 1981, 
Chandler and Willemsen 1981). In the percolation case one starts, in a single realisa- 
tion, with the same lattice, i.e. the same set of random numbers assigned to each site. 
Then, for a given choice of occupation probability p, O s p  s 1,  the cluster grows by 
occupying all available sites with random number r such that r s p .  The process stops 
when no more such numbers are left on the boundary of the cluster. By contrast, in 
our modified percolation, the cluster never terminates, but always grows into the 
smallest available random number, no matter how large. However, once a given 
number ro has been chosen, it is not necessarily true that subsequently every number 
r s ro will be chosen-smaller numbers will in general become available at the interface, 
and will thus be chosen in preference to numbers close to ro. 

Naturally, in the finite geometry we are considering, the invader will gradually fill 
the entire lattice. But an interesting configuration to study occurs at the point in time 
when the invader first percolates, i.e. first forms a connected path across the lattice. 
Let us denote the volume fraction of the invader by SI. In figure 1,  the value of this 
quantity when the invader first percolates is plotted as a function of the lattice size 
L.  We see that our Monte Carlo data is well fitted by the relation 

where the exponent a is tabulated in the first column of table 2. The results are 
consistent with a universal value a - 0.11 in two dimensions, and a - 0.48 in three 
dimensions. In terms of the number of sites N I  occupied by the invader this result 

0.71 
0.6. 
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Figure 1. Invader fraction SI at the percolation point without the trapping rule, plotted 
as a function of lattice size L. In figures 1 and 2, the number of realisations in two 
dimensions varies from about 2000 for L = 20 to 500 for L = 100, and in three dimensions 
from 1000 for L = 10 to 200 for L = 30. 
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may be expressed as 

N I  = AL*, ( 2 . 2 )  

with 4 - 1.89 in two dimensions and 4 -2 .52  in three dimensions. It is natural to 
identify 4 as the fractal dimension of the cluster; we note that the values we have 
obtained are consistent with the fractal dimensions of ordinary percolation theory 
(see e.g. Stauffer 1979, Essam 1980). The natural identification with ordinary percola- 
tion exponents is 

a = P I v ,  4 = AIv ,  (2.3) 
where p, A and v are the usual order parameter, gap, and correlation length exponents 
respectively. The relation CY + 4 = d ,  where d is the space dimension, corresponds to 
the hyperscaling relation A + P  = dv. 

Although the fractal dimension of our clusters is consistent with that of ordinary 
percolation theory, the clusters are not precisely the same. One simple way to express 
this is to consider the acceptance profile a (r), which is the number of random numbers 
in the interval [r, r +dr]  which were accepted into the cluster, expressed as a fraction 
of the number of random numbers in that range which became available. This quantity, 
averaged over many realisations, is plotted in figure 2 for two different values of L. 

PC pc 
Rondom number r Random number r 

Figure 2. Acceptance profile a ( r )  for the ( a )  square and ( b )  simple cubic lattices at the 
percolation point without the trapping rule. Two different values of lattice size L are 
shown. The shaded areas represent the quantities A ,  and A* ,  defined in (2.6), when 
r = p c .  It is conjectured that both A ,  and A2 vanish as L-rco. Figures 2, 3 and 5 were 
obtained by dividing the r axis into 100 divisions and counting the number of sites chosen 
in each interval. The data points have been suppressed. ( a )  - - - L = 20, - L = 100. 
( b )  - - -  L = 10, - L =30.  

As one would expect, all small random numbers are accepted and all large numbers 
are rejected. However, there is also a transition region in which some numbers are 
accepted and some rejected, in contrast to the sharp acceptance profile which defines 
ordinary percolation theory. The figures also suggest that as L + 00 the profile has 
the limiting form of a step function at r =ec ,  where p c  is the ordinary percolation 
threshold for the lattice in question. To test this idea it is useful to define the total 
acceptance fraction p ,  which is the area under the curve a ( r ) :  

1 

p = lo a( r )  dr. (2.4) 

If the above hypothesis is correct then p + p c  as L + 00, and it is natural to try a power 
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law approach to this limit: 

(2.5) Ip -pel - L-p. 
(In this geometry we find for finite L that p < p c  in two dimensions and p > p c  in three 
dimensions.) Actually a more precise, and also more sensitive, check is to consider 
the two quantities 

1 

A ](r) = lor [ 1 - a  (r‘)] dr’, A2(r)  = a(r’)  dr’, (2.6) 

which are related respectively to the probability that a random number below r is not 
chosen, and the probability that a number above r is chosen. Let us further define 

rmio = sup{r; A, ( r )  + 0 as L +CO} ,  rmax = inf{r; A2(r)  + 0 as L +a}. (2.7) 

Clearly rmin  and rmax exist and satisfy 0 s rmin s rmax s 1. The above hypothesis is that 
rmln = r,,, = pc. In this case we should expect that at r = pc 

A 1 - L - p ‘  , AZ-L-@’. (2.8a, 6)  

In  principle it should be possible to determine separate values of p c  which give the 
best fit to ( 2 . 8 ~ )  and (2 .86) ,  and then compare these pc values and the corresponding 
exponents p I  and p 2 ,  but unfortunately our Monte Carlo data does not seem of 
sufficient quality to do this. However, it is reasonable to suppose the exponents p, 
p1 and p2 to be equal, and we shall use this assumption to determine the value of p c  
by demanding that a least squares fit to ( 2 . 8 ~ )  and (2.86) yield the same exponent 
p.  In this way we find the pc values and exponents p1 = p2  shown in columns 2 and 
3 of table 2. The values obtained for p c  are very close to the accepted percolation 
thresholds for these four lattices shown in table 1, thus providing compelling evidence 
for the correctness of equations (2.5) and (2.8). We also note that the exponent p 
has a universal value around 0.7 for the three two-dimensional planar lattices. The 
identification of this exponent in terms of ordinary percolation is more tricky. Since 
p in (2.4) is the total acceptance fraction, analogous perhaps to the occupation fraction 
of ordinary percolation, the natural identification is p = l / v ,  where v is the correlation 

Table 2. Results of Monte Carlo simulations of invasion percolation for four different 
lattices. ‘No trapping’ refers to the invader threshold without trapping, ‘Trapping 1’ to 
the invader threshold with trapping, and ‘Trapping 2’ to the final point where the defender 
becomes completely disconnected. The various quantities are defined in and around (2. l), 
(2.5), (2.8), (2.9). (2.10) and (2.13). It is hard to estimate the accuracy of the given 
exponents, but we expect that for a and a‘ the errors are of order 0.02 and for p,  c(* 

and T, which are harder to measure, the errors are somewhat larger. 

No Trapping Trapping 1 Trapping 2 

Lattice a Pc CL a’  P2 a’ 1*2 T 

Honeycomb 0.10 0.6983 0.71 0.18 1.27 0.18 1.27 1.80 
Square 0.12 0.5931 0.70 0.18 1.19 0.19 1.21 1.84 
Triangular 0.11 0.5013 0.69 0.12 0.91 0.12 0.89 1.80 

Simple cubic 0.48 0.3116 1.07 0.48 1.26 1.33: 2.07 

+ At rmax = 0.6884. 
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length exponent. A more detailed hypothesis leading to the same conclusion is that 
as r + p c  and L -f 00, the acceptance profile a ( r )  depends only on the scaled variable 
Ir -p,l"L. Our obtained values for p are probably consistent with the accepted values 
for v of 1.33 in two dimensions and 0.88 in three dimensions. 

Let us now introduce the trapping phenomenon described in the introduction. In 
this mode we must add the rule that once a cluster of the defender has become 
isolated, it can no longer be invaded. Let us again stop the process at the point in 
time when the invader first percolates. In two dimensions, our Monte Carlo data 
indicate that the invader fraction SI again has a power-law dependence on lattice size: 

SI=A'L-" ,  (2.9) 

where the exponent a'  is shown in the fourth column of table 2. For the triangular 
lattice the exponent is close to its no-trapping value, but for the honeycomb and 
square lattices the exponent now takes the larger value 0'-0.18, corresponding to a 
fractal dimension 1.82. (In the bond version of the problem mentioned in the 
introduction, all planar two-dimensional lattices exhibit this modified fractal dimension 
around 1.82 (Chandler et  a1 1982).) Despite the relatively small lattices used in these 
simulations (L,,, = 100) we believe that this change in fractal dimension is significant, 
and that the phenomenon of trapping has changed the universality class from that of 
ordinary percolation. Intuitively we see that the change of fractal dimension is in the 
right direction, since the trappiilg rule prevents the invader from occupying some sites 
which it would otherwise have occupied, thereby conceivably lowering its fractal 
dimension. A possible reason for the different behaviour of the triangular lattice will 
be discussed below. 

The acceptance profile shows even more difference from the no-trapping case. 
The results for the square lattice in figure 3 (a )  suggest that as L -f 00 the profile does 
not approach a step function, but rather that A , ( r )  has a finite limit as L + 00 for any 
choice of r. In terms of the definitions (2.7) this means that rmin = 0. This is intuitively 
correct, since with the trapping rule in effect there is a finite probability that any 
random number which appears on the interface will be surrounded by the invader 
before it is itself invaded. We expect, however, that rmax should still equal p c ,  since 
on the one hand the trapping rule cannot force the invader to occupy larger random 

7 

I b )  

I 

I 

t . 
0 0.1 0.2 0.3) 0.L 

p: pc 
Random number r Rondom number r 

Figure 3. Acceptance profile a ( r )  for the ( a )  square and ( b j  simple cubic lattices at the 
percolation point in the presence of the trapping rule. It is conjectured that as L + CO fhe 
area A 2  vanishes but A approaches a finite value. This is more apparent in two dimensions, 
but we believe that it is also the case in three dimensions. In  figures 3 , 4  and 5 the number 
of realisations in two dimensions varies from about 1400 for L = 20 to 400 for L = 100, 
and in three dimensions from 200 for L = 10 to 50 for L = 30. ( a )  - - - L = 20, -- 
L =  100; ( b j  ---, L = 10, - L = 3 0 .  
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numbers than it would otherwise, while on the other hand the invader still has to pick 
numbers right up to pc in order to percolate. A fit to the power law (2.8b) with the 
same values of pc as before gives an exponent k 2  shown in column five of table 2.  
We see that the values are considerably larger than in the no-trapping case, around 
1.2 for the honeycomb and square lattices, and 0.9 for the triangular lattice. This is 
consistent with the observation that random numbers above p c  become more likely 
to be trapped, and hence not chosen, as the lattice size grows, since it becomes possible 
for them to be trapped inside larger and larger clusters. 

In three dimensions the trapping rule has much less effect, since the invader must 
form closed surfaces in order to disconnect the defender. Indeed it is found that all 
the trapped regions are very small, and larger ones do not appear as the lattice size 
is increased. The invader fraction at the percolation point is indistinguishable from 
the no-trapping case, obeying the same law (2.1) with the same exponent a -0.48. 
The acceptance profile, shown in figure 3 ( b ) ,  is also much closer to the no-trapping 
case than in two dimensions. However, it is still true that rmin must be zero; the 
limiting profile is presumably close to, but not exactly, a step function. Assuming rmax 
to be the same p,-0.3116 we obtain an exponent k 2  around 1.26, again larger than 
in the no-trapping case, though the change is not as marked as in two dimensions. 

With the trapping mechanism activated it becomes interesting to continue the 
invasion process beyond the percolation point, since the invader is now prevented 
from filling the entire lattice. Eventually a second percolation threshold is reached 
at which the defender consists only of isolated clusters, and the process must stop. 
In our porous medium model we say that the system has reached residual oil saturation; 
no more oil can be displaced from the sample without increasing the flow rate and 
bringing viscous forces into play. The two percolation thresholds in some sense 
correspond to the two thresholds of ordinary percolation theory, but the situation is 
not symmetrical, since the invader always consists of a single cluster whereas the 
defender gets broken up into many clusters. 

The invader fraction at this second percolation threshold is shown in figure 4. 
Here we see an even greater difference between two and three dimensions. In two 
dimensions we again have the power-law behaviour 

S ,  - A”L -’, (2.10) 

0.21 , , , , , , I 
10 20 30 LO 50 60 7080 100 

Lattice size L 

Figure 4. Invader fraction SI at the ?oint where the defender consists only of disconnected 
clusters, plotted as a function of lattice size L. Note the completely different behaviour 
in two and three dimensions, and also that the triangular lattice is somewhat different 
from the other two-dimensional lattices. 0, simple cubic; x, honeycomb; 0, square; 0, 
triangular. 
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with a’-0.18 for the honeycomb and square lattice and a’-0.12 for the triangular 
lattice, but in three dimensions we see a completely different behaviour suggesting a 
constant value 

SI-0.66 (2.11) 

as L+co. This corresponds to a defender fraction of 0.34, which is close to but 
significantly different from the percolation threshold 0.31 for a simple cubic lattice. 
This closeness is not surprising since the defender is clearly at a percolation threshold 
of some kind; the reason for the difference will be discussed in detail below. 

Let us now consider the acceptance profile at this second percolation threshold. 
In  two dimensions, the results are almost indistinguishable from those at the invader 
percolation threshold (figure 3(a) ) .  The reason for this is that in two dimensions the 
two thresholds are almost identical, since the invader and defender cannot both 
percolate at the same time; as soon as the invader percolates from end to end of the 
sample, it also percolates from side to side, thus disconnecting the defender. In three 
dimensions, however, this is not true, and the invader must occupy many more sites 
before it forms the closed surface necessary to disconnect the defender. The acceptance 
profile in three dimensions is shown in figure 5 .  Again we must have r m i n = O ,  and 
the data suggest a limiting profile for large L which cuts off at 

rmax = 0.6884. (2.12) 

r,,, 
Random number r 

Figure 5. Acceptance profile a ( r )  for the simple cubic lattice at the point where the 
defencer consists only of isolated clusters. It is conjectured that as L + CC the profile cuts 
off atrm, ,=1-p,-0.6884.  - - - L = l O , - - - L = 3 0 .  

(In this case the value of rmax was determined by requiring the best possible fit to the 
power law (2.86); the corresponding exponent is shown in table 2.) Note that, in 
contrast to SI, the value of rmax is precisely that of 1 - p c  for the simple cubic lattice. 
The reasons why the invader fraction SI is less than rmax are twofold. Firstly there 
are some random numbers below rmax which never become available to the invader, 
since they are contained inside trapped defender clusters. Secondly some random 
numbers below rmax appear on the boundary, but are surrounded before they can be 
invaded. The latter is the more important effect, since the defender clusters are very 
ramified and have very little interior. 

We see that the phenomenon of defender trapping is completely different in two 
and three dimensions. In two dimensions, the trapping occurs as soon as the invader 
percolates, when it has occupied random numbers only up to p c ,  and is still a fractal 
set. In  three dimensions, the trapping does not occur until the invader has consumed 
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random numbers up to 1 -pc,  by which time it occupies a finite fraction of the lattice. 
This suggests a reason why the triangular lattice behaves somewhat differently from 
the other two-dimensional lattices: pc is exactly 0.5 so that pc and 1 -pc  coincide, in 
contrast to the honeycomb and square lattices where p c > 0 . 5 .  In some sense the 
triangular lattice, though more like two dimensions than three dimensions, is an 
intermediate case. This comes out more clearly if one considers a non-planar two- 
dimensional lattice such as that obtained by inserting all the diagonals on a square 
lattice. It is found that this lattice behaves qualitatively like the simple cubic lattice 
(but with two-dimensional exponents), so that in fact the correct distinction is not 
between two and three dimensions, but rather between planar and non-planar lattices. 

The notion that one is indeed near a critical threshold when the defender becomes 
disconnected may be sharpened by examining the size distribution of defender clusters 
at this threshold. By analogy with static percolation, scale invariance at the critical 
point leads one to predict that the number of occurrences n ( s )  of blobs containing s 
sites should scale with s according to the formula (Stauffer 1979) 

n (s) = nos -T, (2.13) 

Our Monte Carlo data for the largest lattices considered (L,,, = 100 in two dimensions 
and L,,,=30 in three dimensions) yield a good fit to this power law over a wide 
range of s with an exponent T as shown in the last column of table 2. In the case of 
static percolation, the exponent T can be expressed in terms of the fractal dimension 
4 and space dimension d through the formula 

T = ( d  + 4 ) / d .  (2.14) 

Recall that the fractal dimension of the invader cluster at breakthrough was 4 = 2.52 
in three dimensions. Inserting this value into the equation above leads to T = 2.19. 
This is slightly larger than the value 2.07 observed on a 30 x 30 x 60 lattice. Assuming 
that (2.14) defines the fractal dimension of the finite clusters of defenders, and that 
the observed value of T is considered correct, we see these have a slightly larger fractal 
dimension than that of the invader at breakthrough. This seems to reflect again that 
the difference in mechanisms through which the invader spanning cluster and the 
defender almost-spanning-clusters are generated can have a significant effect on the 
critical exponents, though the quality of our data is probably not sufficient to make 
a definitive statement. 

In two dimensions we have a completely different situation, since the measured 
values of T are less than 2. In ordinary percolation we see from (2.14) that this is 
impossible since C#I must be less than d .  Another way to see this is to observe that if 
n (s) is normalised to be the number of s-site clusters per site, then the sum Z sn (s) 
must converge, since in principle the process of laying down occupied sites at random 
can be performed on an infinite lattice. In our modified percolation with trapping, 
however, the finite size of the system is an essential feature. We have observed that, 
although the exponent T is approximately independent of L ,  the prefactor no in (2.13) 
decreases with increasing lattice size. Although we have not investigated this in detail, 
presumably this decrease is just what is required to keep X sn (s) finite as L + 00. 

3. Summary and discussion 

We first list what we believe are the essential features of the invasion percolation 
process illustrated above. Clearly, there must exist local variations in the medium 



Invasion percola tion 3375 

which have a strong effect on the invasion process. In our specific model, these local 
variations are random, but there is no difficulty in principle in introducing spatial 
correlations if desired. In addition, the randomness should be sufficiently broad to 
warrant the ‘one move at a time’ dynamic we have used in our simulations. Smoother 
advance of the interface would occur if, say, all random numbers in the intervals 
[O.O-0.11, 10.1-0.21, etc, could be invaded simultaneously. Thus, neither the medium 
nor the process have a built-in length scale (other than the lattice spacing), and the 
only length which can enter into the simulation of the invasion is the lattice size 
measured in units of the lattice spacing. 

In the absence of the trapping rule we believe that invasion percolation is closely 
related to ordinary static percolation. This may be understood intuitively as follows. 
Imagine painting red those lattice sites on a given realisation whose random numbers 
are less than or equal to p * ,  that being the smallest random number required for the 
red cluster to span. Clearly invasion percolation on this same realisation of the lattice 
takes place on a subset of points of the red cluster. On average over realisations we 
have p * - p c .  This suggests that the invader fraction SI, analogous to the order 
parameter P ( p )  of static percolation, exhibits finite size scaling, and it appears from 
our simulations that the exponent which governs this behaviour is the same as that 
of ordinary percolation theory. By contrast, when the trapping rule is in effect, there 
are many differences from ordinary percolation, and it is even possible for lattices 
which exhibit the same behaviour in ordinary percolation to have non-universal 
behaviour in invasion percolation. 

In addition to the quantities discussed so far, it may be of interest to examine a 
more general set of observables. Let us consider fixed point in ‘time’ in the simulation, 
say at the breakthrough point. In the kth realisation at fixed lattice size L,  we can 
define (suppressing the k and L labels) functions 

~ ( x )  = value of random number at lattice site x ,  ( 3 . 1 ~ )  

p ( x )  = 1 if x has been invaded, 0 otherwise. (3.16) 

(Of course, ~ ( x )  is ‘time’ independent in the model as defined.) Every other 
‘observable’ of the system is derivable from these two quantities, for example, 

1 I d  

The number of sites on the boundary of the cluster is 

Ld 

B = a(  (1 -P(xi)) c P(xi + E ) )  
i = l  

(3.3) 

where E is a lattice unit vector, and 0 is a function which equals zero when its argument 
vanishes, and unity otherwise. 

We can also introduce spatial correlation functions: 

CdY) = L - d  c P ( X ) P ( X  + Y  ). (3.4) 
X 

Finally, every such observable quantity Qk defined in the kth realisation of an ensemble 
of R realisations can be ensemble averaged: 

(3.5) 



3376 D Wilkinson and J F Willemsen 

Let [I denote the scaling dimension of a quantity with respect to the lattice size L.  
For example, we see from (2.1), (2.2) that when the invader first percolates [(SI)] is 
(4 - d ) ,  It follows that [ ( p ) ]  is also (4 - d ) .  From this one might predict that the 
correlation function (C2(y)) scales as L-2‘’-d’F(ly l /L) .  Scaling relationships of this 
form hold for conventional thermodynamic systems (Stanley 197 l ) ,  and for ordinary 
percolation. It will be very interesting to investigate whether this hypothesis is true 
in invasion percolation. 

Another question which arises is whether the correlation function in (3.4) is 
isotropic. In this paper it has been tacitly assumed that invasion percolation should 
be compared to ordinary isotropic percolation, rather than, say, directed percolation, 
despite the fact that in the geometry we have considered there is a preferred ‘flow’ 
direction. This seems reasonable, since the rules by which the invader grows are 
isotropic, and one might expect that the effects of the boundary conditions would 
diminish as L +CO,  but this remains to be substantiated. 

We believe it will be worthwhile to pursue the above considerations not simply 
because they emerge naturally from the invasion process we are considering, but also 
because questions of this kind might naturally arise in other more complex transport 
scenarios. We must ask: Which are the observables of the system? What functionals 
of these are physically meaningful in the ensemble average? What scaling hypotheses 
are appropriate for the physically meaning functional near critical points? 

Many interesting question such as the above arise in this new form of percolation 
theory and it would be of interest to study them in a more formal manner, as contrasted 
to the essentially descriptive approach of the present paper. Unfortunately this is 
very difficult since at present there exists no framework analogous to, say, the mapping 
of ordinary percolation onto the Potts model (Kasteleyn and Fortuin 1969). Even 
the simplest problem of growing a cluster from a point into an infinite lattice without 
the trapping rule appears intractable, since it is very difficult to write down the weight 
which should be given to a given configuration. In ordinary percolation this is trivial; 
the difficulty there resides solely in summing over all configurations. Our model has 
been motivated by a straightforward real world problem, which seems to disguise a 
rich and interesting theoretical structure. The development of a mathematical 
framework for discussing this structure poses a very interesting problem. 
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