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This paper provides the thermodynamic approach and constitutive theory for closure
of the conservation equations for multiphase flow in porous media. The starting point
for the analysis is the balance equations of mass, momentum, and energy for two fluid
phases, a solid phase, the interfaces between the phases and the common lines where
interfaces meet. These equations have been derived at the macroscale, a scale on the
order of tens of pore diameters. Additionally, the entropy inequality for the multiphase
system at this scale is utilized. The internal energy at the macroscale is postulated to
depend thermodynamically on the extensive properties of the system. This energy is
then decomposed to provide energy forms for each of the system components. To
obtain constitutive information from the entropy inequality, information about the
mechanical behavior of the internal geometric structure of the phase distributions must
be known. This information is obtained from averaging theorems, thermodynamic
analysis, and from linearization of the entropy inequality at near equilibrium
conditions. The final forms of the equations developed show that capillary pressure is
a function of interphase area per unit volume as well as saturation. The standard
equations used to model multiphase flow are found to be very restricted forms of the
general equations, and the assumptions that are needed for these equations to hold are
identified.q 1999 Elsevier Science Ltd. All rights reserved.
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NOMENCLATURE

Aa surface area forming the boundary of thea

phase
Aab surface area ofab-interface
aa specific interfacial area of the boundary of thea

phase (area per unit of system volume)
aab specific interfacial area ofab-interface (area per

unit of system volume)
ba external supply of entropy to thea phase
bab external supply of entropy to theab interface
bwns external supply of entropy to thewnscommon line
bm tensor used to write the outline form of the entropy

inequality in eqn (39)
ca
ab accounts for contribution to the energy of thea

phase of theab interface

cab
a accounts for contribution to the energy of theab

interphase of thea phase
cab

wns accounts for contributions to the energy of theab

interface of thewnscommon line
cwns
ab accounts for contributions to the energy of thewns

common line of theab interface
da deformation rate tensor of ana phase
dab deformation rate tensor of anab interface
dwns deformation rate tensor of awnscommon line
dm deformation rate tensor: phase (m ¼ a), interface

(m ¼ ab), or common line (m¼ wns)
Ea internal energy ofa phase per mass ofa phase
Eab internal energy ofab interface per mass ofab

interface
Ewns internal energy ofwnscommon line per mass of

wnscommon line

Advances in Water ResourcesVol. 22, No. 5, pp. 521–547, 1999
q 1999 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0309-1708/99/$ - see front matterPII: S 0 3 0 9 - 1 7 0 8 ( 9 8 ) 0 0 0 2 1 - 9

521



Ê
a

internal energy of thea phase per unit volume of
system

Ê
ab

internal energy of theab interface per unit volume
of system

Ê
wns

internal energy of thewnscommon line per unit
volume of system

Ea extensive internal energy of thea phase
Eab extensive internal energy of theab interface
Ewns extensive internal energy of thewnscommon line
Es Lagrangian strain tensor of the solid phase
êa
ab rate of transfer of mass fromab-interface to the

a-phase
êab

wns rate of transfer of mass fromwnscommon line to
the ab-interface

em term accounting for the multipliers of velocity in
outline entropy inequality (39)

Fs displacement vector of the solid phase
ga external supply of momentum to thea phase
gab external supply of momentum to theab interface
gwns external supply of momentum to thewnscommon

line
ha external supply of energy to thea phase
hab external supply of energy to theab interface
hwns external supply of energy to thewnscommon line
I identity tensor
Js

s average curvature of the solid surface calculated
with ns positive

Ja
ab average curvature of theab calculated withna

positive
j jacobian of the motion of the solid phase
L material coefficients (with various superscripts and

subscripts)
Lwns common line length
l wns specific length ofwnscommon line (length per unit

volume of medium)
Ma mass ofa phase
Mab mass ofab interface
Mwns mass ofwnscommon line
na unit vector normal to and pointing outward from

the surface of thea phase
p unit vector in direction of average principal cur-

vature of thewnscommon line
pa pressure ofa-phase
Q̂

a
ab energy transferred to thea-phase from theab-

interface
Q̂

ab
wns energy transferred to theab-interface from thewns

common line
q effective total heat conduction vector
qa heat conduction vector for thea phase
qab heat conduction vector for theab interface
qwns heat conduction vector for thewnscommon line
Sa entropy of thea phase
Sab entropy of theab interface
Swns entropy of thewnscommon line
sa saturation of thea-phase, volume fraction of void

space occupied by fluid phasea

T̂
a
ab force exerted on thea-phase by theab-interface

T̂
ab
wns force exerted on theab-interface by thewns

common line
t a stress tensor for thea phase
t ab stress tensor for theab interface
t wns stress tensor for thewnscommon line
u velocity of a common line
Va volume ofa-phase
Vs

0 reference volume of solid phase
va velocity of thea phase
vab velocity of theab interface
vwns velocity of thewnscommon line
va,ab velocity of thea phase relative to the velocity of

the ab interface,va ¹ vab

vab,wns velocity of theab interface relative to the velocity
of the wnscommon line,vab ¹ vwns

w velocity of an interface
X s reference position of a solid phase ‘particle’
x spatial position of a solid phase ‘particle’
xns

s fraction of the solid phase surface in contact with
the non-wetting phase

xws
s fraction of the solid phase surface in contact with

the wetting phase

Greek symbols
gab surface tension ofab-interface
gwns lineal tension ofwns-common line
e porosity of the medium
ea volume fraction ofa-phase
ĥa entropy ofa phase per unit volume of system
ĥab entropy ofab interface per unit volume of system
ĥwns entropy ofwnscommon line per unit volume of

system
v temperature
va temperature of thea phase
vab temperature of theab interface
vwns temperature of thewnscommon line
va,ab temperature difference,va ¹ vab

vab,wns temperature difference,vab ¹ vwns

k average principal curvature of the common line
kn average normal curvature of the common line with

respect to thes surface
kws

g average geodesic curvature of the common line
with respect to the ws surface

l unit vector tangent to thewnscommon line
ma chemical potential of thea phase
mab chemical potential of theab interface
mwns chemical potential of thewnscommon line
nab unit vector on the common line normal tol and

tangent to theab interface
ra density ofa phase, mass ofa phase per volume of

a phase
rab density ofab interface, mass ofab interface per

area ofab interface
rwns density ofwnscommon line, mass ofwnscommon

line per length ofwnscommon line
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js stress in the solid due to deformation
jas stress in thea–solid interface due to solid defor-

mation
t quantities defined in the text (with subscripts and

superscripts) that are zero at equilibrium
F average contact angle between thew ands phases
fa entropy conduction vector of thea phase
fab entropy conduction vector of theab interface
fwns entropy conduction vector of thewnscommon

line
Q̂

a
grand canonical potential of thea phase per unit
volume of system

Q̂
ab

grand canonical potential of theab interface per
unit volume of system

Q̂
wns

grand canonical potential of thewnscommon line
per unit volume of system

Special symbols
Da=Dt material time derivative following the motion in

the a phase,]=]t þ va·=
Dab=Dt material time derivative following the motion in

the ab interface,]=]t þ vab·=
Dwns=Dt material time derivative following the motion in

the wnscommon line,]=]t þ vwns·=P
bÞa summation over all phases excepta-phase

= gradient operator with respect to spatial
coordinates

=X gradient operator with respect to reference
coordinates

Superscripts and subscripts
n non-wetting phase
s solid phase
w wetting phase
ns non-wetting–solid interface
wn wetting–non-wetting interface
ws wetting–solid interface

1 INTRODUCTION

Accurate description of multiphase flow in porous media
requires that a number of system intricacies be accounted
for. These include the presence of juxtaposed phases and
their interfaces, the complicated geometry of pores, fluid
dynamics giving rise to appearance and disappearance of
interfaces, pendular rings of a wetting phase, ganglia of
the non-wetting phase, and the behavior of films. A variety
of forces, due to viscous effects, gravity, interfacial tension,
and pressure are simultaneously present and influencing
system behavior. A fundamental question in modeling the
flow of fluids in porous media is how much detail should be
included in such models. In virtually all laboratory and field
scale models, microscale details (i.e., pore geometry and
flow variations within those pores) are impossible to include

and are not actually needed. However, manifestation of
those details at the macroscale (a scale involving tens to
hundreds of pores) must be preserved. Traditionally,
porosity and fluid saturations, concepts that do not exist at
the microscale, are included in macroscale porous media
theories to account for the presence of multiple phases at
a point in a macroscale continuum. However, these addi-
tional variables have proven insufficient to account for all
important microscale processes that influence macroscale
behavior. Because of the dynamic motion of the fluids,
many configurations and distributions of the fluids are
possible for a given saturation. Even at equilibrium, different
distributions of fluids could exist at a prescribed saturation
such that the balances of forces on the fluid are satisfied.

This matter has received attention in recent years and
thermodynamic theories have been developed wherein
interfacial effects are explicitly included.10,18,20,26,27 In
these theories, in addition to porosity and saturation, specific
interfacial area, the amount of interfacial area between two
phases per unit volume of the system, is introduced as a
macroscale independent variable. This variable is of impor-
tance in studies of mass transfer among phases of a porous
medium and thus is of wide interest. A number of proce-
dures involving network models and experimental methods
have been developed for measurement of interfacial
areas.13,36,40,43

Porous media systems that involve flow of two or more
fluids may also have common lines, curves formed in those
instances when three different interface types come
together. The common lines may play an important role in
the movement of fluids and interfaces. Indeed, in a capillary
tube where a meniscus between fluids is at rest, flow can be
initiated only if the balance of forces on the common line, as
well as the balance on the phases and the meniscus, is per-
turbed. Thus, the question arises as to how the presence of
common lines and the thermodynamic properties of those
lines affect the macroscale flow processes in porous media.
This question, and more general questions regarding the
degree of detail that must be incorporated into macroscale
theories, can be investigated only if appropriate conserva-
tion equations for the common lines are available. Subse-
quent to the development of a general theory, information
obtained from experiments and observations may be used to
evaluate the relative significance of various phenomena
accounted for in the theory. At that point, simplifications
can be made that eliminate unimportant terms from the
modeling process. It is important to observe that by starting
from a general formulation, one is forced to make explicit
assumptions to arrive at equations to be used in a modeling
exercise. Then, if the exercise proves unsuccessful, the
source of the difficulty will lie in the approximations
made. If, on the other hand, one begins with simple equa-
tions based on empirical or intuitive ideas, the cause of the
failure of such equations cannot be inferred.

In this work, the results from a general thermodynamic
theory are developed where the effects of both interfaces
and common lines have been taken into account. The
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procedure for developing usable equations for the simula-
tion of multiphase subsurface flow involves six steps:

• Derivation of conservation equations for phases,
interfaces, and common lines at the porous media
scale, the macroscale, and of the entropy inequality
for the system. Work to do this has been ongoing for
many years. Initially, the work considered only
phases; and balance laws studied were restricted
to conservation of mass and momentum, e.g. Ref.47.
The dissertation of Hassanizadeh22 and the papers by
Hassanizadeh and Gray23–25employed an averaging
theory that extended this approach to inclusion of
the energy equation and entropy inequality. Subse-
quent to this, Gray and Hassanizadeh18 developed
averaging theorems for interfaces and developed
conservation relations for the interface properties
as well. Finally, theorems for averaging over
common lines were developed by Gray et al.21 and
have been employed in a paper by Gray and Hassa-
nizadeh20. This latter reference, in fact, presents the
set of averaged equations of mass, momentum, and
energy conservation for phases, interfaces, and
common lines that form the basis for a general
study of multiphase flow.

• Postulation of thermodynamic dependences of the
energy on independent variables for phases, inter-
faces, and common lines and incorporation of these
postulates into the entropy inequality. This task is
one that has not, heretofore, been addressed
thoroughly for macroscale system representation.
There is a need to ensure that the fundamental
ideas of thermodynamics are not neglected when
making use of the principles of continuum
mechanics. Note that classical thermodynamics
deals with equilibrium systems only while con-
tinuum mechanics deals with both equilibrium
states and the transitions when a system is not at
equilibrium. Nevertheless, it is important that the
continuum mechanical description reduce to the
classical thermodynamic one at steady state.
Thermodynamics requires that consistent and
systematic postulates be made concerning the
dependence of internal energy on independent vari-
ables. The presence of interfaces adds the compli-
cation of excess surface properties such as mass per
unit area and interfacial tension that must be
accounted for in a conceptually and quantitatively
consistent manner (surface excess properties from a
microscale Gibbsian perspective are discussed, for
example, in Miller and Neogi34 and Gaydoset al.17).
Then, from the postulated forms, relations among
variables and insights into system behavior can be
obtained. One of the most useful approaches for
postulating the thermodynamic dependence of
internal energy is the approach advocated in
Callen12 and Bailyn9 and, used to advantage by

Gaydoset al.17 in a study of microscopic capillarity,
whereby the extensive energy is considered to be a
function of the extensive variables of the system.
With this approach, confusion about differences
among Helmholtz potential, Gibbs potential, grand
canonical potential, and enthalpy are diminished as
they are simply mathematical rearrangements of the
original postulated form for internal energy.
Insights gained from applying microscale-based
thermodynamic postulates to multiphase systems
(e.g. Refs1–4,15,34,35,37) are extremely valuable in
formulating a macroscale theory, but do not replace
the need for formulation of that theory in terms of
macroscale variables. To develop the macroscale
thermodynamics, the postulative approach of
Callen12 will be employed after extension to the
macroscale perspective. The philosophy of
Callen12 is employed herein to obtain thermo-
dynamic relations that are appropriate for a macro-
scale description of a porous media system. One
important point is that from the perspective of the
macroscale, the system is composed of coexisting
phases at a point and not juxtaposed phases, inter-
faces, and common lines. Thus, in fact, the energy
postulate should be made in terms of all compo-
nents. The decomposition of the internal energy
for the total system to the component parts describ-
ing each phase, interface, and common line must be
undertaken with caution.

• Determination of mechanical equilibrium con-
straints and their incorporation into the entropy
inequality. Although the geometric variables
including porosity, saturation, areas per volume,
and common line length per volume are indepen-
dent variables, their deviations around an equili-
brium state are not (e.g., a change in saturation of
one fluid would be expected to cause a change in
the amount of area bounding that fluid). These con-
siderations give rise to employment of the aver-
aging theorems to obtain relations among changes
in geometric variables. These relations are useful in
deriving both thermodynamic equilibrium condi-
tions and dynamic relations between changes in
geometric variables and the thermodynamic state
of the system.

• Exploitation of the entropy inequality to obtain
equations that describe equilibrium system behavior.
The entropy inequality provides a condition that
requires a system to be at its minimum energy
state when at equilibrium. It also provides some
guidance on allowable dependences of functions
on independent variables. Furthermore, it provides
guidance on the positivity or negativity of some
coefficients by forbidding, for example, up-gradient
flow or transfer of heat from a cold body to a warmer
one or flow in a direction opposite to a gradient in
potential. A theoretical tool exists for developing
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constitutive functions in a systematic manner that is
based on the second law of thermodynamics. The
procedure of Coleman and Noll14 was applied to
single phase systems to assure that the second law
of thermodynamics is not violated by constitutive
assumptions. Complementing this work are exten-
sions and variations that consider multiphase mix-
tures and interfaces (e.g., Refs19,25,38,45). Here, the
macroscale entropy inequality will be exploited
while taking into account constraints obtained
from the geometric relations.

• Linearization of some of the constitutive functions
to obtain conservation equations with their coeffi-
cients capable of modeling dynamic systems.
Although the localization theory for a three phase
system provides 35 balance equations of mass,
momentum, and energy for the phases, interfaces,
and common lines, it also contains 150 constitutive
functions that must be specified. The dependence of
these functions on other system parameters are
obtained under some assumptions. Also, the func-
tional forms of the dependences of the stress tensors
are obtained. However, in general, the actual func-
tional relations between the constitutive functions
and their independent variables are not known
except at equilibrium. For example, at equilibrium
the heat conduction vector is zero; but the general
functional representation of this vector in terms of
independent variables is not known at an arbitrary
state of disequilibrium. Thus a compromise must be
employed whereby functional forms are obtained
‘near’ equilibrium. Experimental and computational
studies must subsequently be undertaken to deter-
mine the definition of ‘nearness’. By this approach,
which is similar to taking a Taylor series expansion
of a function and ignoring higher order terms,
results such as the heat conduction vector being
proportional to the temperature gradient and a
velocity proportional to a potential gradient are
obtained. Because multiphase porous media flows
are typically slow, they also satisfy the conditions
of being ‘near enough’ to equilibrium that this
linearization procedure provides relations appro-
priate for many physical situations. It is important
to note, however, that although the equations are
linearized, the coefficients that arise still may
have complex dependence on system parameters
(e.g., relative permeability, which is traditionally
simplified to be a function of saturation). Identifica-
tion of those coefficients remains a challenging task.

• Determination of the physical interpretation of the
coefficients, as possible, using geometric approxi-
mations that provide insight into required labora-
tory measurements. It is important that the
theoretical procedure not simply be a propagator
of unknown coefficients that have no chance of
being measured or even understood. Therefore,

effort must be made to allow insightful study of
the new coefficients through laboratory and com-
puter experimentation. Thus, although a general
formulation is employed, it is simplified to a
manageable, yet still challenging, set of equations
that can be effectively studied. As progress is made
in parameterizing these systems, the approxima-
tions employed can be relaxed so that more com-
plex systems may be studied.

The first of the above steps was carried out by Gray and
Hassanizadeh20 for the general case including an arbitrary
number of phases, interfaces, common lines, and common
points. Here, the conservation equations developed in that
paper will be simplified to the case of three phases (wetting
phasew, non-wetting phasen, and solid phases) prior to
continuing the systematic approach to addressing thermo-
dynamic and geometric issues. The result of this study is a
‘workable’ set of equations that arises from examination of
a three-phase system, composed of a solid and two fluids.
Additionally, the assumptions needed to reduce the general
set of equations to the set traditionally used to model a three-
phase system are made explicit.

2 CONSERVATION EQUATIONS

Fig. 1 depicts a three-phase system consisting of a solid and
two fluid phases, denoted bys, w, andn, respectively. Thew
phase will be referred to as the wetting phase because it
preferentially wets the solid relative to the non-wettingn
phase. The phases are separated by three different interfaces
denoted aswn, ws, and ns where the paired indices refer
to the phases on each side of the interface and the order of
the indices is inconsequential. Additionally, awnscommon
line may exist. The three-phase system is a simplification of
a more general case involving more phases in that no
common points exist. General macroscale equations
describing conservation of mass, momentum, and energy
for phases and interfaces have been developed pre-
viously.18,23 These have been collected, and equations for
common lines and common points have been derived along
with the entropy inequality for the system.20 Here, these will
be simplified to the forms needed to describe a three-phase
system. The reduction to the required forms is a straightfor-
ward manipulation of the general forms with the main dif-
ferences being that summations over common lines reduce
to terms involving the single common line and terms relat-
ing to transfer processes at common points are zero since no
common points exist for a three-phase system.

In addition, for convenience rather than necessity, the
energy densities will be expressed per unit mass and per
unit of system volume. Therefore, withEa being the internal
energy of thea phase per unit mass ofa phase,Ê

a
will

indicate thea phase energy per unit volume of porous
medium. These two energy densities are related by
Ê

a
¼ raeaEa. For an interface,Eab is the excess internal
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energy of theab interface per unit mass of interface while
Ê

ab
¼ rabaabEab is the excess energy per unit volume of the

system. Finally, the common line energy per unit mass of
common line is denoted asEwns while the common line
internal energy per unit volume of the system is
Ê

wns
¼ rwnslwnsEwns. Note that in the case of massless inter-

faces and common lines, the energies per unit volume are
still directly meaningful functions, while the product of
mass density times energy per mass must be evaluated in
the limit as the density approaches zero.

The objective of this section is to provide the needed
balance equations rather than reproduce their derivation
from the earlier general work.20

2.1 Phase conservation equations

The balance equations for the three-phase system are essen-
tially unchanged from the general case with more phases.
For the current study, each phase may have two different
kinds of interfaces at its boundary. For example, the phase is
bounded by some combination ofwnandws interfaces. The
balance equations for the phases are as follows:

Macroscale mass conservation for thea-phase

Da(eara)
Dt

þ eara=·va ¼
∑
bÞa

êa
ab a ¼ w,n, s (1)

Macroscale momentum conservation for thea-phase

eara Dava

Dt
¹ =·(eata) ¹ earaga ¼

∑
bÞa

T̂
a
ab a ¼ w,n, s

(2)

Macroscale energy conservation for thea-phase

DaÊ
a

Dt
¹ =·(eaqa) ¹ (eata ¹ Ê

aI ) : =va ¹ earaha

¼ Ea
∑
bÞa

êa
ab þ

∑
bÞa

Q̂
a
ab a ¼ w,n,s ð3Þ

The terms on the right side of the equations account for
exchanges with the bounding interfaces. The complete
notation used is provided at the beginning of the text.

2.2 Interface conservation equations

These equations express conservation of mass, momentum,
and energy of the interface. The interfaces may exchange
properties with adjacent phases and with the common line.
The balance equations are as follows:

Macroscale mass conservation for theab-interface

Dab(aabrab)
Dt

þ aabrab=·vab ¼ ¹ (êa
ab þ êb

ab) þ êab
wns

ab¼ wn, ws,ns ð4Þ

Macroscale momentum conservation for theab-interface

aabrab Dabvab

Dt
¹ =·(aabtab) ¹ aabrabgab

¼ ¹
∑

i ¼ a,b
(êi

abvi,ab þ T̂
i
ab) þ T̂

ab
wns ab¼ wn,ws,ns

ð5Þ

Macroscale energy conservation for theab-interface

DabÊ
ab

Dt
¹=·(aabqab)¹(aabtab¹Ê

abI ):=vab ¹ aabrabhab

¼ ¹
∑

i ¼ a,b
{ êi

ab[Ei þ (vi,ab)2=2] þ T̂
i
ab·vi,ab þ Q̂

i
ab}

þ Eabêab
wnsþ Q̂

ab
wns ð6Þ

2.3 Common line conservation equations

The balance equations for the common line account for the
properties of the common line and the exchange of those
properties with the interfaces that meet to form the common
line. The appropriate equations for the case where there are
three phases, and thus only one common line and no com-
mon points, are as follows.

Macroscale mass conservation for the wns-common line

Dwns(lwnsrwns)
Dt

þ lwnsrwns=·vwns¼ ¹ (êwn
wnsþ êws

wnsþ êns
wns)

(7)

Fig. 1. Depiction of a three-phase system at a macroscale point
(top) and from the microscale perspective (bottom) with notation

employed to identify phases, interfaces, and the common line.
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Macroscale momentum balance for the wns-common line

lwnsrwnsDwnsvwns

Dt
¹ =·(lwnstwns) ¹ lwnsrwnsgwns

¼ ¹
∑

ij ¼ wn, ws,ns
(êij

wnsv
ij ,wnsþ T̂

ij
wns) ð8Þ

Macroscale energy conservation for the wns-common line

DwnsÊ
wns

Dt
¹ =·(lwnsqwns) ¹ (lwnstwns¹ Ê

wnsI ):=vwns

¹ lwnsrwnshwns

¼ ¹
∑

ij ¼ wn,ws,ns
{ êij

wns[E
ij þ (vij ,wns)2=2ÿ þ T̂

ij
wns·v

ij ,wnsþ Q̂
ij
wns}

ð9Þ

2.4 Entropy inequality

An entropy inequality has been derived for each phase,
interface, and the common line as discussed in Gray and
Hassanizadeh.20 However, the entropy exchange terms
between the different components prevent the individual
inequalities from being particularly useful. The power of
the entropy inequalities comes in calculating their sum
such that the exchange terms cancel. The combined entropy
inequality for the three phase system takes the form:

L ¼
∑
a

Daĥa

Dt
þ ĥaI :=va ¹ =·(eafa) ¹ earaba

� �

þ
∑
ab

Dabĥab

Dt
þ ĥabI :=vab ¹ =·(aabfab)

(

¹ aabrabbab ¹ hab
∑

i ¼ a,b
êi
ab

)
þ

Dwnsĥwns

Dt

þ ĥwnsI :=vwns¹ =·(lwnsfwns) ¹ lwnsrwnsbwns

¹ hwns
∑

ij ¼ wn,ws,ns
êij

wns $ 0 ð10Þ

3 IDENTIFICATION OF UNKNOWNS

For the conservation equations to be useful in an appli-
cation, some determination must be made of the functional
forms of the variables that appear in these equations. In fact,
for the three phase system, there are a total of 35 conserva-
tion equations (for each phase, interface, and common line
there is one mass conservation equation, three momentum
equations, and one energy equation). For these equations,
the following 35 variables will be designated as primary

physical independent variables:

• 15 phase properties:rw, rn, rs, vw, vn, Fs, vw, vn,
vs

• 15 interface properties:rwn, rws, rns, vwn, vws, vns,
vwn, vws, vns

• 5 common line properties:rwns, vwns, vwns

In addition to these quantities, six primary geometric inde-
pendent variables appear in the equations which account for
the distributions of phases, interfaces, and common line in
the system. These variables are:

• 6 geometric variables:e, sw, awn, aws, ans, l wns

It is important to note that the six dynamic geometric vari-
ables, not present in a microscale formulation but arising at
the macroscale, provide an excess of unknowns over and
above the 35 primary variables that are associated with the
35 balance equations. The development of equations that
describe the dynamics of the macroscale geometry is a sig-
nificant challenge.

Finally, there are additional quantities appearing in the
equation that must be expressed as constitutive functions of
the physical and geometric variables. These quantities are:

• 75 functions from the phase equations:

Ê
a, ta, T̂

a
ab,qa, Q̂a

ab, ĥa, êa
ab,fa,ba;

a ¼ w, n,s; ab¼ wn,ws,ns

• 60 functions from the interface equations:

Ê
ab, tab, T̂

ab
wns,qab, Q̂

ab
wns, ĥab, êab

wns,fab, bab;

ab¼ ws, wn,ns

• 15 functions from the common line equation:

Ê
wns, twns, qwns, ĥwns,fwns,bwns

Thus to close the system and have a set of equations that
can be used to model the three phase system, there is a need
for 150 constitutive functions of the physical properties and
geometric variables, as well as the six additional relations
among the geometric and physical parameters. The consti-
tutive functions will be assumed to be expressible as func-
tions of the 35 independent variables, the geometric
variables, and gradients of some of these quantities.

Assumption I The 150 constitutive functions may be
expressed in terms of the following set of independent
variables:

z¼ {rw,rn,rs, vw,vn, Fs, vw, vn, vs, e, sw, =vw, =vn, =vs, =e,

=sw,rwn,rws,rns,vwn,vws, vns, vwn, vws, vns,awn,aws,ans,

=vwn, =vws, =vns, =awn, =aws, =ans,rwns, vwns, vwns,

lwns, =vwns, =lwns} ð11Þ

Inclusion of other variables in this list (e.g.dw, =2vwn) is
certainly possible, and may even be necessary in order to
describe some processes, but the above list is considered to
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be adequate for description of the porous media systems
under study here. Should the resulting equations prove to be
incapable of describing a process of interest, then it may be
necessary to propose an expanded list of independent
variables.

Determination of the constitutive functions such that the
equation system may be closed is certainly a significant task,
but one that can be accomplished with a combination of
systematic thermodynamic postulates, reasonable geometric
conditions, exploitation of the entropy inequality, and
laboratory verification. The theoretical steps to be employed
will be demonstrated next.

4 THERMODYNAMIC ASSUMPTIONS AND
RELATIONS

One of the important challenges to obtaining a complete
theory of multi-phase flow is the postulation of the appro-
priate thermodynamics. Here, an approach is followed that
is based on the key assumption:

Assumption II The dependence of energy of the phases,
interfaces, and common lines on the independent variables
is the same function whether or not the full multi-phase
system is at equilibrium.

This assumption, which means that energy is a function of
a subset of the independent variables in list (11), may limit
the theory such that it applies only to slowly changing
systems, but this is the case in most porous media flow
situations. An advantageous consequence of this assumption
is that some mathematically complex relations involving the
dependence of energy on quantities such as velocity or tem-
perature gradient which are of little physical consequence
do not arise. The postulated dependences will be made with
the total energy being dependent on extensive properties of
the phases, interfaces, and common line. The postulates of
dependence of energy on the physical and geometric vari-
ables are made in a manner consistent with the philosophy
of Callen12 for microscopic systems but is more general.

4.1 System thermodynamics

For the system consisting of phases, interfaces, and the
common line in which points are viewed from the macro-
scale perspective, the energy is postulated to be a function of
the entropies of the system components, the mass of each
component, and the geometric extents such that:

E ¼ E(Sw, Sn, Ss, Swn, Sws, Sns, Swns, M w, M n, M s, M wn,

M ws, M ns, M wns, Vw, Vn, Vs
0Es, Awn, Aws, Ans, Lwns):

ð12Þ

All variables written in script are extensive variables. Many
useful relations describing the equilibrium thermodynamic
behavior of the multiphase system as a whole may be

derived based on postulate (12). However, the goal of
this work is to obtain a dynamic description of the multi-
phase system at the macroscale and the contribution of each
component of the system to the dynamic behavior. For
example, when not at equilibrium, phases, interfaces, and
common lines co-existing at a macroscopic point might not
be at the same temperature. Therefore, to describe such a
situation, it is necessary to decompose the functional form
of the energy given by postulate (12) into its component
parts at each macroscale point and treat those separately.
The path to such a decomposition is not entirely obvious
and certainly is not unique.

One necessary part of the decomposition is to require that
the total system energy be equivalent to the sum of its com-
ponent parts from the phases, interfaces, and common lines
such that:

E ¼ Ew þ En þ Es þ Ewn þ Ewsþ Ensþ Ewns: (13)

The next step is to determine the functional dependence of
each of the seven components. The most general proposal
for such dependence would be to allow each of the compo-
nent energies to depend on the full list of extensive vari-
ables of the system, as in eqn (12). Although this
formulation is attractive because of its generality, it lacks
appeal because it fails to dismiss negligible interactions
among system components such that the system description
obtained is unnecessarily complex from a mathematical
perspective. Thus, an alternative more restrictive approach
will be followed here for specifying the dependence of the
energy on extensive variables that allows for some coupling
of the thermodynamic properties of components, but not all
possible couplings. It must be emphasized that this restric-
tion may limit the general applicability of the theory, but it
is proposed as a reasonable compromise among generality,
the need to relate the theory to a real system, and the
couplings that are expected to be important. The assump-
tion that will be employed is as follows:

Assumption III A multiphase system is composed of
phases, interfaces, and common lines which will be referred
to as components. The total energy of each component will
be assumed to be a function of the entropy of that compo-
nent, the geometric extensive variable of that component,
the mass of that component, and the geometric extensive
variables of all microscopically adjacent components.

Inherent in Assumption III is the restriction that compo-
nents only impact the thermodynamics of other components
with which they have physical contact. Additionally, postu-
lation of the functional dependence of the macroscale
energy of a component on the geometric properties of an
adjacent component, but not on the mass of these com-
ponents, is analogous to approaches taken by Li and
Neumann32 and Hirasaki29 in their studies of films at the
microscale. The thermodynamic dependence of the internal
energy of a component on the geometric properties of the
adjacent components is expected to be important only when
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the average microscale distance between points in each
component is small (e.g., in thin films or for highly dis-
persed phases, interfaces and common lines). In addition,
the functional dependences obtained by Assumption III
must still lead to thermodynamic relations involving com-
ponent properties consistent with the thermodynamic
analysis of the system as a whole.

4.2 Constitutive postulates for phase energy functions

The dependence of energy of the fluid phases on their prop-
erties is postulated as:

Ew ¼ Ew Sw, Vw, M w, Awn, Awsÿ �
(14a)

En ¼ En Sn, Vn, M n, Awn, Ansÿ �
(14b)

The solid phase energy depends on the state of strain of the
solid9 such that it is expressed as:

Es ¼ Es Ss, Vs
0Es, M s, Aws, Ansÿ �

(14c)

The inclusion of a dependence on the interfacial areas in
these expressions is a departure from the type of postulate
made when a system is to be modeled at the microscale.
This is to account for changes in energy that may occur
when the amount of surface area per volume of phase is
large. Additionally, note that the nature of a solid accounts
for its energy being postulated as depending on the state of
deformation rather than its volume. From these equations,
because energy is a homogeneous first order function,9,12

the Euler forms of the energy are:

Ew ¼ vwSw ¹ pwVw þ mwM w þ cw
wnAwn þ cw

wsA
ws (15a)

En ¼ vnSn ¹ pnVn þmnM n þ cn
wnAwn þ cn

nsA
ns (15b)

and

Es ¼ vsSs ¹ js : Vs
0Es þ msM s þ cs

wsA
wsþ cs

nsA
ns (15c)

As an example, note that the partial derivative ofEw with
respect to one of its independent variables, as listed in eqn
(14a), is simply equal to the coefficient of that variable in
eqn (15a). Similar observations apply for all the phase
energies as well as the interface and common line energies
to be discussed subsequently.

Now convert eqns (15a), (15b) and (15c) such that they
are on a per unit system volume basis:

Ê
w(ĥw, ew, ewrw,awn,aws)

¼ vwĥw ¹ pwew þ mwewrw þ cw
wna

wn þ cw
wsa

ws (16a)

Ê
n(ĥn, en, enrn,awn,ans)

¼ vnĥn ¹ pnen þ mnenrn þ cn
wna

wn þ cn
nsa

ns (16b)

Ê
s

ĥs,
esEs

j
, esrs,aws,ans

� �
¼ vsĥs ¹ js : esEs=j þmsesrs þ cs

wsa
wsþ cs

nsa
ns (16c)

Make use of the definition of the grand canonical potential:

Q̂a ¼ Ê
a
¹ vaĥa ¹ maeara: (17)

and employ Legendre transformations onĥa and eara to
obtain:

Q̂w vw, ew,mw,awn,awsÿ �
¼ ¹ pwew þ cw

wna
wn þ cw

wsa
ws

(18a)

Q̂n vn, en,mn,awn,ansÿ �
¼ ¹ pnen þ cn

wna
wn þ cn

nsa
ns

(18b)

Q̂s v̂s,
esEs

j
,ms,aws,ans

� �
¼ ¹ js:esEs=j þ cs

wsa
wsþ cs

nsa
ns

(18c)

where

]Q̂a

]va ¼ ¹ ĥa (18d)

]Q̂a

]ea
¼ ¹ pa a ¼ w, n (18e)

]Q̂s

](esEs=j)
¼ ¹ js (18f)

]Q̂a

]ma
¼ ¹ eara (18g)

]Q̂a

]aab
¼ ca

ab: (18h)

For eqns (16a), (16b) and (16c), it is also worth noting that
their respective Gibbs–Duhem equations are:

0¼ ĥw dvw ¹ ew dpw þ ewrw dmw þ awn dcw
wn þ aws dcw

ws

(19a)

0¼ ĥn dvn ¹ en dpn þ enrn dmn þ awn dcn
wn þ ans dcn

ns

(19b)

and

0¼ ĥs dvs ¹
esEs

j
: djs þ esrs dms þ aws dcs

wsþ ans dcs
ns:

(19c)

4.3 Constitutive postulates for interfacial energy
functions

The dependence of the internal energy of the interfaces on
their properties are postulated as:

Ewn ¼ Ewn(Swn, Awn, M wn, Vw, Vn, Lwns) (20a)

Ews¼ Ews(Sws, Aws, M ws, Vw, Vs
0Es, Lwns) (20b)

Ens¼ Ens(Sns, Ans, M ns, Vn, Vs
0Es, Lwns) (20c)
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Here the common line length is included as an indicator
of the length of the boundary of the interface, a measure of
whether the microscale areas are small and distributed or
large. The inclusion of the volumes of the adjacent fluid
phases and the strain tensor of the adjacent solid phase adds
generality that may be important when the amount of
volume per area is small. The Euler forms of the energy
equations are:

Ewn ¼ vwnSwn þgwnAwn þ mwnM wn ¹ cwn
w Vw

¹ cwn
n Vn ¹ cwn

wnsL
wns (21a)

Ews¼ vwsSwsþ gwsAwsþ mwsM ws¹ cws
w Vw

¹ jws : Vs
0Es ¹ cws

wnsL
wns (21b)

Ens¼ vnsSnsþgnsAnsþ mnsM ns¹ cns
n Vn

¹ jns : Vs
0Es ¹ cns

wnsL
wns (21c)

Conversion of these expressions to a per-unit-volume basis
whereÊ

ab
is the energy per unit volume of medium gives:

Ê
wn

¼ Ê
wn

ĥwn, awn, awnrwn, ew, en, lwnsÿ �
¼ vwnĥwn þ gwnawn þmwnawnrwn ¹ cwn

w ew

¹ cwn
n en ¹ cwn

wnsl
wns (22a)

Ê
ws

¼ Ê
ws

ĥws,aws,awsrws, ew, esEs=j, lwnsÿ �
¼ vwsĥwsþ gwsawsþ mwsawsrws¹ cws

w ew

¹ jws:esEs=j ¹ cws
wnsl

wns (22b)

Ê
ns

¼ Ê
ns

ĥns, ans,ansrns, en, esEs=j, lwnsÿ �
¼ vnsĥnsþ gnsansþ mnsansrns¹ cns

n en

¹ jns:esEs=j ¹ cns
wnsl

wns (22c)

Make use of the definition of the grand canonical potential
of the form:

Q̂ab ¼ Ê
ab

¹ vabĥab ¹ mabaabrab (23)

and Legendre transformation of the independent variables
ĥab andaabrab to obtain:

Q̂wn(vwn, awn,mwn, ew, en, lwns)

¼gwnawn ¹ cwn
w ew ¹ cwn

n en ¹ cwn
wnsl

wns (ð24aÞ

Q̂ws(vws,aws,mws, ew, esEs=j, lwns)

¼gwsaws¹ cws
w ew ¹ jws : esEs=j ¹ cws

wnsl
wns (24b)

Q̂ns(vns,ans,mns, en, esEs=j, lwns)

¼gnsans¹ cns
n en ¹ jns : esEs=j ¹ cns

wnsl
wns (24c)

where

]Q̂ab

]vab
¼ ¹ ĥab (24d)

]Q̂ab

]aab
¼ gab (24e)

]Q̂ab

]mab
¼ ¹ aabrab (24f)

]Q̂ab

]ea
¼ ¹ cab

a (24g)

]Q̂as

](esEs=j)
¼ ¹ jas (24h)

]Q̂ab

]lwns¼ ¹ cab
wns: (24i)

From eqns (22a), (22b) and (22c), the Gibbs–Duhem equa-
tions for the interfacial energies are obtained, respectively, as:

0¼ ĥwn dvwn þ awn dgwn þ awnrwn dmwn ¹ ew dcwn
w

¹ en dcwn
n ¹ lwns dcwn

wns (25a)

0¼ ĥws dvwsþ aws dgwsþ awsrws dmws¹ ew dcws
w

¹
esEs

j
: djws¹ lwns dcws

wns (25b)

and

0¼ ĥns dvnsþ ans dgnsþ ansrns dmns¹ en dcns
n

¹
esEs

j
: djns¹ lwns dcns

wns: (25c)

4.4 Constitutive postulate for the common line energy
function

The three-phase system under consideration may have a
common line, but no common points. The dependence of
the internal energy of the common line on its extensive
variables is postulated as:

Ewns¼ Ewns Swns, Lwns, M wns, Awn, Aws, Ansÿ �
(26)

The Euler form of the common line energy equation is:

Ewns¼ vwnsSwns¹ gwnsLwnsþ mwnsM wnsþ cwns
wn Awn

þ cwns
ws Awsþ cwns

ns Ans ð27Þ

Conversion of this expression to a per-unit-volume basis
whereÊ

wns
is the energy per unit volume of system gives:

Ê
wns

¼ Ê
wns

ĥwns, lwns, lwnsrwns,awn,aws,ansÿ �
¼ vwnsĥwns¹ gwnslwnsþ mwnslwnsrwnsþ cwns

wn awn

þ cwns
ws awsþ cwns

ns ans ð28Þ

Make use of the definition of the grand canonical potential:

Q̂wns¼ Ê
wns

¹ vwnsĥwns¹ mwnslwnsrwns (29)

and apply a Legendre transformation to the variablesĥwns
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and lwnsrwns to obtain:

Q̂wns vwns, lwns,mwns,awn,aws,ansÿ �
¼ ¹ gwnslwnsþ cwns

wn awn þ cwns
ws awsþ cwns

ns ans (30a)

where

]Q̂wns

]vwns ¼ ¹ ĥwns (30b)

]Q̂wns

]lwns ¼ ¹ gwns (30c)

]Q̂wns

]mwns¼ ¹ lwnsrwns (30d)

]Q̂wns

]aab
¼ cwns

ab (30e)

The Gibbs–Duhem equation for the common line is
obtained from the differential of eqn (28) as:

0¼ ĥwns dvwns¹ lwns dgwnsþ lwnsrwns dmwnsþ awn dcwns
wn

þ aws dcwns
ws þ ans dcwns

ns ð31Þ

The grand canonical potentials developed above are useful
functions for incorporation into the entropy inequality so
that some information concerning constitutive functions
may be obtained. They will be expanded in terms of their
independent variables in the next section.

5 EXPANSION OF ENTROPY INEQUALITY
FUNCTIONS IN TERMS OF INDEPENDENT
VARIABLES

The grand canonical potentials have been defined in eqns
(17), (23) and (29). The material derivatives of these equa-
tions are calculated and then used to eliminate the material
derivatives of entropy in eqn (10). Then the mass and energy
conservation equations are substituted in to eliminate the
material derivatives of mass per volume and internal
energy per volume and obtain the following form.

Entropy inequality for three-phase system

¹
∑
a

1
va

DaQ̂a

Dt
þ ĥa Dava

Dt
þ eara Dama

Dt

" #

þ
∑
a

1
va eata ¹ Q̂aI
ÿ �

: da

¹
∑
ab

1

vab

DabQ̂ab

Dt
þ ĥab Dabvab

Dt
þ aabrab Dabmab

Dt

" #

þ
∑
ab

1

vab
aabtab ¹ Q̂abI
� �

: dab

¹
1

vwns

DwnsQ̂wns

Dt
þ ĥwnsDwnsvwns

Dt
þ lwnsrwnsDwnsmwns

Dt

" #

þ
1

vwns lwnstwns¹ Q̂wnsI
ÿ �

: dwns

¹
∑
ab

1
vwnsT̂

ab
wns·v

ab, wns¹
∑
a

∑
bÞa

1

vab
T̂

a
ab·va,ab

þ
∑
a

ea

(va)2qa·=va þ
∑
ab

aab

(vab)2
qab·=vab

þ
lwns

(vwns)2qwns·=vwns¹
∑
a

=· ea fa ¹
qa

va

� �� �

¹
∑
ab

=· aab fab ¹
qab

vab

 !" #
¹ =· lwns fwns¹

qwns

vwns

� �� �

¹
∑
a

eara ba ¹
ha

va

� �� �
¹

∑
ab

aabrab bab ¹
hab

vab

 !" #

¹ lwnsrwns bwns¹
hwns

vwns

� �

¹
∑
a

∑
bÞa

êa
ab

vab

Qava,ab

va þ hava,ab þ ma,ab þ
1
2
(va,ab)2

" #

¹
∑
ab

êab
wns

vwns

"
Qabvab,wns

vab
þ habvab,wns

þ mab,wnsþ
1
2
(vab,wns)2

#
¹

∑
a

∑
bÞa

va,ab

vavab
Q̂

a
ab

¹
∑
ab

vab,wns

vabvwnsQ̂
ab
wns $ 0 ð32Þ

An alternative to substitution of the conservation equations
into the entropy inequality was proposed by Liu33 whereby
the conservation equations are multiplied by a Lagrange
multiplier and added to the entropy inequality as con-
straints. A variation on the Lagrange multiplier approach
has also been used by Muradet al.39 with success in the
study of swelling clays. However, the eventual results
obtained using the Lagrange multiplier approach in the
current study would not be different from those obtained
using the substitution approach.

To exploit eqn (32), it is necessary to expand the material
derivatives of the grand canonical potential in terms of
the independent variables. This is done in Appendix A
for the phases, interfaces, and the common line taking
into account supplemental information provided by the
conservation equations. Substitution of the expansions pro-
vided by eqns (88), (93), (96), (99) and (102) into entropy
inequality (32) provides the form of the entropy inequality
consistent with the thermodynamic postulates employed
thus far:
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Entropy inequality for three-phase system

L ¼
es

j
js

vs þ
jws

vws þ
jns

vns

� �
: [(=XFs)(=XFs)T ¹ EsI ]

�
þ

1
vs[e

sts ¹ Q̂sI ]
�

: ds þ
∑

a ¼ w,n

1
va(eata ¹ Q̂aI ) : da

þ
∑
ab

1

vab
(aabtab ¹ Q̂abI ) : dab

þ
1

vwns(l
wnstwns¹ Q̂wnsI ) : dwns

þ
∑

a ¼ w, n

∑
bÞa

cab
a

vab
þ

pa

va

 !
Dsea

Dt

" #

þ
jws

vws þ
jns

vns þ
js

vs

� �
:

Es

j

� �
Dses

Dt

¹
∑
ab

ca
ab

va þ
cb
ab

vb
þ

cwns
ab

vwnsþ
gab

vab

 !
Dsaab

Dt

þ
cwn

wns

vwn þ
cws

wns

vws þ
cns

wns

vns þ
gwns

vwns

� �
Dslwns

Dt

¹
∑

a ¼ w, n

1
vava,s·[ ¹ pa=ea þ ca

wn=awn þ ca
as=aas]

¹
1

vwnv
wn,s·[gwn=awn ¹ cwn

w =ew ¹ cwn
n =en ¹ cwn

wns=lwns]

¹
∑

a ¼ w, n

1
vasv

as,s· gas=aas ¹ cas
a =ea ¹ jas : =

esEs

j

� ��

¹ cas
wns=lwns

�
¹

1
vwnsv

wns, s·[ ¹ gwns=lwnsþ cwns
wn =awn

þ cwns
ws =awsþ cwns

ns =ans] ¹
∑
ab

1
vwnsT̂

ab
wns·v

ab,wns

¹
∑
a

∑
bÞa

1

vab
T̂

a
ab·va,ab þ

∑
a

ea

(va)2qa·=va

þ
∑
ab

aab

(vab)2
qab·=vab þ
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" #
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êab
wns

vwns
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∑
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¹
∑
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vab,wns

vabvwnsQ̂
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wns $ 0 ð33Þ

At this point, simplifying assumptions will be made that
impose some restrictions on the dynamic system behavior,
but nevertheless leave the system sufficiently general to
describe many physical realizations.

Assumption IV The fluids and solid are assumed to form
simple thermodynamic systems16 such that:

fa ¹
qa

va ¼ 0; ba ¹
ha

va ¼ 0 a ¼ w, n,s (34a)

fab ¹
qab

vab
¼ 0; bab ¹

hab

vab
¼ 0 ab¼ wn,ws,ns (34b)

and

fwns¹
qwns

vwns¼ 0; bwns¹
hwns

vwns¼ 0 (34c)

These relations are appropriate for many systems, but will
have to be modified in the future when considering multi-
constituent phases.

Assumption V Any changes in temperature are assumed
to occur slowly enough that the temperature at a macro-
scopic point in the system is unique (i.e., the phase, inter-
face, and common line temperatures at a point are equal).

Note that this restriction does not preclude the existence
of temperature gradients in the system or restrict the study to
isothermal cases. It is a reasonable assumption for systems
in which the dynamic changes are occurring slowly enough
for the temperature to locally equilibrate.

In addition to these assumptions, some identities and defi-
nitions will be used to reorganize the terms involving mate-
rial derivatives of void fractions and interfacial areas. First,
recall that the void fractions of the phases may be expressed
in terms of the porosity,e, and the saturations of the fluid
phases according to:

es ¼ 1¹ e (35a)

ew ¼ swe (35b)

en ¼ sne¼ (1¹ sw)e: (35c)

These identities indicate that only two parameters are
needed to identify the void fractions of the phases. In
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addition because the three phase system consists of a very
slightly deformable matrix plus the wetting and non-
wetting fluids, it will be convenient to replace the two
variablesaws and ans by the variablesxws

s and as in the
material derivative of a fluid solid interfacial area where:

as ¼ awsþ ans (36a)

and

xws
s ¼ aws=as ¼ 1¹ xns

s : (36b)

It must be emphasized that this change in geometric vari-
ables in no way diminishes the generality of the formula-
tion but is convenient in considering the internal geometry
of the system.

Application of constraints (34a) through (34c) to entropy
inequality (33), multiplication by the single temperature,
and use of the alternative geometric variables as convenient
restates the entropy inequality as follows.

Uni-thermal entropy inequality for three-phase system

vL ¼
es

j
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�
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þ
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ns þgns)]

Dsxws
s

Dt

¹ (cw
wn þ cn

wn þ cwns
wn þ gwn)

Dsawn

Dt

þ (cwn
wnsþ cws

wnsþ cns
wnsþ gwns)

Dslwns

Dt

¹
∑

a ¼ w, n
va, s·[T̂a

wn þ T̂
a
as ¹ pa=ea þ ca

wn=awn

þ ca
as=aas] ¹ vwn,s·[T̂wn

wns¹ T̂
w
wn ¹ T̂

n
wn þ gwn=awn

¹ cwn
w =ew ¹ cwn

n =en ¹ cwn
wns=lwns]

¹
∑

a ¼ w, n
vas,s· T̂

as
wns¹ T̂

a
as ¹ T̂

s
as þ gas=aas ¹ cas

a =ea
�

¹ jas:=
esEs

j

� �
¹ cas

wns=lwnsÿ

¹ vwns,s·[ ¹ T̂
wn
wns¹ T̂

ws
wns¹ T̂

ns
wns¹ gwns=lwns

þ cwns
wn =awn þ cwns

ws =awsþ cwns
ns =ans] þ

∑
a

ea

v
qa·=v

þ
∑
ab

aab

v
qab·=v þ

lwns

v
qwns·=v

¹
∑
a

∑
bÞa

êa
ab (ma ¹mab) þ

1
2
(va,ab)2

� �

¹
∑
ab

êab
wns (mab ¹ mwns) þ

1
2
(vab,wns)2

� �
$ 0 ð37Þ

This form of the entropy inequality is still very general, and
contains significant challenges for determining the appro-
priate balance equations, at least in part because of the
interactions among the phases, interfaces, and common
lines as accounted for in the thermodynamic postulates
that lead to the ‘c’ coefficients. An additional complicating
factor lies in the absence of enough equations to completely
determine the system. As was mentioned earlier, equations
for the geometric parameters are needed but not available.
Nevertheless, this inequality does provide a path to appro-
priate forms of the governing conservation equations for
certain conditions that will require experimental support.
However, it is useful to consider some of the features of
the inequality and discuss how it might be employed most
effectively.

6 CONSIDERATIONS FOR THE ENTROPY
INEQUALITY

To facilitate this general discussion of the entropy
inequality, a notationally representative form of eqn (37)
will be employed that accounts for all the types of terms
encountered, but leaves out the complete superscript
notation and assumes summation over repeated indices.
First, it can be shown that summation of the component
grand canonical potentials gives the system grand canonical
potential:

Q̂ ¼ Q̂w þ Q̂n þ Q̂s þ Q̂wn þ Q̂wsþ Q̂nsþ Q̂wns (38a)

whose functional dependence, for the unithermal case, may
be expressed as:

Q̂ ¼ Q̂(v,mw,mn,ms,mwn,mws,mns,mwns,Es=j,

e,sw,as,xws,awn, lwns) (38b)

The Lagrangian time derivative ofQ̂ moving at the solid
phase velocity taken while holding the first nine variables
listed in eqn (38b) constant (i.e., the temperature, chemical
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potentials, and solid deformation divided by the jacobian)
can be shown to be equal to the sum of the six terms
involving material derivatives in eqn (37). Thus the entropy
inequality in outline form is:

vL ¼ bm : dm ¹ vm,s·em þ
q
v
·=v ¹

DsQ̂

Dt

����
v,mi ,Es=j

¹ f r
mêr

m $ 0

(39)

where summation over the repeated indicesm and r is
presumed with these indices taking on the valuesw, n, s,
wn, ws, ns, wns; the notationm i indicates that all seven of
the chemical potentials are being held constant when
evaluating the Lagrangian time derivative; andbm, em, q,
and êr

m are functions of the variables,z, in list (11). It is
useful to note that each of the terms in this equation will be
zero at equilibrium. An important obstacle to proper exploi-
tation of the inequality is the equation deficit that has arisen
because of the geometric variables. The absence of
additional equations in terms of the six geometric variables
is the reason the time derivative of the grand canonical
potential remains explicitly present in the entropy
inequality.

Balance equations in these geometric terms are needed
but, at present, are not definitively available. However,
some approximations may be made that allow one to
proceed forward to obtain reasonable approximations. The
derivation of the approximations used here is found in
Appendix B. The procedure is based strictly on the applica-
tion of averaging theorems to the geometric regions with no
consideration given to thermodynamic constraints. The fol-
lowing three relations are obtained which can be used to
eliminate Dsas=Dt, Dsawn=Dt, and Dslwns=Dt from the
entropy inequality:

Dsas

Dt
þ Js

s
Dse

Dt
¼ 0 (40)

Dsawn

Dt
¹ Jw

wne
Dssw

Dt
¹ as cosF

Dsxws
s

Dt
¼ 0 (41)

Dslwns

Dt
þ kws

g as Dsxws
s

Dt
¼ 0: (42)

A difficulty with these three relations is the fact that four
new variables are introduced relating to the macroscale
average curvature of the interface (Js

s for the solid surface
as defined in eqn (108); andJw

wn for the interface between
the fluids as defined in eqn (126)), a macroscale measure of
the contact angleF defined in eqn (137), and a macroscale
measure of the geodesic curvature of the common linekws

g

as provided in eqn (145b). It should not be surprising that
such parameters arise as they account for the way that
microscale differences in geometric structure evidence
themselves at the macroscale. In Appendix C, the relation-
ship of these four variables to thermodynamic quantities are
developed based on material to be presented subsequently
in the main body of text. Thus, if the equilibrium functional
form of the energy is known, these coefficients can be

determined. Typically, such a full representation will not
be known, however, and the parameters will be specified
based on experimental measurements of specific processes.

Although these three equations can be imposed as addi-
tional constraints on the system, a three-equation deficit still
remains that must be overcome to deal with the terms
Dse=Dt, Dssw=Dt, andDsxws

s =Dt that survive in the entropy
inequality. Note, however, that if more precise balance
equations for the material derivatives of the geometric
quantities become available, the final system of governing
equations for porous media flow can be improved or made
more generally applicable.

With the geometric constraints incorporated, exploitation
of the entropy inequality will make use of an assumption
concerning the remaining three time derivatives of geo-
metric quantities. This may be stated as follows:

Assumption VI Three additional balance equations for
the geometric quantities involving their material deriva-
tives, although unknown, are such that they do not alter
the terms in the entropy inequality of the formbm:dm,
vm, s·em, q·=v, andf r

mêr
m.

This assumption may seem rather speculative, but, in fact,
it is operationally equivalent to stating that the equation
deficit may be overcome by considering ‘near equilibrium’
conditions such thatDse=Dt, Dssw=Dt, andDsxws

s =Dt may be
taken as being proportional to their multipliers in the
entropy inequality. The physical basis for making this
assumption is the expectation that the changes in the geo-
metry of the phases, interfaces, and common line should not
have an impact on the mechanisms of heat transfer, mass
exchange, or stress within each of these regions. Certainly,
if the results obtained under the limitations of this assump-
tion turn out to be without merit, an alternative strategy will
have to be developed for overcoming the lack of governing
equations.

The impact of Assumption VI is to allow the exploitation
of the entropy inequality to be separated into two primary
steps. The first step involves determination of the conserva-
tion equations for the system. This step makes use of the
following observations and manipulations with respect to
eqn (39).

• Because the symmetric rate of strain tensorsdm, for
all m are not included in list (11) as independent
variables of the system, the entropy production may
not depend on these quantities. Therefore each of
the quantities in eqn (37) represented bybm in eqn
(39) must be zero.

• Each of the quantities in eqn (37) represented asem

(i.e. the quantities that are dotted with velocity vec-
tors) will be zero at equilibrium. A truncated Taylor
expansion of these quantities in terms of the inde-
pendent variables of the problem provides an
approximation forem as being linear proportional
to the relative velocities (with respect to the solid
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phase) of componentm and of the components of
the system that are in contact withm. Although the
quantitiesem would also be linearly proportional
to =v, this effect is not considered in the present
derivation.

• The heat conduction vector,q, is zero at equili-
brium and is proportional to=v when determined
from a truncated Taylor series expansion. Depen-
dence ofq on the velocities is not considered here.

• The mass exchange terms,êr
m, are each zero at equi-

librium. Under the assumption that each term is
dependent only on the state of them and r compo-
nents, a truncated Taylor series expansion allows
each term to be expressed as proportional tof r

m.

The completion of this step provides governing conserva-
tion equations with constitutive coefficients.

The set of equations, however, still must be closed in a
second step that provides three auxiliary conditions for the
rates of change of the three geometric properties that remain
in the entropy inequality. As mentioned, these terms will be
obtained by linearization at ‘near equilibrium’ conditions in
terms of their multipliers in the entropy inequality. Again, it
must be emphasized that the relations developed in this
second step will be approximate and subject to improvement
in the future.

In the next section the first step will be implemented
to develop the equations of mass and momentum conser-
vation. For simplicity, the energy equations will not be
written explicitly as emphasis will be focused on the
flow equations. The energy equations may be obtained
directly by substitution of the constitutive forms into the
general expressions.

7 MASS AND MOMENTUM BALANCES

The development of the conservation equations will proceed
according to step one as outlined above. Because none of the
constitutive functions are considered to depend on the sym-
metric strain tensors, the coefficients ofda, dab, anddwns

must be zero. From inequality (37) and the expression for
the grand canonical potential in eqns (18a)–(18c), (24a)–
(24c) and (30a), the following forms of the stress tensor are
obtained:

eata ¼ Q̂aI ¼ ( ¹ paea þ ca
wna

wn þ ca
asa

as)I a ¼ w,n
(43a)

ests ¼ Q̂sI ¹
es

j
[js þ jwsþ jns] : [(=XFs)(=XFs)T ¹ EsI ]

(43b)

awntwn ¼ Q̂wnI ¼ (gwnawn ¹ cwn
w ew ¹ cwn

n en ¹ cwn
wnsl

wns)I
(43c)

aastas ¼ Q̂asI ¼ (gasaas ¹ cas
a ea ¹ esjas : Es=j ¹ cas

wnsl
wns)I

a ¼ w,n ð(43d)

lwnstwns¼ Q̂wnsI

¼ ( ¹ gwnslwnsþ cwns
wn awn þ cwns

ws awsþ cwns
ns ans)I

(43e)

The terms that multiply the velocities in inequality (37) will
be zero at equilibrium. Therefore, the following definitions
apply where all thetv quantities are zero at equilibrium:

ta
v ¼ ¹ (T̂a

as þ T̂
a
wn) þ pa=ea ¹ ca

wn=awn ¹ ca
as=aas

a ¼ w, n (44a)

twn
v ¼ T̂

w
wn þ T̂

n
wn ¹ T̂

wn
wns¹ gwn=awn þ cwn

w =ew

þ cwn
n =en þ cwn

wns=lwns (44b)

tas
v ¼ T̂

a
as þ T̂

s
as ¹ T̂

as
wns¹ gas=aas þ cas

a =ea

þ jas : =
esEs

j

� �
þ cas

wns=lwns a ¼ w,n (44c)

twns
v ¼ T̂

wn
wnsþ T̂

ws
wnsþ T̂

ns
wnsþgwns=lwns¹ cwns

wn =awn

¹ cwns
ws =aws¹ cwns

ns =ans (44d)

The summation of terms that multiply the temperature gra-
dient in the entropy inequality will also be zero at equili-
brium. This sum is denoted asq such that:

q ¼ ewqw þ enqn þ esqs þ awnqwn þ awsqws

þ ansqnsþ lwnsqwns: ð45Þ

Finally, the quantities that multiply the phase exchange
terms must also be zero at equilibrium such that the
following quantities may be defined, which are zero at
equilibrium:

ta
ab ¼ mab ¹ ma ¹

1
2
(va,ab)2 (46a)

tab
wns¼ mwns¹ mab ¹

1
2
(vab,wns)2: (46b)

Substitution of eqns (43a), (43b), (43c), (43d), (43e), (44a),
(44b), (44c), (45), (46a) and (46b) into inequality (37), with
the terms relating to the material derivatives of the geo-
metric properties expressed in terms of the material deriva-
tive of the grand canonical potential yields the following.

The residual entropy inequality

vL ¼
∑

a ¼ w, n
va, s·ta

v þ
∑
ab

vab,s·tab
v þ vwns,s·twns

v

þ
q
v
·=v ¹

DsQ̂

Dt

�����
v,mm,Es=j

þ
∑
a

∑
bÞa

êa
abt

a
ab

þ
∑
ab

êab
wnst

ab
wns $ 0 ð47Þ

As a consequence of these relations, some of the constitu-
tive forms required in the conservation equations may be
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deduced. Here attention is focused on the mass and
momentum equations for the fluids and the interfaces. Sub-
stitution of the definitions in eqns (43a) and (44a) into the
phase mass and momentum conservation equations yields
the following.

Macroscale mass conservation for thea-phase

Da(eara)
Dt

þ eara=·va ¼
∑
bÞa

êa
ab a ¼ w, n (48)

Macroscale momentum conservation for the
a-phase

eara Dava

Dt
þ ea=pa ¹ awn=ca

wn ¹ aas=ca
as

¹ earaga ¼ ¹ ta
v a ¼ w,n ð49Þ

For an interface between phases, the form of the mass
conservation equation is the same regardless of the type
of interface. Thus, the mass balance equation is as in eqn
(4).

Macroscale mass conservation for theab-interface

Dab(aabrab)
Dt

þ aabrab=·vab

¼ ¹ (êa
ab þ êb

ab) þ êab
wns ab¼ wn,ws,ns ð50Þ

For the fluid–fluid interface, the constitutive relations of
importance are given in eqns (43c) and (44b) while the
constitutive forms for the fluid–solid interfaces are given
in eqns (43d) and (44c). After application of these expressions
to eqn (5), the momentum balances are of the following form.

Macroscale momentum conservation for the
ab-interface

awnrwn Dwnvwn

Dt
¹ awn=gwn þ ew=cwn

w þ en=cwn
n

þ lwns=cwn
wns¹ awnrwngwn ¼ ¹

∑
i ¼ w,n

êi
wnv

i, wn ¹ twn
v

(51a)

and

aasras Dasvas

Dt
¹ aas=gas þ ea=cas

a þ
esEs

j
: =jas

þ lwns=cas
wns¹ aasrasgas ¼ ¹

∑
i ¼ a,s

êi
wnv

i,as ¹ tas
v

a ¼ w,n (51b)

For the common line, the constitutive relations of impor-
tance are given in eqns (43e) and (44d). These do not alter
the mass conservation equation for the common line so that
the flow equations are as follows.

Macroscale mass conservation for the wns-common line

Dwns(lwnsrwns)
Dt

þ lwnsrwns=·vwns¼ ¹ (êwn
wnsþ êws

wnsþ êns
wns)

(52)

Macroscale momentum balance for the wns-common line

lwnsrwnsDwnsvwns

Dt
þ lwns=gwns¹ awn=cwns

wn ¹ aws=cwns
ws

¹ ans=cwns
ns ¹ lwnsrwnsgwns

¼ ¹
∑

ij ¼ wn, ws, ns
êij

wnsv
ij , wns¹ twns

v ð53Þ

Consider a linearization of residual entropy inequality (47)
whereby each of the quantitiestm

v is obtained from a Taylor
series expansion around the velocity terms for phases, inter-
faces, and common lines with which themth part of the
system is in contact. Movement of a phase with respect to
the solid will be resisted due to viscous effects. However,
movement of any of the interfaces adjacent to that phase
will tend to encourage movement of the phase; this
phenomenon has been called a viscous coupling effect by
Rose.41 Therefore, the linearizations are expressed as
follows where it might be expected that all the coefficients
are positive semi-definite tensors and the impact of ther
coefficients will be less than that of theR terms:

ta
v ¼ Ra·va,s ¹ ra

as·v
as,s ¹ ra

wn·v
wn,s a ¼ w,n (54a)

twn
v ¼ Rwn·vwn,s ¹ rwn

w ·vw,s ¹ rwn
n ·vn, s ¹ rwn

wns·v
wns, s

(54b)

tas
v ¼ Ras·vas,s ¹ ras

a ·va,s ¹ ras
wns·v

wns,s a ¼ w,n (54c)

twns
v ¼ Rwns·vwns,s ¹ rwns

wn ·vwn,s ¹ rwns
ws ·vws,s ¹ rwns

ns ·vns, s

(54d)

Note that in obtaining this expression, the possible expres-
sion oftm

v as a linear function of=v has not been included.
If the temperature gradient is high, an additional term
expressing proportionality to the temperature gradient
may be a needed addition to eqns (54a), (54b), (54c) and
(54d). Similarly to the neglect of dependence of velocity
deviation terms on=v, the dependence of the heat conduc-
tion on velocity will also be considered unimportant. Thus
the linearized version of the heat conduction vector will
be:

q ¼ K ·=v: (55)

For use in the energy equations for the phases, interfaces
and common lines, the linearized heat conduction vectors
of each component may be taken to be similar in form to
eqn (55), each with its own conductivity tensor.

The termŝea
ab andêab

wns associated with phase change will
also be linearized as functions of their coefficients in the

536 W. G. Gray



entropy inequality. Interactions between competing mass
exchange processes will be assumed to be negligible such
that cross terms may be neglected to obtain:

êa
ab ¼ La

abt
a
ab (56a)

and

êab
wns¼ Lab

wnst
ab
wns (56b)

Note that if theab interface is massless:

êa
ab þ êb

ab ¼ 0 (57a)

and the linearized expression for mass exchange becomes:

êa
ab ¼ La

ab(ta
ab ¹ tb

ab): (57b)

If the wnscommon line is massless:

êwn
wnsþ êws

wnsþ êns
wns¼ 0 (58a)

such that only two of the expressions for mass exchange
between the interfaces and the common line are indepen-
dent. Thus, the linearized exchange terms may be expressed
as:

êab
wns¼ Lab

wns(tab
wns¹ tns

wns) ab ¼ wn, ws (58b)

If both anab interface and the common line are massless,
then:

êab
wns¼ 0: (59)

Substitution of the linearizations provided by eqns (54a),
(54b), (54c), (54d)–(56a) and (56b) into the mass and
momentum conservation equations of the last section and
into the residual entropy inequality, as appropriate, and
neglecting advective terms, terms involving velocity
squared, and the impact of phase change on the momentum
equations yields the following.

Macroscale mass conservation for thea-phase

Da(eara)
Dt

þ eara=·va ¼
∑
bÞa

La
ab(mab ¹ ma) a ¼ w,n

(60)

Macroscale momentum conservation for thea-phase

¹ ea(=pa ¹ raga) þ awn=ca
wn þ aas=ca

as

¼ Ra·va, s ¹ ra
as·v

as, s ¹ ra
wn·v

wn,s ð61Þ

Macroscale mass conservation for theab-interface

Dab(aabrab)
Dt

þ aabrab=·vab

¼ ¹ [La
ab(mab ¹ ma) þ Lb

ab(mab ¹mb)]

þ Lab
wns(m

wns¹ mab) ab¼ wn,ws, ns ð62Þ

Macroscale momentum conservation for the
ab-interfaces

awn(=gwn þ rwngwn) ¹ ew=cwn
w ¹ en=cwn

n ¹ lwns=cwn
wns

¼ Rwn·vwn,s ¹ rwn
w ·vw,s ¹ rwn

n ·vn,s ¹ rwn
wns·v

wns,s (63a)

aas(=gas þ rasgas) ¹ ea=cas
a ¹

esEs

j
: =jas ¹ lwns=cas

wns

¼ Ras·vas,s ¹ ras
a ·va,s ¹ ras

wns·v
wns,s a ¼ w,n (63b)

Macroscale mass conservation for the wns-common line

Dwns(lwnsrwns)
Dt

þ lwnsrwns=·vwns

¼ ¹
∑
ab

Lab
wns(m

wns¹mab) ð64Þ

Macroscale momentum balance for the wns-common line

¹ lwns(=gwns¹ rwnsgwns) þ awn=cwns
wn

þ aws=cwns
ws þ ans=cwns

ns

¼ Rwns·vwns, s ¹ rwns
wn ·vwn,s ¹ rwns

ws ·vws, s ¹ rwns
ns ·vns,s ð65Þ

The residual entropy inequality

vL ¼
∑

a ¼ w, n
va, s·Ra·va,s þ

∑
ab

vab,s·Rab·vab, s

þ vwns, s·Rwns·vwns,s

¹
∑

a ¼ w,n

∑
bÞa

va, s·[ra
ab þ (rab

a )T]·vab,s

¹
∑
ab

vab,s·[rab
wnsþ (rwns

ab )T]·vwns,s þ
1
v
(=v)·K ·=v

þ
∑
a

∑
bÞa

La
ab[mab ¹ma]2 þ

∑
ab

Lab
wns[mwns¹ mab]2

¹
DsQ̂

Dt

�����
v,mm,Es=j

$ 0 ð66Þ

If desired, Gibbs–Duhem eqn (19a) or eqn (19b) may be
substituted into the phase momentum eqn (61) to obtain the
alternative form:

¹ ea(ra=ma þ ĥa=va ¹ raga)

¼ Ra·va,s ¹ ra
as·v

as, s ¹ ra
wn·v

wn, s a ¼ w, n ð67Þ

Similar substitutions of Gibbs–Duhem eqns (25a), (25b) and
(25c) may be made into the corresponding interface
momentum eqns (63a) and (63b). For the case of a massless
interface, only the term involving the temperature gradient
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will survive on the left side of the interface momentum
equation after this substitution has been made. For the
common line, Gibbs–Duhem eqn (31) may be used to
express the driving force for the flow as found on the left
side of eqn (65) in terms of the chemical potential, gravity,
and the temperature gradient. If the common line is mass-
less, this chemical potential and gravitational terms will
drop out. In the remainder of this text, the momentum
equations in terms of the chemical potential will not be
examined.

In eqns (60)–(66), the scalar coefficientsL that appear
are non-negative. When the solid material is isotropic, the
flow resistance tensors are diagonal such thatR ¼ RI and
r ¼ rI . Eqns (60)–(65) are a set of 24 equations. If the
thermodynamic constitutive forms for the energy of the
phases, interfaces, and common lines are available such
that the chemical potentials (m), interfacial tensions (g),
pressures (p), and component interaction terms (c) are
known as functions of the primary variables, these 24 equa-
tions contain 30 unknowns (6 densities, 18 velocity compo-
nents, and the 6 geometric parameters). Thus solution of
these equations requires that information about the geo-
metric parameters be available in the form of six equations
or constitutive forms. Three of these six restrictions have
been approximated as eqns (40)–(42). The remaining set of
three equations will be developed based on the entropy
inequality (66) and the thermodynamic postulates.

8 SUPPLEMENTARY GEOMETRIC CONDITIONS

The material derivative of the grand canonical potential that
appears in eqn (66), which is equal to the sum of all the
terms in eqn (37) involving time derivatives of geometric
properties, can now be employed to obtain the required three
additional conditions to close the system. Expansion of this
term and insertion of the constraints provided in eqns (40)–
(42) provides the following identity which can be substi-
tuted into residual entropy inequality (66):

¹
DsQ̂

Dt

�����
v,mm, Es=j

¼ ¹ [(jwsþ jnsþ js) : Es=j

¹ sw(cws
w þ cwn

w þ pw) ¹ sn(cns
n þ cwn

n þ pn)

¹ Js
sx

ws
s (cw

wsþ cs
wsþ cwns

ws þgws)

¹ Js
sx

ns
s (cn

nsþ cs
nsþ cwns

ns þ gns)]
Dse

Dt

¹ e[(cns
n þ cwn

n þ pn) ¹ (cws
w þ cwn

w þ pw)

þ Jw
wn(cw

wn þ cn
wn þ cwns

wn þ gwn)]
Dssw

Dt

¹ as[(cw
wsþ cs

wsþ cwns
ws þ gws) ¹ (cn

nsþ cs
nsþ cwns

ns þ gns)

þ (cw
wn þ cn

wn þ cwns
wn þ gwn)cosF

þ (cwn
wnsþ cws

wnsþ cns
wnsþ gwns)kws

g ]
Dsxws

s

Dt
ð68Þ

Each of the time derivatives in this equation will be zero at
equilibrium. If they are linearized in terms of the velocities
and the temperature gradient using Taylor series expan-
sions, the coefficients that appear in the expansion will be
vectors. Because such coefficients must be isotropic, and
the only isotropic vector is the null vector, the time deri-
vativesDse=Dt, Dssw=Dt, andDsxws

s =Dt cannot be linearized
as expansions in terms of vector quantities. The simplest
linearization approach is to require that the coefficients of
each of the three derivatives as given in eqn (68) be zero at
equilibrium and assume that each derivative is linearly
proportional to that coefficient. A more general approach
would involve each derivative being linearly proportional
to all three of the coefficients, but this will not be employed
here. Therefore, the following linearized relations are
assumed to apply:

Le

Dse

Dt
¼ ¹ [(jwsþ jnsþ js) : Es=j ¹ sw(cws

w þ cwn
w þ pw)

¹ sn(cns
n þ cwn

n þ pn) ¹ Js
sx

ws
s (cw

wsþ cs
wsþ cwns

ws þgws)

¹ Js
sx

ns
s (cn

nsþ cs
nsþ cwns

ns þ gns)] ð69Þ

Lw
s

Dssw

Dt
¼ ¹ e[(cns

n þ cwn
n þ pn) ¹ (cws

w þ cwn
w þ pw)

þ Jw
wn(c

w
wn þ cn

wn þ cwns
wn þ gwn)] ð70Þ

Lws
x

Dsxws
s

Dt
¼ ¹ as[(cw

wsþ cs
wsþ cwns

ws þ gws)

¹ (cn
nsþ cs

nsþ cwns
ns þ gns)

þ (cw
wn þ cn

wn þ cwns
wn þ gwn)cosF

þ (cwn
wnsþ cws

wnsþ cns
wnsþ gwns)kws

g ] ð71Þ

In these three equations, the multipliers of the time deriva-
tives must be non-negative to assure that the entropy
inequality is not violated. At equilibrium, the right side
of each of these equations is zero. The derivation in
Appendix C relates the geometric quantities in the right
side of these equations to thermodynamic definitions such
that:

Js
s(as, e) ¼ ¹

]as

]e

� �
v,mm,Es=j, awn, lwns,sw, xws

s , Q̂
(72)

Jw
wn(sw,awn, xws

s ,as, e) ¼
1
e

]awn

]sw

� �
v,mm,Es=j, e, as,xws

s , lwns, Q̂

(73)

cos[F(sw,awn,xws
s , as, e)] ¼

1
as

]awn

]xws
s

� �
v,mm,Es=j,sw, e,as, Q̂

(74)

kws
g (xws

s , lwns,as) ¼ ¹
1
as

]lwns

]xws
s

� �
v,mm,Es=j,sw, e,as, Q̂

(75)

Thus eqns (40)–(42), (60)–(65) and (69)–(71) constitute a
closed set of equations that can be used to model two-phase
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flow in porous media. To demonstrate the utility of the
equations, an example of a simple system that they describe
will be presented.

9 EXAMPLE: SLOWLY-DEFORMING SOLID; NO
PHASE CHANGE; NEGLIGIBLE INTERACTIONS

This example is presented so that the assumptions needed to
simplify the general equations to those commonly used in
multiphase porous media models will be explicitly identi-
fied. Heretofore, the assumptions have been intrinsic to the
model and thus paths to improved models based on relaxed
assumptions have not been apparent. The first set of assump-
tions to be applied are the following.

• The system is isothermal such that the dependence
of equations and coefficients on temperature need
not be considered.

• Transfer of material between phases is negligible.
This is enforced mathematically in the general
equation set either by setting the phase change
terms (̂ea

ab and êab
wns) to zero or by requiring the

chemical potentials of the mass in each of the
phases, interfaces, and the common line to be equal.

• The interfaces and common lines are taken to be
massless (rab and rwns are zero). This assumption
eliminates the need to consider the interface and
common line mass balance equations in the
formulation.

• The surface tensions of the interfaces and the lineal
tension of the common line may all be treated as
constants. This assumption eliminates the need to
consider the momentum balance equations for the
interfaces and common lines in the formulation.

• The velocities of the interfaces and common lines
do not impact the phase velocities such that they
can be neglected in the flow equations for the
phases. This assumption allows the terms on the
right side of flow eqn (61) with resistance coeffi-
cients of the formra

ab to be neglected.
• The decomposition of the energy function into its

component parts may be accomplished without con-
sidering the interactive effects of a phase with its
boundaries, of an interface with the adjacent phases
and its common line boundary, and of a common
line with its adjacent interfaces. This assumption
allows all the coefficients ‘c’ in the governing equa-
tions to be set to zero.

• The deformation of the solid matrix is such that the
porosity and area of the solid phase may be consid-
ered to be time invariant. Thus eqns (40) and (69)
are not needed ase and as are spatially dependent
specified parameters of the problem.

These assumptions reduce the system of equations to the
following set of 12 equations in the 14 variablesrw, rn, sw,
vw, vn, pw, pn, awn, xws

s , andlwns.

Macroscale mass conservation for thea-phase

Da(eara)
Dt

þ eara=·va ¼ 0 a ¼ w, n (76)

Macroscale momentum conservation for thea-phase

¹ ea(=pa ¹ raga) ¼ Ra·va,s a ¼ w, n (77)

Constitutive equation for the fluid–fluid interface

Dsawn

Dt
¹ Jw

wne
Dssw

Dt
¹ as cosF

Dsxws
s

Dt
¼ 0 (78)

Constitutive equation for the common line

Dslwns

Dt
þ kws

g as Dsxws
s

Dt
¼ 0 (79)

Constitutive equation for saturation

Lw
s

Dssw

Dt
¼ ¹ e[pn ¹ pw þ Jw

wng
wn] (80)

Constitutive equation for wetted fraction of solid surface

Lws
x

Dsxws
s

Dt
¼ ¹ as[gws¹ gnsþ gwn cosF þ kws

g gwns] ð81Þ

Two equations of state for the density in terms of pressure
(for the isothermal system), as alternatives to the functional
form of the energy functions of the phases, must be speci-
fied to obtain an equal number of equations and primary
unknowns.

Equation of state

ra ¼ ra(pa) a ¼ w,n (82)

Functional forms must be available for the following
quantities:

Jw
wn ¼ Jw

wn(sw,awn,xws
s ,as, e) (83a)

cosF ¼ cosF(sw, awn, xws
s ,as, e) (83b)

kws
g ¼ kws

g (xws
s , lwns, as) (83c)

These quantities are, respectively, the average fluid–fluid
interfacial curvature, the cosine of the average contact
angle of the wetting phase with the solid, and the average
geodesic curvature, with respect to the interface between
the wetting and solid phases, of the common line. The
influence of dynamic conditions on these quantities must
also be accounted for. Note also that eqn (80) provides the
equilibrium condition on the pressure difference between
the two fluid phases. This capillary pressure,pc, is defined
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such that:

pc(sw,awn,xws
s , as, e) ¼ ¹ gwnJw

wn

¼ ¹
gwn

e

]awn

]sw

� �
v,mm,Es=j, e,as,xws

s , lwns, Q̂
ð84Þ

Therefore, the equilibrium condition resulting from eqn
(80) is:

pn ¹ pw ¹ pc ¼ 0 (85)

Capillary pressure is usually obtained experimentally as a
function of saturation only. However, the derivation here
indicates that it actually has a broader functional depen-
dence. The parametersRw, Rn, Lw

s , andLws
x that appear in

the equations must be specified in order to mathematically
complete the system.

Although the set of eqns (76)–(84) employs a large
number of simplifications, they must be simplified further
to obtain the most widely used set of equations by making
the additional assumptions.

• There is no explicit dependence of the system beha-
vior on the interfacial area between the fluid phases
awn, the fraction of the solid phase surface in con-
tact with the wetting fluidxws

s , or the common line
length lwns. As a consequence, these variables may
be eliminated from the problem along with eqns
(78), (79) and (81); and the functions in eqns (83b)
and (83c) are not required. The capillary pressure in
eqn (84) and, de facto, the fluid–fluid interfacial
curvature Jw

wn, are assigned reduced functional
forms such that they depend only on saturation,
the specified solid surface area, and the specified
system porosity.

• The disequilibrium between the capillary pressure
and the pressures in the phases may be neglected so
that eqn (80) may be replaced by its equilibrium
form as given in eqn (85) withpc ¼ pc(sw).

The equations obtained with these additional assumptions are
those commonly employed in modeling multiphase systems.
Through the years, a large amount of effort has been put into
obtaining the functional form of the dependence of the coeffi-
cients Rw and Rn (or their inverses which are related to
relative permeability) onsw and of the equilibriumpc(sw)
relation such that dynamic systems can be studied (e.g.,
Refs 6,7,11,28,30,31,42,44,46). However, much less effort has
been expended in determining which of the simplifying
assumptions made in developing the governing equations
and restricting the functional dependences of these quantities
to saturation only are violated in the systems under study
(e.g., Ref8). These violations carry much of the responsibility
for difficulties in obtaining robust and accurate models.

10 CONCLUSION

The derivation of equations of flow of two immiscible fluids
in a porous media system has been achieved. The derivation

requires that the entropy inequality, subjected to internal
geometric constraints, be applied to gain constitutive
forms that close the system. Even in a simplified system,
knowledge of the evolution of the interfacial area between
phases and of the functional form of the capillary pressure is
essential to a model that is based on the system physics.
Here, assumptions were identified that the flow system
must satisfy if the standard multiphase equations are to be
used. Thus, consideration of a problem of interest in light of
these assumptions may lead one to conclude that a model
more complex than the simplified form is required. These
more complex models carry with them the burden of requir-
ing more complete thermodynamic relations for the phases,
interfaces, and common lines and more parameters that
must be measured. However, the physical processes that
each of these parameters account for are known; and this
should give rise to innovative experimental and simulation
programs that allow for their quantification. Thus a route to
more complete models has been developed which is fol-
lowed by eliminating assumptions made to the general
model. This is a more satisfying route than one that is
based on heuristic addition of terms to simple equations
that seem to be helpful in allowing the model to match data.
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APPENDIX A. EXPANSIONS OF GRAND
CANONICAL POTENTIALS

Incorporation of the Lagrangian time derivative of the
grand canonical potential into the entropy inequality
requires that the derivative be expanded in terms of the
independent variables. These expansions are obtained in this
appendix.

Fluid phases

For a fluid phase, from eqns (18a) and (18b), the deriva-
tive of the grand canonical potential is:

DaQ̂a

Dt
¼

]Q̂a

]va

Dava

Dt
þ

]Q̂a

]ea

Daea

Dt
þ

]Q̂a

]ma

Dama

Dt

þ
]Q̂a

]awn

Daawn

Dt
þ

]Q̂a

]aas

Daaas

Dt
(A1)

It will be convenient to have the material derivatives of the
geometric properties written with respect to the solid phase
velocity. Thus eqn (A1) becomes:

¹
1
va

DaQ̂a

Dt
¼ ¹

1
va

]Q̂a

]va

Dava

Dt
¹

1
va

]Q̂a

]ea

Dsea

Dt

¹
1
va

]Q̂a

]ma

Dama

Dt
¹

1
va

]Q̂a

]awn

Dsawn

Dt
¹

1
va

]Q̂a

]aas

Dsaas

Dt

¹
1
vava,s·

]Q̂a

]ea
=ea þ

]Q̂a

]awn=awn þ
]Q̂a

]aas=aas

" #
(A2)

Now use of definitions (18d) through (18h) allows rewriting
of this equation as:

¹
1
va

DaQ̂a

Dt
¼

ĥa

va

Dava

Dt
þ

pa

va

Dsea

Dt
þ

eara

va

Dama

Dt

¹
ca

wn

va

Dsawn

Dt
¹

ca
as

va

Dsaas

Dt

¹
1
vava,s·[ ¹ pa=ea þ ca

wn=awn þ ca
as=aas] (A3)

Solid phase

For the solid, eqn (18c) indicates that the grand canonical
potential depends on the Lagrangian strain tensor,Es, and
the macroscale jacobian,j. Note that the symmetric Lagran-
gian strain tensor, with componentsEs

KL, behaves according

to Eringen:16

DsEs

Dt
¼ ds : (=XFs)(=XFs)T (A4)

where

x¼ Fs(Xs, t) (A5)

and =XFs is the deformation gradient. The macroscale
jacobian of the solid phase deformation,j, accounts for a
change in volume and is governed by the equation:

Dsj
Dt

¼ jds : I (A6)

Application of the chain rule to expand eqn (18c) gives:

DsQ̂s

Dt
¼

]Q̂s

]vs

Dsvs

Dt
þ

]Q̂s

](esEs=j)
:

Es

j
Dses

Dt
þ

es

j
DsEs

Dt
¹

esEs

j2
Dsj
Dt

� �
þ

]Q̂s

]ms

Dsms

Dt
þ

]Q̂s

]aws

Dsaws

Dt
þ

]Q̂s

]ans

Dsans

Dt
(A7)

Substitution of eqns (A4) and (A6) into this expression
yields:

¹
1
vs

DsQ̂s

Dt
¼ ¹

1
vs

]Q̂s

]vs

Dsvs

Dt
¹

1
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]Q̂s

](esEs=j)
:

Es
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Dses

Dt

¹
1
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]Q̂s

](esEs=j)
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: [(=XFs)(=XFs)T ¹ EsI ]

( )
: ds

¹
1
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Dsms

Dt
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1
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]Q̂s

]aws

Dsaws

Dt
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1
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]Q̂s
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Dsans

Dt
(A8)

Use of definitions (18d) through (18h) allows simplification
of the notation in this expression to the form:

¹
1
vs

DsQ̂s

Dt
¼

ĥs

vs

Dsvs

Dt
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js : Es=j
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Dses

Dt

¹
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(A9)

Fluid–fluid interface

The functional form of the grand canonical potential of
the interface between the wetting and non-wetting phases,
as given in eqn (24a), can be expanded such that:

DwnQ̂wn
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]Q̂wn
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Dwnvwn
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(A10)

Expression of all the material derivatives of the geometric

542 W. G. Gray



properties in terms of the solid phase velocity yields:
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Use of definitions (24d) through (24i) simplifies this
expression to:
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Fluid–solid interface

Similarly, based on eqns (24b) and (24c), the functional
form of the grand canonical potential of a fluid–solid inter-
face can be expanded such that:
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Dasaas

Dt
þ

]Q̂as

]mas

Dasmas

Dt

þ
]Q̂as

]ea

Dasea

Dt
þ

]Q̂as

](esEs=j)
:

Das(esEs=j)
Dt

þ
]Q̂as

]lwns

Daslwns

Dt
: (A13)

Substitution of kinematic eqns (A4) and (A6) into this
expression along with expression of all the material deri-
vatives of the geometric properties in terms of the solid
phase velocity yields:

¹
1

vas

DasQ̂as

Dt
¼ ¹

1
vas

]Q̂as

]vas

Dasvas

Dt
¹

1
vas

]Q̂as

]aas

Dsaas

Dt

¹
1

vas

]Q̂as

]mas

Dasmas

Dt
¹

1
vas

]Q̂as

]ea

Dsea

Dt

¹
1

vas

]Q̂as

](esEs=j)
:

Es

j
Dses

Dt
¹

1
vas

]Q̂as

]lwns

Dslwns

Dt

¹
1

vas

]Q̂as

](esEs=j)
:

es

j
(=XFs)(=XFs)T ¹

esEs

j
I

� �
: ds

¹
1

vasv
as, s·

]Q̂as

]aas=aas þ
]Q̂as

]ea
=ea þ

]Q̂as

](esEs=j)
: =

esEs

j

� �"

þ
]Q̂as

]lwns=lwns

#
(A14)

Substitution of definitions (24d) through (24i) into this
equation results in the form:

¹
1

vas

DasQ̂as

Dt
¼

ĥas

vas

Dasvas

Dt
¹

gas

vas

Dsaas

Dt
þ

aasras

vas

Dasmas

Dt

þ
cas
a

vas

Dsea

Dt
þ

jas : Es

vasj
Dses

Dt
þ

cas
wns

vas

Dslwns

Dt

þ
1

vas

es

j
jas : [(=XFs)(=XFs)T ¹ EsI ]

� �
: ds

¹
1

vasv
as,s· gas=aas ¹ cas

a =ea ¹ jas : =
esEs

j

� ��
¹ cas

wns=lwns
�
: (A15)

Common line

Finally, from eqn (30a) for the common line, expansion
of the grand canonical potential yields:

DwnsQ̂wns

Dt
¼

]Q̂wns

]vwns

Dwnsvwns

Dt
þ

]Q̂wns

]lwns

Dwnslwns

Dt

þ
]Q̂wns

]mwns

Dwnsmwns

Dt
þ

∑
ij ¼ wn,ws,ns

]Q̂wns

]aij

Dwnsaij

Dt
(A16)

With the material derivatives of geometric properties taken
with respect to the solid phase, eqn (A16) becomes:

¹
1

vwns

DwnsQ̂wns

Dt
¼ ¹

1
vwns

]Q̂wns

]vwns

Dwnsvwns

Dt

¹
1

vwns

]Q̂wns

]lwns

Dslwns

Dt
¹

1
vwns

]Q̂wns

]mwns

Dsmwns

Dt

¹
1

vwns

∑
ij ¼ wn,ws,ns

]Q̂wns

]aij

Dsaij

Dt

¹
1

vwnsv
wns, s·

]Q̂wns

]lwns=lwnsþ
∑

ij ¼ wn,ws,ns

]Q̂wns

]aij =aij

" #
(A17)

Then from the definitions in eqns (30b), (30c), (30d) and
(30e), this equation reduces to:

¹
1

vwns

DwnsQ̂wns

Dt
¼

ĥwns

vwns

Dwnsvwns

Dt
þ

gwns

vwns

Dslwns

Dt

þ
lwnsrwns

vwns

Dsmwns

Dt
¹

1
vwns

∑
ij ¼ wn,ws,ns

cwns
ij

Dsaij

Dt
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¹
1

vwnsv
wns,s· ¹ gwns=lwnsþ

∑
ij ¼ wn,ws,ns

cwns
ij =aij

" #
(A18)

APPENDIX B. GEOMETRIC CONSTRAINTS

For proper exploitation of the entropy inequality, informa-
tion is needed concerning the relations among changes in
the geometric variables. As a first step toward obtaining
geometric relations, consider the solid phase. The following
relations for the void fraction follow directly and exactly
from the averaging theorems21 and for systems with one
solid phase and two fluid phases. Integration is performed
over the surface area of the solid,As, that is contained in an
averaging volume. The following equations result, respec-
tively, from the averaging theorems for a time derivative
and for the gradient of a constant:

]es

]t
¼

1
dV

∫
As

ns·w dA (B1)

=es ¼ ¹
1
dV

∫
As

ns dA: (B2)

The material derivative obtained using the macroscale solid
phase velocity is obtained as the sum of eqn (B1) and the
macroscale velocity dotted with eqn (B2):

Dse

Dt
¼ ¹

1
dV

∫
As

ns·(w ¹ vs) dA (B3)

where the fact thates ¼ 1¹ e has been employed.
To obtain an equation for the time derivative of the solid

phase surface area contained within an averaging volume,
the surficial averaging theorem may be applied to a constant
surface property to obtain:

]as

]t
¼ ¹

1
dV

=·
∫

As
(w·ns)ns dA þ

1
dV

∫
As

(=·ns)(ns·w) dA

(B4)

This equation may be approximated by estimating the
average of the products appearing in these integrals as the
product of the average of each of the quantities. Then an
order of magnitude estimate of the relative importance of
the three terms is obtained as:

]as

]t
¼ ¹

1
dV

=·
1
As

∫
As

w·ns dA

� � ∫
As

ns dA

� �� �
þ

Js
s

]V

∫
As

ns·w dA (B5)

where the average curvature of the solid surface calculated
on the basis of the unit normal in the direction pointing
outward from the solid,Js

s is defined as:

Js
s ¼

1
As

∫
As

=·ns dA (B6)

and is of the order of magnitudeas=es. Now substitute into
eqn (B5) to eliminate each of the integral terms using eqns

(B1) and (B2) and obtain:

]as

]t
¼ =·

1
as

]es

]t

� �
(=es)

� �
þ Js

s
]es

]t
(B7)

Expansion of the second term in eqn (B7) yields:

]as

]t
¼ ¹

1
(as)2

]es

]t

� �
(=es·=as) þ

1
2as

]

]t
(=es·=es)

þ
1
as

]es

]t

� �
=2es þ Js

s
]es

]t
(B8)

or, after rearrangement:

]as

]t
¼ Js

s þ
1
as=

2es ¹
1

(as)2(=es·=as)
� �

]es

]t

þ
1

2as

]

]t
(=es·=es) (B9)

For a porous medium, the radius of a grain is much smaller
than the average volume characteristic dimension so that:

lJs
slq

1
asl=

2esl (B10)

lJs
slq

1
(as)2l=es·=asl (B11)

and

lJs
s
]es

]t
lq

1
2asl

]

]t
(=es·=es)l (B12)

Therefore, eqn (B9) simplifies to:

]as

]t
¼ Js

s
]es

]t
(B13)

Then, if the velocity of the solid is small, as it is for most
porous media situations, the Lagrangian time derivative
moving with the solid is a reasonable approximation to
the partial time derivative such that eqn (B13) may be
approximated as:

Dsas

Dt
¼ Js

s
Dses

Dt
(B14)

or, sincees ¼ 1¹ e:

Constitutive equation for solid phase surface

Dsas

Dt
þ Js

s
Dse

Dt
¼ 0 (B15)

such that

Js
s ¼ Js

s(as, e) (B16)

Now, as a prelude to the development of other constitutive
forms, the time averaging theorems (as found in Ref.5 or
Ref.47 for a volume; Ref.18 for a surface; and Ref.21 for a
common line) applied to a constant yield the following
relations for a volume fraction, area per volume, and
common line length per volume are stated as follows
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where the integrations are over the appropriate region
within an averaging volume:

]ea

]t
¼

1
dV

∫
Aab

na·w dA þ
1
dV

∫
Aag

na·w dA (B17)

]aab

]t
¼ ¹

1
dV

=·
∫

Aab
w·nana dA

¼
1
dV

∫
Aab

(=·na)na·w dA þ
1
dV

∫
Lwns

nab·u dL

(B18)

]lwns

]t
¼ ¹

1
dV

=·
∫

Lwns
u·(I ¹ ll) dL ¹

1
dV

∫
Lwns

l·=l·u dL

(B19)

The objective in manipulating these equations, which are
obtained directly from the averaging theorems, will be to
eliminate the integrals that appear and replace them with
derivatives of the geometric properties of the system.

For the wetting phase, the following may be obtained
from eqn (B17) sinceew ¼ esw:

sw ]e

]t
þ e

]sw

]t
¼

1
dV

∫
Awn

nw·w dA þ
1
dV

∫
Aws

nw·w dA

(B20)

For the interfaces between the wetting and non-wetting
phases, eqn (B18) becomes:

]awn

]t
¼ ¹

1
dV

=·
∫

Awn
w·nwnw dA

þ
1
dV

∫
Awn

(=·nw)nw·w dA

þ
1
dV

∫
Lwns

nwn·u dL (B21)

while for the interface between the wetting and solid
phases, it takes the following form:

xws
s

]as

]t
þ as ]xws

s

]t
¼ ¹

1
dV

=·
∫

Aws
w·nsns dA

þ
1
dV

∫
Aws

(=·ns)ns·w dA þ
1
dV

∫
Lwns

nws·u dL (B22)

Now rearrange eqn (B22) such that the terms on the right
are all on the order of the rate of change ofas or less and
thus are smaller than the terms on the left:

as ]xws
s

]t
¹

1
dV

∫
Lwns

nws·u dL

¼ ¹ xws
s

]as

]t
¹

1
dV

=·
∫

Aws
w·nsns dA

þ
1
dV

∫
Aws

(=·ns)ns·w dA (B23)

Therefore, a reasonable approximation is to retain only the
terms on the left such that:

as ]xws
s

]t
¹

1
dV

∫
Lwns

nws·u dL ¼ 0 (B24)

For the interface between the fluids, eqn (B21) may be
written:

]awn

]t
¼ ¹

1
dV

=·
∫

Awn
w·nwnw dA

þ
Jw

wn

dV

∫
Awn

nw·w dA þ
1
dV

∫
Lwns

nwn·u dL (B25)

where the macroscale measure of the interfacial curvature,
Jw

wn, is defined as:

Jw
wn ¼

1
Awn

∫
Awn

(=·nw) dA (B26)

Now add and subtract a term to this equation so that the
second integral is over the entireq surface:

]awn

]t
¼ ¹

1
dV

=·
∫

Awn
w·nwnw dA

þ Jw
wn

1
dV

∫
Aw

nw·w dA ¹
1
dV

∫
Aws

nw·w dA

� �
þ

1
dV

∫
Lwns

nwn·u dL (B27)

Substitution of eqn (B20) for the first term in the brackets
yields:

]awn

]t
¼ ¹

1
dV

=·
∫

Awn
w·nwnw dA

þ Jw
wn

]ew

]t
¹

1
dV

∫
Aws

nw·w dA

� �
þ

1
dV

∫
Lwns

nwn·u dL (B28)

Since the normal velocity of the solid surface is of a smaller
order of magnitude than the velocity of the fluid–fluid
interface, eqn (B28) may be approximated by writing the
first integral as being over the entire wetting phase surface
such that:

]awn

]t
¼ ¹

1
dV

=·
∫

Aw
(w·nw)nw dA

þ Jw
wn

]ew

]t
¹

1
dV

∫
Aws

nw·w dA

� �
þ

1
dV

∫
Lwns

nwn·u dL (B29)

Now if the correlation betweenw·nw andnw is neglected in
the first term on the right such that the average of the
integral of their product is approximated as the product of
their averages, this equation becomes:

]awn

]t
¼ ¹

1
dV

=·
1

Aw

∫
Aw

w·nw dS

� � ∫
Aw

nw dS

� �� �
þ Jw

wn
]ew

]t
¹

1
dV

∫
Aws

nw·w dA

� �
þ

1
dV

∫
Lwns

nwn·udL (B30)
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or

]awn

]t
¼ =·

1
aw

]ew

]t

� �
(=ew)

� �
þ Jw

wn
]ew

]t
¹

1
dV

∫
Aws

nw·w dA

� �
þ

1
dV

∫
Lwns

nwn·u dL (B31)

Expansion of the derivatives on the right side and collection
of terms yields:

]awn

]t
¼ Jw

wn þ
1
aw=2ew ¹

1
(aw)2(=aw·=ew)

� �
]ew

]t

þ
1

2aw

]

]t
(=ew·=ew) ¹

Jw
wn

dV

∫
Aws

nw·w dA

þ
1
dV

∫
Lwns

nwn·u dL (B32)

Now if the terms of lower order of magnitude (i.e., those
relating to changes due to solid movement as opposed to
fluid movement) are neglected, this equation simplifies to:

]awn

]t
¹ Jw

wne
]sw

]t
¼

1
dV

∫
Lwns

nwn·u dL (B33)

Next, note that the normal to the edge of the interface at the
common line is also normal to the common line such that:

nwn ¼ (ns·nwn)ns þ (nws·nwn)nws (B34)

Therefore, eqn (B33) becomes:

]awn

]t
¹ Jw

wne
]sw

]t
¼

1
dV

∫
Lwns

(ns·nwn)ns·u dL

þ
1
dV

∫
Lwns

(nws·nwn)nws·u dL (B35)

The first integral involves the velocity of the common line
normal to the solid grain, which is small in comparison to
the velocity tangential to the grain. Thus the first integral
may be neglected in comparison to the second to obtain:

]awn

]t
¹ Jw

wne
]sw

]t
¼

1
dV

∫
Lwns

(nws·nwn)nws·u dL (B36)

Now define a dynamic macroscale contact angle,F, accord-
ing to:

cosF ¼
1

lwnsdV

∫
Lwns

(nws·nwn) dL (B37)

so that eqn (B36) becomes:

]awn

]t
¹ Jw

wne
]sw

]t
¼

cosF

dV

∫
Lwns

nws·u dL (B38)

Substitution of eqn (B24) into this expression yields:

]awn

]t
¹ Jw

wne
]sw

]t
¹ as cosF

]xws
s

]t
¼ 0 (B39)

Since the solid velocity is assumed small, the partial deri-
vative may be replaced by the total derivative moving with
the solid phase to obtain:

Constitutive equation for the interface

Dsawn

Dt
¹ Jw

wne
Dssw

Dt
¹ as cosF

Dsxws
s

Dt
¼ 0 (B40)

where

Jw
wn ¼ Jw

wn(sw,awn,xws
s ,as, e) (B41)

and

cosF ¼ cosF(sw, awn, xws
s ,as, e) (B42)

Next consider the equation for the common line given by
eqn (B19). For this equation, the divergence term is also
small in relation to the remaining terms so that:

]lwns

]t
¼ ¹

1
dV

∫
Lwns

l·=l·u dL (B43)

The principal curvature of the common line is defined as:

l·=l ¼ kp ¼ k(p·ns)ns þ k(p·nws)nws (B44)

wherek is the magnitude of the principal curvature andp is
the principal unit normal to the line. Therefore, eqn (B43)
becomes:

]lwns

]t
¼ ¹

1
dV

∫
Lwns

k(p·ns)ns·u dL

¹
1
dV

∫
Lwns

k(p·nws)nws·u dL (B45)

The quantityk(p·ns) is the normal curvature andk(p·nws) is
the geodesic curvature. If the average of these over the
common line are indicated askn and kws

g , respectively,
then eqn (B45) may be approximated as:

]lwns

]t
¼ ¹

kn

dV

∫
Lwns

ns·u dL ¹
kws

g

dV

∫
Lwns

nws·u dL (B46)

where

kn ¼
1

Lwns

∫
Lwns

k(p·ns) dL (B47)

and

kws
g ¼

1
Lwns

∫
Lwns

k(p·nws) dL (B48)

The first integral is small in comparison with the second
since it involves movement normal to the solid grain, so
that this equation approximates further to:

]lwns

]t
¼

kws
g

dV

∫
Lwns

nws·u dL (B49)

Substitution of eqn (B24) into this expression yields:

]lwns

]t
þ kws

g as ]xws
s

]t
¼ 0 (B50)

Once again, because the velocity of the solid phase is small,
the partial derivatives may be replaced by total derivatives
moving with respect to the solid phase to obtain the
following.
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Constitutive equation for the common line

Dslwns

Dt
þ kws

g as Dsxws
s

Dt
¼ 0 (B51)

where

kg ¼ kg(xws
s , lwns,as) (B52)

APPENDIX C. THERMODYNAMIC EQUILIBRIUM
INFORMATION

A state of stable thermodynamic equilibrium of the total
system is one for which the grand canonical potential of
the system is less than it is for any other thermodynamic
state having the same temperature, chemical potential, and
geometric parameters.17 Thus the equilibrium state is a state
of minimum energy. Therefore, deviations in the indepen-
dent variables around this equilibrium state will cause
no change in the energy. In the entropy inequality, the
energy form that is minimized at equilibrium is the grand
canonical potential. The expression for a deviation in this
quantity is:

dQ̂lv,mm,Es=j ¼ e[cns
n þ cwn

n þ pn) ¹ (cws
w þ cwn

w þ pw)] dsw

þ [(jwsþ jnsþ js) : Es=j ¹ sw(cws
w þ cwn

w þ pw)

¹ sn(cns
n þ cwn

n þ pn)] deþ [xws
s (cw

wsþ cs
wsþ cwns

ws þ gws)

þ xns
s (cn

nsþ cs
nsþ cwns

ns þ gns)] das

þ as[(cw
wsþ cs

wsþ cwns
ws þ gws)

¹ (cn
nsþ cs

nsþ cwns
ns þ gns)] dxws

s

þ (cw
wn þ cn

wn þ cwns
wn þ gwn) dawn

¹ (cwn
wnsþ cws

wnsþ cns
wnsþ gwns) dlwns (C1)

where v, mm, and Es=j are held constant to coincide with
the conditions of entropy inequality (37) as indicated in
the compressed representation (39). The goal of this analy-
sis is to examine this equation in light of eqn (69) through
(71). Since the right sides of these equations are zero at
equilibrium, an examination of the conditions giving rise
to that equilibrium state will provide information about the
relation of the coefficients that appear to the thermodynamic
state.

The first study involves examination of eqn (151) to
obtain conditions where its right side is of similar form to
the right side of eqn (69). This is obtained by holding some
of the independent variables constant while evaluating the
change inQ̂ with respect to the void fraction such that:

]Q̂

]e

����
v,mm, Es=j,awn, lwns,sw,xws

s

¼
(jwsþ jnsþ js) : Es

j
¹ sw(cws

w þ cwn
w þ pw)

�

¹ sn(cns
n þ cwn

n þ pn)
�

þ [xws
s (cw

wsþ cs
wsþ cwns

ws þ gws)

þ xns
s (cn

nsþ cs
nsþ cwns

ns þ gns)]
]as

]e
(C2)

At equilibrium, the left side of this equation will be zero
since Q̂ will be at a minimum. A comparison of the right
side of this equation with eqns (69) and (B16) yields:

Js
s(as, e) ¼ ¹

]as

]e

� �
v,mm,Es=j, awn, lwns,sw, xws

s , Q̂
(C3)

Next, eqn (C1) will be examined for equilibrium conditions
such that its right side is of similar form to the right side of
eqn (70). Evaluation of the partial derivative ofQ̂ with
respect to saturationsw while holding other independent
variables constant yields:

]Q̂

]sw

�����
v,mm,Es=j, e, as,xws

s , lwns

¼ e[(cns
n þ cwn

n þ pn) ¹ (cws
w þ cwn

w þ pw)]

þ (cw
wn þ cn

wn þ cwns
wn þgwn)

]awn

]sw (C4)

Comparison of this equation with eqns (70) and (B42)
yields:

Jw
wn(sw,awn, xws

s ,as, e) ¼
1
e

]awn

]sw

� �
v,mm,Es=j, e, as,xws

s , lwns, Q̂

(C5)

Finally, the differential of the grand canonical potential
near equilibrium conditions will be examined to determine
if the coefficients that appear in eqn (71) can be related to
thermodynamic variables. The differential ofQ̂ while hold-
ing sw, e, andas constant may be obtained directly from eqn
(C1). Then, ifQ̂ is also held constant, since its variation will
be zero at an equilibrium state, the following equation
results:

dQ̂lv,mm,Es=j, e,as, Q̂ ¼ 0

¼ as[(cw
wsþ cs

wsþ cwns
ws þ gws)

¹ (cn
nsþ cs

nsþ cwns
ns þ gns)] dxws

s

þ (cw
wn þ cn

wn þ cwns
wn þgwn) dawn

¹ (cwn
wnsþ cws

wnsþ cns
wnsþgwns) dlwns (C6)

Comparison of this equation with the right side of eqn (71)
at equilibrium and invoking the functional dependence
indicated in eqns (B42) and (B52) yields:

cos[F(sw,awn,xws
s , as, e)] ¼

1
as

]awn

]xws
s

� �
v,mm,Es=j,sw, e,as, Q̂

(C7)

kg(xws
s , lwns,as) ¼ ¹

1
as

]lwns

]xws
s

� �
v,mm,Es=j,sw, e,as, Q̂

(C8)
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