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Abstract

Modeling of flow and transport in environmental systems often involves formulation of conservation equations at spatial scales

involving tens to hundreds of pore diameters in porous media or the depth of flow in a channel. Quantities such as density, tem-

perature, internal energy, and velocity may not be uniform over these macroscopic length scales. The external gravitational potential

causes gradients in density, pressure, and chemical potential even at equilibrium. Despite these complications, it is important to

formulate the thermodynamic analysis of environmental systems at the macroscopic scale. Heretofore, this has been accomplished

primarily using the approach of rational thermodynamics whereby the thermodynamic dependence of macroscale internal energy on

macroscale variables is hypothesized directly without development of any systematic method for transforming microscale energy

dependence from the microscale to the macroscale. However when thermodynamic variables are inhomogeneous at the microscale,

the functional dependence of macroscale internal energy on macroscale variables is not a simple extension of the microscale case. In

the present work, the relation between the definitions of microscale and macroscale intensive thermodynamic variables is estab-

lished. Expressions for the material derivatives of macroscale internal energy of phases, interfaces, and common lines are derived

from and consistent with their microscopic counterparts by integrating to the macroscale. The forms obtained and the consistency

required will be important for use in analyses of systems at scales where microscopic heterogeneities cannot be neglected.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Background

The modeling of flow in environmental systems typ-

ically involves solution of differential equations formu-

lated at a scale larger than a minimum fluid continuum

scale. The length scale encompasses a representative

region of the system of interest. For porous medium

flows, the macroscale is much larger than the diameter

of a pore and may span tens to thousands of pore dia-

meters such that it ranges from millimeters to meters.
The characteristics of the system at a macroscale point

are actually characteristics of a representative volume of

the system in the region of the point. Additionally, in

some cases, averaging is performed over the entire extent

of one or more spatial dimensions, such as integration

over the thickness of an aquifer, with the result that the

scale of the equations in those dimensions is equal to the

scale of the physical system. For systems that have no
solid phase, integrations may be performed over im-

portant length scales of the physical domain, such as

integration over the cross-section of a river or over the
depth of an estuary. Thus the averaging is performed

over large, inhomogeneous regions such that the energy,

velocities, and densities appearing in the governing

equations are representative of the averaging region

rather than of values at a microscale point. Integration

theorems that facilitate the transformation of conser-

vation equations from the microscale to the macroscale

or megascale are well known (e.g., [1,2,13,15,27]), but
little has been done to transform thermodynamic de-

pendences systematically.

The fact that environmental systems are character-

ized by quantities such as density, velocity, energy, and

temperature reported at length scales on the order of

meters raises a number of important questions relating

to both measurement and modeling. For example,

consider the velocity of the flow of a phase in a typical
porous medium. If we examine this system at the mi-

croscale, it is possible to identify velocities within each

pore and the variation of that velocity across the dia-

meter of the pore. However, because it is not practical to

determine the detailed geometry of a porous medium,
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such systems are modeled at a length scale encompassing

hundreds, thousands, or many millions of pores. The

specification of a ‘‘velocity’’ of one of the phases at this

large scale must be done with care. It is important to

average the microscale velocities in such a manner that
the macroscale velocities are representative of the flow

field. If one were able to make measurements of the

microscale velocity field within the averaging volume,

those measurements should be useful in determining the

macroscale velocity. Additionally, the macroscale ve-

locity must be useful in conservation equations of mass,

momentum, and energy used to describe the system. A

definition of macroscale velocity is without value if it is
dependent on the size of the averaging region, is unre-

lated to microscale behavior, and cannot be employed in

equations used to make predictions about the system.

A systematic approach for mathematically trans-

forming variables and conservation equations from the

microscale to a larger scale has been described and

employed by Hassanizadeh and Gray [17,18]. This ap-

proach requires that integration of microscale variables
to obtain macroscale analogs be accomplished by as-

suring that the integrations involved satisfy an additivity

property so that extensive properties of a system are

conserved regardless of the scale at which they are

measured ([17,18,22]). For example, one could define a

macroscale velocity representative of an a phase occu-

pying the volume, Va, within a macroscale region of

interest as

�vva ¼ 1

Va

Z
Va

vdV ð1Þ

The problem with this definition is that the integrand

does not have physical meaning. The average velocity

obtained is merely a spatial average. An alternative

definition of average velocity that satisfies the additivity

condition is

va ¼
R
Va qvdVR
Va qdV

ð2Þ

In this definition, the integral in the numerator is the

total momentum of the a phase within the volume with
the quantity qvdV being the momentum at a microscale

point. This integrand is additive. The denominator in

this expression is the total mass of a phase within the

volume with qdV being the mass at a microscale point.

Physically, the average velocity defined in Eq. (2) is the

momentum per unit mass. The macroscale velocity de-

fined in this fashion is more easily and properly em-

ployed in conservation equations than the spatial
average. In cases where the density of the a phase ma-

terial is constant, the definitions of macroscale velocity

provided in Eqs. (1) and (2) are equivalent.

The additivity requirement is useful for developing

macroscale measures of mass, velocity, and energy that

can be expressed as integrals of microscale properties

and that may be employed in conservation equations.

However, to complete the physical description at the

macroscale, constitutive forms must be obtained for

functions such as the stress tensor and the heat con-

duction vector. In addition, some additional quanti-
ties––such as temperature and chemical potential––must

be defined that are characteristic of a macroscale region.

When the microscale temperature is constant within the

macroscale ‘‘point’’, the macroscale and microscale

temperatures should be equal. However, when the mi-

croscale temperature is not constant, the appropriate

integration procedure involving temperature that satis-

fies the additivity principle is not obvious. As another
example, when a gravitational field acts on the system

and/or flow is occurring, the microscale chemical po-

tential will not be constant within the macroscale aver-

aging volume. The definition of the macroscale chemical

potential should relate to its microscale counterpart and

should also be useful for modeling of flow and transport

at the macroscale.

The principles for systematic change of microscale
extensive variables to the macroscale have been eluci-

dated in Hassanizadeh and Gray [17]. However, work

to systematically transform the scale of intensive vari-

ables––such as pressure, chemical potential, interfacial

tension, and temperature––is lacking. Additionally, the

microscale internal energy in a homogeneous system has

a natural dependence on entropy, masses of the chemical

species, and volume (e.g., [3,5,6,9]). When a system is
not homogeneous, the microscale energy per volume

may still be studied as a function of entropy per volume

and the mass densities of the species at the microscale

points of interest (e.g., [10]). Kondepudi and Progogine

[21] have noted that in inhomogeneous systems, the total

internal energy is no longer a function of extensive vari-

ables such as entropy, volume, and mass. They state

further that one cannot define a single temperature for a
macroscale system that has a non-constant microscale

temperature field. Therefore, for study of environmental

systems where a mathematical ‘‘point’’ corresponds to a

physical region consisting of a block of porous medium,

the cross-section of a river, or an aerial location on an

estuary integrated over the depth, a thermodynamic

formalism must be developed with considerable care and

with caution.
To be sure, the problem of assuring consistency arises

whenever one attempts to apply a formalism developed

at one scale to modeling processes at a larger scale.

Zubarev et al. [28] have shown that the development of

thermodynamic relations from a statistical approach

leads to quantities appearing in the equations that are

averaged over the grand canonical ensemble. They point

out that this is very reasonable since quantities in an
ensemble can fluctuate so that the properties observed,

corresponding to microscale properties in the present

discussion, should be treated as average values.
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The problem of formulating a useful thermodynamics

is not restricted only to cases where a change in scale

occurs. Jou et al. [20] and Maugin [23] have noted that

the approaches used at the microscale can be roughly

separated into three formalisms: classical irreversible
thermodynamics (CIT), rational thermodynamics (RT),

and extended irreversible thermodynamics (EIT). CIT is

the approach most widely accepted by physicists and

physico-chemists [23]. The fundamental hypothesis of

this approach is that of local equilibrium. This as-

sumption states that at each instant in time, every point

in the system may be considered to be in local equilib-

rium such that the equilibrium relations among state
variables remain valid. CIT is the basis for the range

of applications presented by de Groot and Mazur [8].

RT is a formalism whose main objective is to provide

a method for deriving constitutive equations [20]. In

contrast to CIT, it ignores the relations of thermostatics

and hypothesizes thermodynamic functional depen-

dences following a set of axioms. Maugin [23] describes

the basic postulates of RT as claiming that those entities
that could be defined precisely only at equilibrium in

fact exist for any thermodynamic state whatsoever, even

largely outside of equilibrium. Therefore, quantities

such as temperature and entropy are introduced on a

mathematical basis to ensure coherence of the theory

and are unrelated to physical quantities. Because of this

disconnection, Jou et al. [20] state that it is not possible

to check whether or not the temperature measured by a
thermocouple corresponds to the temperature used in

RT. From a practical point of view, this means that the

utility of tables of thermodynamic relations developed

from equilibrium considerations or measurements may

be limited because the functions that arise in RT are

mathematical constructions rather than verifiable ex-

pressions concerning the physical state of the system.

The origins of this approach, as well as example appli-
cations, are found in Coleman and Noll [7] and Trues-

dell [25]. Despite its limitations, RT has found utility,

particularly, in describing the dissipative stresses in

solids and fluids. EIT is the latest entry into the attempt

to describe the thermomechanical behavior of materials.

EIT is an extension of CIT that builds on those relations

by including dissipative fluxes as additional independent

variables. Thus, at equilibrium the standard CIT func-
tional dependences are recovered. The task in EIT is to

find evolution equations for the additional independent

variables. EIT is the main focus, for example, of Jou

et al. [20].

The preceding comments highlight two important,

and possibly contradictory, points relating to the ther-

modynamic description of macroscale systems. First,

when the system under consideration is microscopically
inhomogeneous, macroscopic energy may not be defined

as a function of entropy, volume, and mass. On the

other hand, current methods for modeling the thermo-

dynamics of dynamic systems rely on postulation of

energy as a function of entropy, volume, and mass (and

some dissipative fluxes away from equilibrium) or on

independent variables that are not necessarily related

to physical quantities. In light of these difficulties, one
possible approach for describing macroscale thermody-

namics is to transform the microscale relations to the

macroscale systematically so that the relation between

macroscale energy and macroscale independent vari-

ables can be discerned, with the macroscale variables

well-defined averages of their microscale counterparts.

Heretofore, the mathematically consistent RT ap-

proach has typically been adopted in macroscale con-
tinuum mechanics, with macroscale internal energy

hypothesized to depend on macroscale variables (e.g.,

[4,12,19]). However, this process does not require defi-

nitions of thermodynamic variables and functional de-

pendences that are consistent with those employed at the

microscale and that retain a relation between the mac-

roscale and microscale thermodynamic quantities. Thus

no synergy among experiments performed at different
scales exists, and the macroscale theories cannot be in-

formed by microscale, or even macroscale, experiments.

Ambiguity exists even as to the definition of macro-

scale temperature. Additionally, in the transformation

from the microscale to the macroscale, new independent

variables are introduced relating to geometric densities.

These variables describe the volume of a phase per total

macroscale volume, the interfacial areas between phases
per volume, and the length of common line where three

phases come together per volume. As with EIT, these

new independent variables require evolution equations.

For application to real systems, such complex mathe-

matical constructs must have parameters and variables

that can be measured and related to the physics of the

system of interest.

Despite the difficulties outlined, we are interested in
obtaining a thermodynamic description of the state and

behavior of a macroscale system, a system for which

integration is performed over a representative averaging

volume, or some appropriate volume much larger than

the microscale, to obtain the definition of variables. The

points identified above indicate that, at least for some

systems, it is not possible to postulate thermodynamic

dependences at the macroscale in a manner that is
both mathematically correct and physically meaningful.

Therefore, the approach to be adopted here is to make

use of microscale thermodynamic relations and trans-

form them to the macroscale. The starting point will

be the microscale thermodynamic relations of CIT for

phases, interfaces, and common lines. These will be in-

tegrated to obtain expressions that relate the derivatives

of macroscale energy to the derivatives of other mac-
roscale variables. This is done without having to pos-

tulate a functional form at the macroscale. Examination

of the macroscale forms reveals when the integrated CIT
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forms would be equivalent to forms postulated directly

at the macroscale using RT.

Note that, alternatively, one could integrate micro-

scale dependences obtained using RT or EIT to the

macroscale. The main idea is to build on reasonable
microscale formulations to obtain macroscale thermo-

dynamic formulations that are consistent with and re-

lated to those forms. Conservation equations developed

at the microscale are transformed to the macroscale

using averaging procedures (e.g., [14]). They are not

discarded in favor of new macroscale hypotheses. In the

same way, the objective of this work is to provide a

path for transformation of a microscale formalism to
the macroscale as opposed to simply ignoring the useful

and consistent results of the microscale formalism.

2. Macroscale relations among thermodynamic quantities
for a fluid phase

As has been noted earlier, the formulation of mac-

roscale thermodynamics for a phase is complicated

when the system is not at equilibrium or when gradients

in any of the microscopic phase properties exist. Spe-

cifically, in these instances the total macroscale internal

energy for a fluid may not be expressed simply as a
function of the macroscale entropy, mass and volume. A

functional representation requires inclusion of addi-

tional independent variables such that

Ea
I ¼ Ea

I ðSa;Ma;Va; . . .Þ ð3Þ

where the superscript a is used to indicate that the
quantities are properties of the a phase calculated as

integrals over some region of space occupied by a fluid;

and the script variable are extensive measures of internal

energy ðEa
I Þ, entropy ðSaÞ, mass ðMaÞ, and volume

ðVaÞ. Throughout this analysis, the integration to the

macroscale will be performed over phases, interfaces,

and common lines within an averaging volume, V
whose size, shape, and orientation are independent of
location and time. Therefore, it will be convenient to

work with densities defined with respect to that volume.

In this case, the equality (3) is expressed:

ÊEa
I ¼ ÊEa

I ðĝga; �aqa; �a; . . .Þ ð4Þ
where the superscript a indicates that the quantities are

macroscale properties of the a phase, ÊEa
I is the internal

energy of the a phase per averaging volume, ĝga is the

entropy of the a phase per averaging volume, �aqa is the

mass of a phase per averaging volume with �a being
the volume of a phase per averaging volume and qa

being the mass density of the a phase. If the independent

macroscale variables are obtained by integrating uni-

form microscale properties, the equality indicated will

hold with dependence on only the three variables ex-

plicitly indicated. When the microscale precursors of

their macroscale averages are non-uniform, the func-

tional dependence explicitly indicated in Eq. (4) may be

incomplete such that additional independent variables

are required. Here, the macroscale thermodynamic ex-

pressions will be developed based on knowledge of the
microscale situation.

Besides obtaining macroscale expressions for the in-

ternal energy, the total energy, ÊEa
T, which is the sum of

internal, kinetic, and potential energy, can be averaged

such that, for the a phase within the averaging volume

ÊEa
T ¼ ÊEa

I þ ÊEa
K þ 1

2
�aqava2 þ ÊEa

w

¼ 1

V

Z
Va

ÊE
�

þ 1

2
qv2 þ qw

�
dV ð5aÞ

ÊEa
I ¼ 1

V

Z
Va

ÊEdV ð5bÞ

ÊEa
K þ 1

2
�aqava2 ¼ 1

V

Z
Va

1

2
qv2 dV ð5cÞ

ÊEa
K ¼ 1

V

Z
Va

ÊEK dV ¼ 1

V

Z
Va

1

2
q~vv2 dV

¼ 1

V

Z
Va

1

2
qjv� vaj2 dV ð5dÞ

ÊEa
w ¼ 1

V

Z
Va

qwdV ð5eÞ

ĝga ¼ 1

V

Z
Va

ĝgdV ð5fÞ

�aqa ¼ 1

V

Z
Va

qdV ð5gÞ

where ÊE is the microscale internal energy density, q is the
microscale mass density, v is the microscale speed, ĝg is

the microscale entropy density, Va is the portion of the

averaging volume occupied by the a phase, w is an ex-

ternal potential such as gravity, and the four terms on

the left side of Eq. (5a) are, respectively, the macroscale

expression for the densities of thermodynamic internal

energy, a macroscale energy component due to devia-

tions of the microscale velocity from the macroscale
value, the macroscale kinetic energy, and the macroscale

potential energy. The macroscale quantities on the left

sides of Eqs. (5a)–(5e), (5f) and (5g) have units, respec-

tively, of energy per volume, entropy per volume, and

mass per volume. Although the relationships between

macroscale and microscale quantities in Eqs. (5a)–(5g)

are explicit, the relationships between macroscale vari-

ables is not known at this point. When the system is at
rest, the kinetic energy and the deviation kinetic energy,

ÊEa
K, will be zero. For porous media, where the velocities

are small, ÊEa
K and the kinetic energy may also be negli-

gible. However, in general, these components must be

included when analyzing systems from a macroscale

perspective, particularly when turbulence effects or spa-

tial velocity variations are significant. The following
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analysis will be geared to finding the relation between

the macroscale energy and other thermodynamic quan-

tities when all are defined as appropriate integrals of

microscale quantities.

Additionally, we know from microscale thermody-
namics that

ÊE ¼ ÊEðĝg; qÞ ¼ hĝg þ lq � p ð6aÞ

where h is the microscale temperature with

oÊE
oĝg

¼ h ð6bÞ

l is the chemical potential with

oÊE
oq

¼ l ð6cÞ

and p is the microscale pressure. The macroscale internal

energy, as defined in Eq. (5b), may then be expressed

after substitution of Eq. (6a) as:

ÊEa
I ¼ 1

V

Z
Va

½hĝg þ lq � p�dV ð7Þ

Introduce as yet undefined macroscale measures of

temperature, ha, chemical potential, la, and pressure, pa

that are considered constant within Va such that:

ÊEa
I ¼ haĝga þ la�aqa � pa�a þ 1

V

Z
Va

½ðh � haÞĝg

þ ðl � laÞq � ðp � paÞ�dV ð8Þ

where the definitions of ĝga and qa as given in Eqs. (5f)

and (5g) have been employed.

If macroscale thermodynamics are postulated in the

same manner as microscale thermodynamics using RT,
ÊEa

I ðĝga; �aqa; �aÞ, the integral terms in Eq. (8) will not be

present. Although the macroscale thermodynamic vari-

ables such as temperature and chemical potential cannot

be related to their microscale counterparts using the RT

hypotheses, the macroscale and microscale cases would

take on completely analogous forms. However, there is

no reason at all that the integrals will generally be zero,

particularly in the case where an external potential is
influencing the system. The macroscale thermodynamic

expression derived from integrating the microscale CIT

formulation as Eq. (8) is thus, in general, different from

a thermodynamic expression postulated at the macro-

scale using RT. No postulation of the dependence of

macroscale energy on a specific set of independent

macroscale variables has been made. The microscale

CIT-based relation given in Eq. (8) may be used in
the development of the constrained entropy inequality

provided expressions can be derived for the introduced,

and still arbitrary, macroscale variables ha, la, and pa in

terms of integrals of microscale variables. Note that the

definitions are not unique. However, the following

forms have appeal because they indicate equality of

microscale and macroscale forms when the microscale

quantity is constant within the averaging volumeZ
Va

ĝgðh � haÞdV ¼ 0 ð9aÞZ
Va

qðl � laÞdV ¼ 0 ð9bÞZ
Va

ðp � paÞdV ¼ 0 ð9cÞ

Simple rearrangement of these equations provides

ha ¼
R
Va ĝghdVR
Va ĝgdV

¼ 1

ĝgaV

Z
Va

ĝghdV ð10aÞ

la ¼
R
Va qldVR
Va qdV

¼ 1

�aqaV

Z
Va

qldV ð10bÞ

pa ¼ 1

Va

Z
Va

pdV ð10cÞ

Thus, in the same way that the macroscale velocity is a

weighted integral average of the microscale velocity, the
macroscale temperature is an entropy-weighted average

of the microscale temperature while the macroscale

chemical potential is a mass-weighted average of the

microscale chemical potential.

In light of definitions (10a)–(10c), the definition of

macroscale internal energy given as Eq. (8) simplifies to

ÊEa
I ¼ haĝga þ la�aqa � pa�a ð11Þ

First note that Eq. (11), which expresses macroscale

internal energy as a function of macroscale independent

variables, is a derived, rather than postulated, macro-

scopic function. Although it is of the same structure as

the microscale equation for internal energy, this equa-

tion does not imply a corresponding functional depen-

dence of macroscale energy on macroscale variables

of the form ÊEa
I ðĝga; �aqa; �aÞ. It does show directly that

macroscale energy depends on an expanded set of

macroscale variables such that ÊEa
I ðĝga; �aqa; �a; ha; la; paÞ.

The actual dependence on any of the last three variables

in this expression may be dropped only if microscale

temperature, chemical potential, and pressure are ho-

mogeneous within the averaging volume. Even though

the form of Eq. (11) is the same as obtained from a

hypothesis based on RT, the meanings of all the mac-
roscale variables are well defined in terms of microscale

variables. This difference can be highlighted by express-

ing the differential of the macroscale internal energy of

Eq. (11) according to

dÊEa
I ¼ ha dĝga þ la dð�aqaÞ � pa d�a þ ĝga dha

þ �aqa dla � �a dpa ð12Þ

Note that the differential of �a appears in this expression

as a surrogate for the differential of volume because the

internal energy (and entropy) have been defined per unit

averaging volume, not per volume of phase a. The
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differential of the microscale internal energy behaves

according to [6]

dÊE ¼ hdĝg þ ldq ð13aÞ

subject to the Gibbs–Duhem equation:

0 ¼ ĝgdh þ qdl � dp ð13bÞ

In general, Eq. (12) may not be broken into two parts

corresponding to the microscale situation as in Eqs.
(13a) and (13b). However, since all the terms in Eq. (12)

are macroscale quantities, this equation may be written

dÊEa
I ¼ ha dĝga þ la dð�aqaÞ � pa d�a þ 1

V

Z
Va

ĝgdha dV

þ 1

V

Z
Va

qdla dV� 1

V

Z
Va

dpa dV ð14Þ

Then integration of the Gibbs–Duhem equation over the

averaging volume and subtraction of the result from Eq.

(14) yields:

dÊEa
I ¼ ha dĝga þ la dð�aqaÞ � pa d�a

þ 1

V

Z
Va

ĝgdðha � hÞdVþ 1

V

Z
Va

qdðla � lÞdV

� 1

V

Z
Va

dðpa � pÞdV ð15Þ

This equation confirms the fact that, in general, Eq. (4)

is a complete expression for the functional dependence

of macroscale internal energy only when the sum of the

three integrals in Eq. (15) is zero. Therefore postulation

of the functional dependence of macroscale thermody-

namics is different from integrating the functional de-

pendences postulated at the microscale. The last three
integral terms in Eq. (15) account for differences bet-

ween the form of microscale and macroscale internal

energy due to microscale inhomogeneities. Indeed, if the

pressure, chemical potential, and temperature within the

averaging volume are constant, then these integrals

would be zero and Eq. (4) would apply. In other words,

the three integrals that survive in Eq. (15) do not arise in

the RT approach. They confirm macroscale RT equa-
tions and integrally derived macroscale thermodynamic

forms are equivalent only when the microscale variables

are uniform within the averaging volume. For the case

of porous medium flows where the dynamics are slow,

neglect of the integrals in Eq. (15) may introduce a

negligible error such that the macroscale quantities in-

troduced in the RT approach would be essentially equal

to the quantities explicitly defined as integrals of mi-
croscale quantities. Furthermore, it is important to rec-

ognize that gravitational potential does not appear

explicitly in the definition of macroscale internal energy

given by Eq. (11). The macroscale gravitational poten-

tial, as defined in Eq. (5e) may be included in the anal-

ysis as a separate function.

Terms involving temporal and spatial derivatives of

the macroscopic energy variables appear in the macro-

scale energy transport equations for properties of pha-

ses, interfaces, and common lines [14]. By using the time

and space averaging theorems, one can convert between
derivatives of integrated variables and the integration of

derivatives of microscale variables. Such an exchange

allows one to develop relations between changes in

macroscale energy in terms of changes in macroscale

entropy, mass, and volume. For averaging of porous

medium flows when a representative averaging volume,

V, that is independent of time and space is used, a

transport theorem that allows for the exchange of order
of differentiation and integration is a simple extension of

that found, for example, in Whitaker et al. [26] and Gray

et al. [15]

1

V

Z
Va

df dV ¼ d
1

V

Z
Va

f dV

� �

þ 1

V

Z
Sab

f ðdr� wdtÞ 	 na dS ð16Þ

where Sab is the interface between the a phase and all

other phases within the averaging volume, Sa is the ex-

ternal surface of the averaging volume that is in the a
phase, n is a microscale coordinate with respect to the

centroid of the averaging volume, r is a position vector,

w is the velocity of the interface, t is time, and na is the
unit normal vector at a surface of the a phase and ori-

ented outward from the a phase in the averaging vol-

ume. In this expression, �d� is a differential at the

macroscale. If the function f ¼ pa � p, then Eq. (16)

provides the following expression for the pressure:

1

V

Z
Va

dðpa � pÞdV ¼ 1

V

Z
Sab

ðpa � pÞðdr� wdtÞ 	 na dS

ð17Þ

Substitution of this expression into Eq. (15) yields:

dÊEa
I ¼ ha dĝga þ la dð�aqaÞ � pa d�a

þ 1

V

Z
Va

ĝga dðha � hÞdV

þ 1

V

Z
Va

qa dðla � lÞdV

� 1

V

Z
Sab

ðpa � pÞðdr� wdtÞ 	 nadS ð18Þ

Introduce a particular macroscale material derivative by

setting d ¼ Da=Dt where

Da

Dt
¼ o

ot
þ va 	 r ð19Þ

Substitution of this expression into Eq. (18) provides the

equation for the material derivative of the internal en-

ergy as:
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DaÊEa
I

Dt
¼ ha Daĝga

Dt
þ la Dað�aqaÞ

Dt
� pa Da�a

Dt

� 1

V

Z
Va

ĝg
Daðh � haÞ

Dt
dV

� 1

V

Z
Va

q
Daðl � laÞ

Dt
dV

þ 1

V

Z
Sab

ðp � paÞðva � wÞ 	 na dS ð20Þ

The material derivatives of energy, mass, and entropy

are particularly important as it is these derivatives that

arise in the conservation equations. This relation among

the derivatives of energy, entropy, and mass is needed in

other analyses when constraining the entropy inequality

with conservation equations of mass, momentum, and

energy (e.g. [16]), but with the added advantage of not
relying on a macroscale RT postulation of energy de-

pendence.

In some conventions, the total macroscale internal

energy is taken to be the sum of the thermodynamic

internal energy, ÊEa
I , and the kinetic energy deviation, ÊEa

K,

so that:

ÊEa ¼ ÊEa
I þ ÊEa

K ð21Þ

Therefore it is also important to provide expressions for
the material derivative of the deviation kinetic energy

defined in Eq. (5d) which accounts for the kinetic energy

of the system that is due to microscale velocity devia-

tions from the macroscale average value. Define the

macroscale deviation kinetic energy per unit mass as:

Ka
E ¼

R
Va q 1

2
~vv2

� �h i
dVR

Va qdV

¼ 1

�aqaV

Z
Va

q
1

2
j v

��
� va j2

��
dV ¼ ÊEa

K

�aqa
ð22Þ

Then the material derivative of the macroscale deviation

kinetic energy per volume is obtained following the same
approach as above as

DaÊEa
K

Dt
¼ Ka

E

Dað�aqaÞ
Dt

þ 1

V

Z
Va

q
DaKa

E

Dt
dV ð23Þ

A total macroscale chemical potential is defined that

accounts for subscale velocity fluctuations according to

la
T ¼ la þ Ka

E ð24Þ

The deviation kinetic energy, Ka
E, in this definition ac-

counts for the deviation of a macroscopically observed

chemical potential from the simple volume average of
microscale chemical potential in much the same way

that Reynolds stresses contribute to the observed stress

after time averaging of a turbulent flow. For cases where

the flow is very slow, such as in porous media, the de-

viation kinetic energy will be negligible. However, if one

is averaging over systems with faster dynamics, this term

may have to be considered explicitly. Addition of Eqs.

(20) and (23) yields:

DaðÊEa
I þ ÊEa

KÞ
Dt

¼ ha Daĝga

Dt
þ la

T

Dað�aqaÞ
Dt

� pa Da�a

Dt

� 1

V

Z
Va

ĝg
Daðh � haÞ

Dt
dV

� 1

V

Z
Va

q
Daðl � la

TÞ
Dt

dV

þ 1

V

Z
Sab

ðp � paÞðva � wÞ 	 nadS ð25Þ

or, alternatively, as

DaðÊEa
I þ ÊEa

KÞ
Dt

¼ ha Daĝga

Dt
þ la

T

Dað�aqaÞ
Dt

� 1

V

Z
Va

ĝg
Daðh � haÞ

Dt
dV

� 1

V

Z
Va

q
Daðl � la

TÞ
Dt

dV

þ 1

V

Z
Sab

pðva � wÞ 	 na dS ð26Þ

When the deviation kinetic energy is small, as in most

porous media systems, the difference between Eqs. (20)

and (25) is negligible.

In contrast to the RT procedure of postulating mac-
roscale thermodynamics without consideration of mi-

croscale relations, all the quantities that appear in Eq.

(26) are explicitly defined in terms of their microscale

counterparts. This has important implications in that

the macroscale quantities may be measured and deter-

mined from the microscale distributions. Furthermore,

the RT approach postulates ÊEa ¼ ÊEa
I þ ÊEa

K as the mac-

roscale internal energy density that is a function of
standard thermodynamic variables. That approach is

unable to identify how the subscale velocity deviations

influence the macroscale functions.

3. Macroscale relations among thermodynamic quantities

for an interface

When modeling multiphase flow in porous media, it

is necessary to account for the energy associated with

interfaces between phases. This energy is evidenced in

capillary effects. The transformation from the micro-

scale energy expression to the macroscale expression

involves integration over the interface contained within

the averaging volume. Furthermore, the boundary or
edge of the interface is a common line where three

phases come together. The development of the expres-

sions for the macroscale interfacial energy and its de-

rivatives follows along the same lines as that for the

phase energy. The actual derivation is somewhat length-

ier than for a volume phase because of the terms in the
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averaging theorems that account for the curvature of the

interface. For convenience, the derivation will only be

outlined here.

The macroscale energy, entropy, and mass for an

interface between the a and b phases can be obtained by
integrating the respective microscale densities, expressed

per unit area, over the interface within the volume of

interest such that

ÊEab
I þ ÊEab

K þ 1

2
aabqabvab2 ¼ 1

V

Z
Sab

ÊE
�

þ 1

2
qv2

�
dS

ð27aÞ

ÊEab
I ¼ 1

V

Z
Sab

ÊEdS ð27bÞ

ÊEab
K þ 1

2
aabqabvab2 ¼ 1

V

Z
Sab

1

2
qv2 dS ð27cÞ

ÊEab
K ¼ 1

V

Z
Sab

ÊEK dS ¼ 1

V

Z
Sab

1

2
q~vv2 dS

¼ 1

V

Z
Sab

1

2
qjv� vabj2 dS ð27dÞ

ĝgab ¼ 1

V

Z
Sab

ĝgdS ð27eÞ

aabqab ¼ 1

V

Z
Sab

qdS ð27fÞ

vab ¼ 1

aabqabV

Z
Sab

qvdS ð27gÞ

and

aab ¼ 1

V

Z
Sab

dS ð27hÞ

Note that in these equations, q is the microscale mass

density per area or the excess mass density and aabqab is

the mass associated with the ab interface per averaging
volume. The macroscale densities are defined per unit

volume, with the exception of qab which is mass per

area. The interfacial energy is best expressed per unit

volume rather than per unit area because it may be di-

rectly added to the phase energy per volume to obtain a

measure of the total energy per volume of the system.

Additionally, the interfacial energy is not expressed per

unit mass because such a quantity would create diffi-
culties when the interface is massless.

The microscale internal energy per unit area is given

by the thermodynamic relation

ÊE ¼ ÊEðĝg; qÞ ¼ hĝg þ lq þ c ð28Þ

where c is the surface tension. The macroscale internal

energy per volume, as defined in Eq. (27b), may then be

expressed after substitution of Eq. (28) as

ÊEab
I ¼ 1

V

Z
Sab

½hĝg þ lq þ c�dS ð29Þ

Then by analogy with the relations employed for phases:

ÊEab
I ¼ habĝgab þ labaabqab þ cabaab ð30Þ

where

hab ¼
R
Sab

ĝghdSR
Sab

ĝgdS
¼ 1

ĝgabV

Z
Sab

ĝghdS ð31aÞ

lab ¼
R
Sab

qldSR
Sab

qdS
¼ 1

aabqabV

Z
Sab

qldS ð31bÞ

and

cab ¼ 1

aabV

Z
Sab

cdS ð31cÞ

The differential of the macroscale surface internal energy

is obtained from Eq. (30) as

dÊEab
I ¼ hab dĝgab þ lab dðaabqabÞ þ cab daab

þ ĝgab dhab þ aabqab dlab þ aab dcab ð32Þ

The differential expression of the microscale surface

energy is taken on the surface and obeys the relation

dsÊE ¼ hdsĝg þ ldsq ð33aÞ
with the Gibbs–Duhem equation

0 ¼ ĝgdsh þ qdsl þ dsc ð33bÞ
Eq. (32) may be expressed, alternatively, as

dÊEab
I ¼ hab dĝgab þ lab dðaabqabÞ þ cab daab

þ 1

V

Z
Sab

ĝgdhab dS þ 1

V

Z
Sab

qdlab dS

þ 1

V

Z
Sab

dcab dS ð34Þ

The differential within the integral may be re-expressed

in terms of a surface differential, ds, plus the normal

differential making use of the identity

d ¼ ds þ ðdr� vdtÞ 	 nana 	 r ð35Þ
where v is the velocity of the interface material. This
notation allows for general expressions to be developed

without specifying which particular derivative function

is being considered. Thus, for example, if the differential

of interest is the macroscale del operator with d ¼ r,

Eq. (35) becomes

r ¼ rs þ ðrr� vrtÞ 	 nana 	 r ð36Þ
However, rr is the unit tensor and rt ¼ 0 so this

equation expresses the spatial del operator with com-

ponents in a surface of interest and normal to that
surface as

r ¼ rs þ nana 	 r ð37Þ
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Similarly, one can obtain a partial time derivative in

space in terms of a partial time derivative on a surface

by use of Eq. (35) as:

o

ot
¼ o

ot

����
s

� v 	 nana 	 r ð38Þ

In general, one may employ Eq. (35) to obtain

dÊEab
I ¼ hab dĝgab þ lab dðaabqabÞ þ cab daab

þ 1

V

Z
Sab

ĝgdshab dS þ 1

V

Z
Sab

qdslab dS

þ 1

V

Z
Sab

dscab dS þ 1

V

Z
Sab

ðdr� vdtÞ 	 nana

	 ðĝgrhab þ qrlab þrcabÞdS ð39Þ

Integration of Gibbs–Duhem relation (33b) over the

interface and subtraction from Eq. (39) yields

dÊEab
I ¼ hab dĝgab þ lab dðaabqabÞ þ cab daab

þ 1

V

Z
Sab

ĝgdsðhab � hÞdS þ 1

V

Z
Sab

qdsðlab

� lÞdS þ 1

V

Z
Sab

dsðcab � cÞdS

þ 1

V

Z
Sab

ðdr� vdtÞ 	 nana 	 ðĝgrhab þ qrlab

þrcabÞdS ð40Þ

The transport and gradient theorems for a surface

within a porous medium [13,15] may be employed to

obtain

1

V

Z
Sab

dsf dS ¼ d
1

V

Z
Sab

f dS

" #

�r 	 1

V

Z
Sab

nana 	 ðdr

"
� vdtÞf dS

#

þ 1

V

Z
Sab

f ðrs 	 naÞna 	 ðdr

"
� vdtÞdS

#

þ 1

V

Z
Cabr

f ðdr

"
� wdtÞ 	 mab dC

#

ð41Þ

where Sab is the interface between the a and b phases

within the averaging volume, w is the velocity of the

common line, Cabr, that forms the boundary of Sab, na is

the unit normal vector on the Sab interface oriented

outward from the a phase, rs is the surface del operator,
and mab is a unit vector normal to the boundary curve of

Sab that is also tangent to the surface. With f ¼ cab � c
Eq. (41) can be applied to Eq. (40). Additionally, the

macroscale gradients of macroscale thermodynamic

properties may be moved outside the integrals such that

Eq. (40) becomes

dÊEab
I ¼ hab dĝgab þ lab dðaabqabÞ þ cab daab

þ 1

V

Z
Sab

ĝgdsðhab � hÞdS

þ 1

V

Z
Sab

qdsðlab � lÞdS

�r 	 1

V

Z
Sab

nana 	 ðdr

"
� vdtÞðcab � cÞdS

#

þrhab 	 1

V

Z
Sab

nana 	 ðdr

"
� vdtÞĝgdS

#

þrlab 	 1

V

Z
Sab

nanb 	 ðdr

"
� vdtÞqdS

#

þrcab 	 1

V

Z
Sab

nana 	 ðdr

"
� vdtÞdS

#

þ 1

V

Z
Sab

ðcab

"
� cÞðrs 	 naÞna 	 ðdr� vdtÞdS

#

þ 1

V

Z
Cabr

ðcab

"
� cÞðdr� wdtÞ 	 mab dC

#
ð42Þ

The integral terms in this equation account for subscale
variations in the thermodynamic properties that cause

the macroscale internal energy to deviate from the

functional dependence ÊEab
I ¼ ÊEab

I ðĝgab; aabqab; aabÞ that

would be analogous to the microscale situation.

When considering dynamic systems, it is useful to

have available an expression that relates the material

derivative of the internal energy to the material deriva-

tives of other thermodynamic quantities. Define a
macroscale material derivative according to

Dab

Dt
¼ o

ot
þ vab 	 r ð43Þ

This represents a time derivative calculated moving with

the average macroscale velocity of the ab interface. A
time derivative of a property associated with an inter-

face is calculated according to

D�ab

Dt
¼ o

ot

����
s

þ vab 	 rs ð44Þ

In this expression, the partial time derivative is calcu-
lated with surface coordinates fixed and rs is the surface

gradient operator. Also, define the macroscale rate of

strain tensor as

dab ¼ 1

2
½rvab þ ðrvabÞT� ð45Þ

Then Eq. (42) may be expressed in terms of a macroscale
material derivative such that
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DabÊEab
I

Dt
¼ hab Dabĝgab

Dt
þ lab DabðaabqabÞ

Dt

þ cab Dabaab

Dt
þ 1

V

Z
Sab

ĝg
D�abðhab � hÞ

Dt
dS

þ 1

V

Z
Sab

q
D�abðlab � lÞ

Dt
dS

�r 	 1

V

Z
Sab

nana 	 ðvab

"
� vÞðcab � cÞdS

#

þ dab :
1

V

Z
Sab

nanaðcab

"
� cÞdS

#

þrhab 	 1

V

Z
Sab

nana 	 ðvab

"
� vÞĝgdS

#

þrlab 	 1

V

Z
Sab

nana 	 ðvab

"
� vÞqdS

#

þrcab 	 1

V

Z
Sab

nana 	 ðvab

"
� vÞdS

#

þ 1

V

Z
Sab

ðcab

"
� cÞðrs 	 naÞna 	 ðvab � vÞdS

#

þ 1

V

Z
Cabr

ðcab

"
� cÞðvab � wÞ 	 mab dC

#
ð46Þ

The subscale kinetic energy is defined using the notation

Kab
E ¼

R
Sab

q 1
2
~vv2

� �h i
dSR

Sab
qdS

¼ 1

aabqabV

Z
Sab

q
1

2
v
����
� vab

��2��dS

¼ ÊEab
K

aabqab
ð47Þ

An analogue to Eq. (24) may be used to define a total

chemical potential according to

lab
T ¼ lab þ Kab

E ð48Þ

Therefore, the material derivative of the sum of the in-

ternal and subscale kinetic energy is obtained from Eq.

(46) by replacing ÊEab
I with ÊEab

I þ ÊEab
K and by replacing lab

with lab
T . When the velocities are small, as with porous

media, these additional terms will be negligible.

Eq. (46), or more precisely its counterpart written to

include the deviation kinetic energy, can be compared

with its counterpart for a phase, Eq. (25), respectively.
The surface energy equation contains additional terms

that account for the orientation of the surfaces at the

microscale, which cannot be discerned directly from a

macroscale perspective, and changes in curvature of the

surfaces. None of the integral terms would arise if the

surface internal energy were simply postulated as having

the same functional dependence on mass, entropy, and

area as the microscale counterpart. In fact, all the inte-

gral terms that appear in Eq. (46) are zero for the case

when the microscale temperature, interfacial tension,

velocity, and chemical potential are constant within the
averaging volume. In this case, only the first three terms

on the right side of Eq. (46) would be non-zero and the

functional dependence of macroscale internal energy on

macroscale mass, entropy, and area would be identical

to the microscale dependence.

4. Macroscale relations among thermodynamic quantities
for a common line

Although common lines may seem to be of limited

significance in comparison to the phases and interfaces,

the forces exerted on a common line by interfaces and

the movement of the common line as a fluid phase in-

vades a region may be important. The common line

tension is also an essential factor in understanding the
contact angle between a wetting phase and a solid. The

transformation from the microscale representation to

the macroscale form involves integration over the com-

mon line and evaluation of functions at the end points of

the common line contained within an averaging volume.

The derivation is completely analogous to those pre-

sented previously. Therefore, only the important defi-

nitions and the results are presented.
The macroscale energy, entropy, and mass for a

common line where the a, b, and r phases come to-

gether are defined in terms of their microscale counter-

parts as

ÊEabr
I þ ÊEabr

K þ 1

2
labrqabrvabr2

¼ 1

V

Z
Cabr

ÊE
�

þ 1

2
qv2

�
dC ð49aÞ

ÊEabr
I ¼ 1

V

Z
Cabr

ÊEdC ð49bÞ

ÊEabr
K þ 1

2
labrqabrvabr2 ¼ 1

V

Z
Cabr

1

2
qv2 dC ð49cÞ

ÊEabr
K ¼ 1

V

Z
Cabr

ÊEK dC ¼ 1

V

Z
Cabr

1

2
q~vv2 dC

¼ 1

V

Z
Cabr

1

2
q v
�� � vabr

��2 dC ð49dÞ

ĝgabr ¼ 1

V

Z
Cabr

ĝgdC ð49eÞ

labrqabr ¼ 1

V

Z
Cabr

qdC ð49fÞ

vabr ¼ 1

labrqabrV

Z
Cabr

qvdC ð49gÞ
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and

labr ¼ 1

V

Z
Cabr

dC ð49hÞ

In these equations, the microscale densities on the right
side are defined per unit length while the macroscale

densities are per unit volume, with the exception of qabr

which is the macroscale mass per length.

The microscale thermodynamic relation for the in-

ternal energy per unit length of common line is

ÊE ¼ ÊEðĝg; qÞ ¼ hĝg þ lq � cc ð50aÞ

with Gibbs–Duhem equation

0 ¼ ĝgdh þ qdl � dcc ð50bÞ

where cc is the line tension. The macroscale temperature,

chemical potential, line tension, and subscale kinetic
energy are defined analogously to those for the phases

and interfaces except that the integration region is the

common line length rather than the phase volume or

interfacial area. Substitution of Eq. (50a) into Eq. (49b)

provides the definition for the macroscale common line

internal energy per unit volume

ÊEabr
I ¼ 1

V

Z
Cabr

½hĝg þ lq � cc�dC ð51Þ

Then, analogously to the definitions of phase and in-

terface macroscale properties

ÊEabr
I ¼ habrĝgabr þ labrlabrqabr � cabrlabr ð52Þ

where

habr ¼
R
Cabr

ĝghdCR
Cabr

ĝgdC
¼ 1

ĝgabrV

Z
Cabr

ĝghdC ð53aÞ

labr ¼
R
Cabr

qldCR
Cabr

qdC
¼ 1

labrqabrV

Z
Cabr

qldC ð53bÞ

and

cabc ¼ 1

labrV

Z
Cabr

cc dC ð53cÞ

The differential of the macroscale internal energy may be

expressed as

dÊEabr
I ¼ habrdĝgabr þ labrdðlabrqabrÞ � cabr dlabr

þ 1

V

Z
Cabr

ĝgdhabr dC þ 1

V

Z
Cabr

qdlabr dC

� 1

V

Z
Cabr

dcabr dC ð54Þ

The general differentials within the integral may be ex-

pressed in terms of a component in the one-dimensional

common line space, dc, and a component normal to the

common line. With the unit vector tangent to the com-

mon line indicated as k and the unit tensor denoted as I,

this relation is

d ¼ dc þ ðdr� vdtÞ 	 ðI� kkÞ 	 r ð55Þ

where v is the velocity of the material in the common

line. This expression bears some similarities to Eq. (35)

employed for a surface. Thus Eq. (54) expands to

dÊEabr
I ¼ habrdĝgabr þ labr dðlabrqabrÞ � cabr dlabr

þ 1

V

Z
Cabr

ĝgdchabr dC þ 1

V

Z
Cabr

qdclabr dC

� 1

V

Z
Cabr

dccabr dC þ 1

V

Z
Cabr

ðdr� vdtÞ

	 ðI� kkÞ 	 ðĝgrhabr þ qrlabr �rcabrÞdC

ð56Þ

Subtraction of the Gibbs–Duhem equation (50b) inte-

grated over the common line from this expression yields

dÊEabr
I ¼ habr dĝgabr þ labr dðlabrqabrÞ � cabr dlabr

þ 1

V

Z
Cabr

ĝgdcðhabr � hÞdC

þ 1

V

Z
Cabr

qdcðlabc � lÞdC

� 1

V

Z
Cabr

dcðcabr � ccÞdC

þ 1

V

Z
Cabr

ðdr� vdtÞ 	 ðI� kkÞ

	 ðĝgrhabr þ qrlabr �rcabrÞdC ð57Þ

The transport and divergence theorems for a common

line within a porous medium [15] may be expressed in
terms of differentials as

1

V

Z
Cabr

dc f dC ¼ d
1

V

Z
Cabr

f dC
� �

�r 	 1

V

Z
Cabr

ðI
"

� kkÞ 	 ðdr� vdtÞf dC

#

� 1

V

Z
Cabr

k 	 rck 	 ðdr� vdtÞf dC

þ 1

V

X
pts

e 	 ðdr� wdtÞf ð58Þ

where ‘‘pts’’ refers to the end points of the common line

within V, e is a unit vector tangent to the common line
at the end points and oriented outward from the com-

mon line, rc is the del operator along the curve, and w is

the velocity of the end points of the common line. Eq.

(58) may be applied to Eq. (57) with f ¼ cabr � cc. Then

removal of the macroscale gradients of macroscale

quantities from the integrals yields
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dÊEabr
I ¼ habr dĝgabr þ lagr dðlabrqabrÞ � cabr dlabr

þ 1

V

Z
Cabr

ĝgdcðhabr � hÞdC

þ 1

V
qdcðlabr � lÞdC

þr 	 1

V

Z
Cabr

ðI
"

� kkÞ 	 ðdr� vdtÞðcabr � ccÞdC

#

þrhabr 	 1

V

Z
Cabr

ðdr

�
� vdtÞ 	 ðI� kkÞĝgdC

�

þrlabr 	 1

V

Z
Cabr

ðdr

"
� vdtÞ 	 ðI� kkÞqdC

#

�rcabr 	 1

V

Z
Cabr

ðdr

"
� vdtÞ 	 ðI� kkÞdC

#

þ 1

V

Z
Cabr

k 	 rck 	 ðdr� vdtÞðcabr � ccÞdC

� 1

V

X
pts

e 	 ðdr� wdtÞðcabr � ccÞ ð59Þ

Define a material derivative according to

Dabr

Dt
¼ o

ot
þ vabr 	 r ð60Þ

This represents a time derivative calculated moving with

the average macroscale velocity of the abr common

line. A time derivative of a property associated with a
common line is calculated according to

D�abr

Dt
¼ o

ot

����
c

þ vabr 	 rc ð61Þ

In this expression, the partial time derivative is calcu-

lated with the linear coordinate along the line fixed and

rc is the gradient operator along the common line. Also,

define the macroscale rate of strain tensor as

dabr ¼ 1

2
½rvabr þ ðrvabrÞT� ð62Þ

Eq. (59) may be expressed in the particular form when
the differential is a material derivative as

DabrÊEabr
I

Dt

¼ habr Dabrĝgabr

Dt
þ labr DabrðlabrqabrÞ

Dt

� cabr Dabrlabr

Dt
þ 1

V

Z
Cabr

ĝg
D�abrðhabr � hÞ

Dt
dC

þ 1

V

Z
Cabr

q
D�abrðlabr � lÞ

Dt
dC

þr 	 1

V

Z
Cabr

ðI
"

� kkÞ 	 ðvabr � vÞðcabr � ccÞdC

#

� dabr :
1

V

Z
Cabr

ðI
"

� kkÞðcabr � ccÞdC

#

þrhabr 	 1

V

Z
Cabr

ðvabr

"
� vÞ 	 ðI� kkÞĝgdC

#

þrlabr 	 1

V

Z
Cabr

ðvabr

"
� v 	 ðI� kkÞqdC

#

�rcabr 	 1

V

Z
Cabr

ðvabr

"
� vÞ 	 ðI� kkÞdC

#

þ 1

V

Z
Cabr

k 	 rck 	 ðvabr � vÞ � ðcabr � ccÞdC

� 1

V

X
pts

e 	 ðvabr � wÞðcabr � ccÞ ð63Þ

Eq. (63) provides information concerning the relation

between changes in macroscale internal energy and the
macroscale entropy, mass, and volume of a common

line. It can be extended to include the deviation kinetic

energy by replacing ÊEabr
I with ÊEabr

I þ ÊEabr
K and labr with

labr
T where labr

T is defined analogously to its counterpart

for a surface in Eq. (48). The integral terms that appear

in these equations account for orientation and curvature

of the common line within the averaging volume and for

any non-constancy of the microscale chemical potential,
temperature, velocity, and common line tension within

the volume.

5. Conclusion

The derivations presented here provide information

concerning the thermodynamic relations between mac-

roscale internal energy and other macroscale quantities.

The conceptual approach as well as the results of these

derivations will have utility in improving the model-

ing and formulation of multiphase porous medium
flows as well as modeling of any flows that are modeled

at macroscopic length scales. The derivations illuminate

a number of important features. First, explicit relations

for macroscale thermodynamic properties as weighted

integrals of microscale thermodynamic properties are

employed. In an earlier consideration of the derivation

of macroscale variables, Narasimhan [24] suggested that

pressure be multiplied by a storage parameter before
averaging while temperature of a phase be multiplied by

a volumetric heat capacity before averaging. Although

Gray [11] responded in favor of a definition of macro-

scale pressure and temperature to satisfy an RT frame-

work, the RT approach does introduce uncertainty

about the relationship between microscale and macro-

1102 W.G. Gray / Advances in Water Resources 25 (2002) 1091–1104



scale quantities. In the present paper, it has been shown

that if pressures and tensions are considered to be en-

ergies per region (i.e., volumes, areas, or curves), direct

averaging of those quantities over the corresponding re-

gion leads to the appropriate macroscale definitions.
The appropriate factor to employ in averaging temper-

ature is shown to be the entropy per region. Use of this

factor allows a relationship between microscale and

macroscale temperature to be established so that the

macroscale definition of temperature is consistent with

microscale thermodynamics. The macroscale chemical

potential is obtained as a mass weighted average of the

microscale chemical potential. With these definitions,
the macroscale internal energy per averaging volume for

phases, interfaces, and common lines per volume are

derived, respectively, as

ÊEa
I ¼ haĝga þ la�aqa � pa�a ð64aÞ

ÊEab
I ¼ habĝgab þ labaabqab þ cabaab ð64bÞ

and

ÊEabr
I ¼ habrĝgabr þ labrlabrqabr � cabrlabr ð64cÞ

These forms are consistent in appearance with their
microscale based counterparts and provide the func-

tional form of the macroscale internal energy. A mate-

rial derivative, for example of Eq. (64a), has the general

form:

DaÊEa
I

Dt
¼ ha Daĝga

Dt
þ la Dað�aqaÞ

Dt
� pa Da�a

Dt

þ ĝga Daha

Dt

�
þ �aqa Dala

Dt
� �a Dapa

Dt

�
ð65Þ

By analogy with the microscale case or from the RT
perspective, the last group of terms would be zero by the

Gibbs–Duhem equation. However, when the microscale

thermodynamic properties are not homogeneous within

an averaging region, time and/or space derivatives of the

macroscale energy are relatively complex in comparison

to the same derivatives of the microscale internal energy

density. The last terms do not necessarily sum to zero,

but they may be expressed in other forms using the av-
eraging theorems (e.g., making use of Eq. (20) in con-

junction with Eq. (65)).

For purposes of employing the entropy inequality to

develop equations for flow in porous media, it is im-

portant to be able to relate the material derivatives of

internal energy density to the material derivatives of

entropy, mass, and region densities (e.g., [4,11,16]). For

cases where the microscale inhomogeneities within an
averaging volume are negligible, the macroscale and

microscale formulations of the material derivatives of

internal energy will be identical in form. However, it has

been demonstrated here that, in general, extra terms,

which are left as integrals, supplement the material de-

rivatives. These terms account for inhomogeneities of

microscale thermodynamic properties as well as the

subscale orientations and curvatures of surfaces and

common lines. It is useful to note that these expressions

are derived directly from their microscale counterparts

rather than by postulating functional forms of internal
energy at the macroscale as is done using an RT ap-

proach. Averaging of microscopic thermodynamic forms

adds consistency to the development of macroscale

forms in that just as conservation equations for phases,

interfaces, and common lines are derived from their

microscale forms by averaging [14], so too are the ther-

modynamic dependences transformed to the macroscale

using the same mathematical tools. Besides being
mathematically appealing, this approach also facilitates

the practical calculation of macroscale thermodynamic

properties by integration of microscale measurements

within a system. The approach employed and the ther-

modynamic expressions developed will have utility in

developing macroscale equations for description of

water resources problems in which microscale heteroge-

neities are important. For example, when the averaging
region is large enough that gravitational effects cause

the pressure within an averaging volume to be non-

constant, the formulation of the thermodynamics of the

problem as proposed here is important. For problems of

flow in porous media using large averaging volumes,

sediment transport in rivers, vertically averaged flow in

shallow waters, and cross-sectionally averaged flow in

rivers, the expanded forms of the thermodynamic de-
pendences will be important.
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