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This paper provides the thermodynamic approach and constitutive theory for closure
of the conservation equations for multiphase flow in porous media. The starting point
for the analysis is the balance equations of mass, momentum, and energy for two fluid
phases, a solid phase, the interfaces between the phases and the common lines where
interfaces meet. These equations have been derived at the macroscale, a scale on the
order of tens of pore diameters. Additionally, the entropy inequality for the multiphase
system at this scale is utilized. The internal energy at the macroscale is postulated to
depend thermodynamically on the extensive properties of the system. This energy is
then decomposed to provide energy forms for each of the system components. To
obtain constitutive information from the entropy inequality, information about the
mechanical behavior of the internal geometric structure of the phase distributions must
be known. This information is obtained from averaging theorems, thermodynamic
analysis, and from linearization of the entropy inequality at near equilibrium
conditions. The final forms of the equations developed show that capillary pressure is

a function of interphase area per unit volume as well as saturation. The standard
equations used to model multiphase flow are found to be very restricted forms of the
general equations, and the assumptions that are needed for these equations to hold are
identified. © 1999 Elsevier Science Ltd. All rights reserved.
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surface area forming the boundary of the
phase

surface area ofiG-interface

specific interfacial area of the boundary of ke
phase (area per unit of system volume)
specific interfacial area afg-interface (area per
unit of system volume)

external supply of entropy to the phase
external supply of entropy to theg interface
external supply of entropy to thenscommon line

tensor used to write the outline form of the entropy

inequality in egn (39)
accounts for contribution to the energy of the
phase of thex3 interface
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accounts for contribution to the energy of thg
interphase of thex phase

accounts for contributions to the energy of i@
interface of thewnscommon line

accounts for contributions to the energy of thies
common line of thexB interface

deformation rate tensor of am phase
deformation rate tensor of an3 interface
deformation rate tensor of\@anscommon line
deformation rate tensor: phasa & «), interface
(m = «f), or common line fH=wng

internal energy ot phase per mass ef phase
internal energy ot interface per mass aif
interface

internal energy ofvnscommon line per mass of
wnscommon line
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internal energy of thex phase per unit volume of
system

internal energy of the,3 interface per unit volume
of system

internal energy of thevnscommon line per unit
volume of system

extensive internal energy of the phase
extensive internal energy of the3 interface
extensive internal energy of thvenscommon line
Lagrangian strain tensor of the solid phase

rate of transfer of mass fromg-interface to the
a-phase

rate of transfer of mass fromynscommon line to
the of3-interface

term accounting for the multipliers of velocity in
outline entropy inequality (39)

displacement vector of the solid phase

external supply of momentum to thephase
external supply of momentum to thes interface
external supply of momentum to tlvenscommon
line

external supply of energy to the phase

external supply of energy to thes interface
external supply of energy to thenscommon line
identity tensor

average curvature of the solid surface calculated
with n® positive

average curvature of thes calculated withn®
positive

jacobian of the motion of the solid phase
material coefficients (with various superscripts and
subscripts)

common line length

specific length ofvnscommon line (length per unit
volume of medium)

mass ofa phase

mass ofaB interface

mass ofwnscommon line

unit vector normal to and pointing outward from
the surface of thex phase

unit vector in direction of average principal cur-
vature of thewnscommon line

pressure ok-phase

energy transferred to the-phase from thexs-
interface

energy transferred to thes-interface from thavns
common line

effective total heat conduction vector

heat conduction vector for the phase

heat conduction vector for theg interface

heat conduction vector for thenscommon line
entropy of thea phase

entropy of thex interface

entropy of thewnscommon line

saturation of thex-phase, volume fraction of void
space occupied by fluid phase
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force exerted on the-phase by thexS-interface

force exerted on theg-interface by thewns
common line

stress tensor for the phase

stress tensor for theg interface

stress tensor for thenscommon line

velocity of a common line

volume ofa-phase

reference volume of solid phase

velocity of thea phase

velocity of theaf interface

velocity of thewnscommon line

velocity of thea phase relative to the velocity of
the o8 interface,v® — v**

velocity of theaf interface relative to the velocity
of the wnscommon liney® — v

velocity of an interface

reference position of a solid phase ‘particle’
spatial position of a solid phase ‘particle’
fraction of the solid phase surface in contact with
the non-wetting phase

fraction of the solid phase surface in contact with
the wetting phase

Greek symbols

v

wns

2

R

:§>:£5> mom
>

Hwns
001,016
eaﬁ,wns

T E®ETE

p?

wns

0

surface tension ofg-interface

lineal tension ofwnscommon line

porosity of the medium

volume fraction ofa-phase

entropy ofa phase per unit volume of system
entropy ofa( interface per unit volume of system
entropy ofwnscommon line per unit volume of
system

temperature

temperature of the: phase

temperature of the3 interface

temperature of thevnscommon line

temperature differencé® — *°

temperature differencéd® — "

average principal curvature of the common line
average normal curvature of the common line with
respect to thes surface

average geodesic curvature of the common line
with respect to the ws surface

unit vector tangent to thesgnscommon line
chemical potential of the: phase

chemical potential of the,3 interface

chemical potential of thevnscommon line

unit vector on the common line normal dand
tangent to thexB interface

density ofa phase, mass af phase per volume of
o phase

density ofa( interface, mass o&g interface per
area ofaf interface

density ofwnscommon line, mass affnscommon
line per length ofwnscommon line
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a° stress in the solid due to deformation and are not actually needed. However, manifestation of
o stress in thex—solid interface due to solid defor-  those details at the macroscale (a scale involving tens to
mation hundreds of pores) must be preserved. Traditionally,
T quantities defined in the text (with subscripts and porosity and fluid saturations, concepts that do not exist at
superscripts) that are zero at equilibrium the microscale, are included in macroscale porous media
) average contact angle between thands phases theories to account for the presence of multiple phases at
o entropy conduction vector of the phase a point in a macroscale continuum. However, these addi-
6 entropy conduction vector of thes interface tional variables have proven insufficient to account for all
¢""™  entropy conduction vector of thenscommon important microscale processes that influence macroscale
line behavior. Because of the dynamic motion of the fluids,
Q° grand canonical potential of the phase per unit many configurations and distributions of the fluids are
volume of system possible for a given saturation. Even at equilibrium, different
Q** grand canonical potential of thes interface per distributions of fluids could exist at a prescribed saturation
unit volume of system such that the balances of forces on the fluid are satisfied.
Q"™ grand canonical potential of thenscommon line This matter has received attention in recent years and
per unit volume of system thermodynamic theories have been developed wherein
interfacial effects are explicitly includeld:'820-26:27|n
Special symbols these theories, in addition to porosity and saturation, specific
D*/Dt material time derivative following the motion in interfacial area, the amount of interfacial area between two
the o phase /ot +v*-V phases per unit volume of the system, is introduced as a
D*¥Dt material time derivative following the motion in macroscale independent variable. This variable is of impor-
the o8 interface,d/ot +v**.v tance in studies of mass transfer among phases of a porous
D""7Dt material time derivative following the motion in medium and thus is of wide interest. A number of proce-
the wnscommon lineg/dt + v*"™.V dures involving network models and experimental methods
> s+ Summation over all phases excepphase have been developed for measurement of interfacial
8 : . . J13,36,40,43
\% gradient operator with respect to spatial areas.
coordinates Porous media systems that involve flow of two or more
Vx gradient operator with respect to reference fluids may also have common lines, curves formed in those
coordinates instances when three different interface types come
together. The common lines may play an important role in
Superscripts and subscripts the movement of fluids and interfaces. Indeed, in a capillary
n non-wetting phase tube where a meniscus between fluids is at rest, flow can be
S solid phase initiated only if the balance of forces on the common line, as
w wetting phase well as the balance on the phases and the meniscus, is per-
ns non-wetting—solid interface turbed. Thus, the question arises as to how the presence of
wn wetting—non-wetting interface common lines and the thermodynamic properties of those
ws wetting—solid interface lines affect the macroscale flow processes in porous media.

This question, and more general questions regarding the
degree of detail that must be incorporated into macroscale
theories, can be investigated only if appropriate conserva-
tion equations for the common lines are available. Subse-
1 INTRODUCTION guent to the development of a general theory, information
obtained from experiments and observations may be used to
Accurate description of multiphase flow in porous media evaluate the relative significance of various phenomena
requires that a number of system intricacies be accountedaccounted for in the theory. At that point, simplifications
for. These include the presence of juxtaposed phases andan be made that eliminate unimportant terms from the
their interfaces, the complicated geometry of pores, fluid modeling process. It is important to observe that by starting
dynamics giving rise to appearance and disappearance ofrom a general formulation, one is forced to make explicit
interfaces, pendular rings of a wetting phase, ganglia of assumptions to arrive at equations to be used in a modeling
the non-wetting phase, and the behavior of films. A variety exercise. Then, if the exercise proves unsuccessful, the
of forces, due to viscous effects, gravity, interfacial tension, source of the difficulty will lie in the approximations
and pressure are simultaneously present and influencingmade. If, on the other hand, one begins with simple equa-
system behavior. A fundamental question in modeling the tions based on empirical or intuitive ideas, the cause of the
flow of fluids in porous media is how much detail should be failure of such equations cannot be inferred.
included in such models. In virtually all laboratory and field In this work, the results from a general thermodynamic
scale models, microscale details (i.e., pore geometry andtheory are developed where the effects of both interfaces
flow variations within those pores) are impossible to include and common lines have been taken into account. The
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procedure for developing usable equations for the simula-
tion of multiphase subsurface flow involves six steps:

Derivation of conservation equations for phases,
interfaces, and common lines at the porous media
scale, the macroscale, and of the entropy inequality
for the systemWork to do this has been ongoing for
many years. Initially, the work considered only
phases; and balance laws studied were restricted
to conservation of mass and momentum, e.g. fRef.
The dissertation of Hassanizadéand the papers by
Hassanizadeh and Gray>*employed an averaging
theory that extended this approach to inclusion of
the energy equation and entropy inequality. Subse-
quent to this, Gray and Hassanizatfeleveloped
averaging theorems for interfaces and developed
conservation relations for the interface properties
as well. Finally, theorems for averaging over
common lines were developed by Gray etaand
have been employed in a paper by Gray and Hassa-
nizadeRR°. This latter reference, in fact, presents the
set of averaged equations of mass, momentum, and
energy conservation for phases, interfaces, and
common lines that form the basis for a general
study of multiphase flow.

Postulation of thermodynamic dependences of the
energy on independent variables for phases, inter-
faces, and common lines and incorporation of these
postulates into the entropy inequalityhis task is
one that has not, heretofore, been addressed
thoroughly for macroscale system representation.
There is a need to ensure that the fundamental
ideas of thermodynamics are not neglected when
making use of the principles of continuum
mechanics. Note that classical thermodynamics
deals with equilibrium systems only while con-
tinuum mechanics deals with both equilibrium
states and the transitions when a system is not at
equilibrium. Nevertheless, it is important that the
continuum mechanical description reduce to the
classical thermodynamic one at steady state.
Thermodynamics requires that consistent and
systematic postulates be made concerning the
dependence of internal energy on independent vari-
ables. The presence of interfaces adds the compli-
cation of excess surface properties such as mass per
unit area and interfacial tension that must be
accounted for in a conceptually and quantitatively
consistent manner (surface excess properties from a
microscale Gibbsian perspective are discussed, for
example, in Miller and Neogf and Gaydost al.*").
Then, from the postulated forms, relations among
variables and insights into system behavior can be
obtained. One of the most useful approaches for
postulating the thermodynamic dependence of
internal energy is the approach advocated in
Callen? and Bailyr? and, used to advantage by

Gaydoset al.*’in a study of microscopic capillarity,
whereby the extensive energy is considered to be a
function of the extensive variables of the system.
With this approach, confusion about differences
among Helmholtz potential, Gibbs potential, grand
canonical potential, and enthalpy are diminished as
they are simply mathematical rearrangements of the
original postulated form for internal energy.
Insights gained from applying microscale-based
thermodynamic postulates to multiphase systems
(e.g. Refs' 1534353 are extremely valuable in
formulating a macroscale theory, but do not replace
the need for formulation of that theory in terms of
macroscale variables. To develop the macroscale
thermodynamics, the postulative approach of
Callen? will be employed after extension to the
macroscale perspective. The philosophy of
Callen? is employed herein to obtain thermo-
dynamic relations that are appropriate for a macro-
scale description of a porous media system. One
important point is that from the perspective of the
macroscale, the system is composed of coexisting
phases at a point and not juxtaposed phases, inter-
faces, and common lines. Thus, in fact, the energy
postulate should be made in terms of all compo-
nents. The decomposition of the internal energy
for the total system to the component parts describ-
ing each phase, interface, and common line must be
undertaken with caution.

Determination of mechanical equilibrium con-
straints and their incorporation into the entropy
inequality. Although the geometric variables
including porosity, saturation, areas per volume,
and common line length per volume are indepen-
dent variables, their deviations around an equili-
brium state are not (e.g., a change in saturation of
one fluid would be expected to cause a change in
the amount of area bounding that fluid). These con-
siderations give rise to employment of the aver-
aging theorems to obtain relations among changes
in geometric variables. These relations are useful in
deriving both thermodynamic equilibrium condi-
tions and dynamic relations between changes in
geometric variables and the thermodynamic state
of the system.

Exploitation of the entropy inequality to obtain
equations that describe equilibrium system behavior
The entropy inequality provides a condition that
requires a system to be at its minimum energy
state when at equilibrium. It also provides some
guidance on allowable dependences of functions
on independent variables. Furthermore, it provides
guidance on the positivity or negativity of some
coefficients by forbidding, for example, up-gradient
flow or transfer of heat from a cold body to a warmer
one or flow in a direction opposite to a gradient in
potential. A theoretical tool exists for developing
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constitutive functions in a systematic manner that is
based on the second law of thermodynamics. The
procedure of Coleman and Nbllwas applied to
single phase systems to assure that the second law
of thermodynamics is not violated by constitutive
assumptions. Complementing this work are exten-
sions and variations that consider multiphase mix-
tures and interfaces (e.g., Réfs?>3845. Here, the
macroscale entropy inequality will be exploited

effort must be made to allow insightful study of
the new coefficients through laboratory and com-
puter experimentation. Thus, although a general
formulation is employed, it is simplified to a
manageable, yet still challenging, set of equations
that can be effectively studied. As progress is made
in parameterizing these systems, the approxima-
tions employed can be relaxed so that more com-
plex systems may be studied.

while taking into account constraints obtained

from the geometric relations. The first of the above steps was carried out by Gray and
Linearization of some of the constitutive functions Hassanizadéefi for the general case including an arbitrary
to obtain conservation equations with their coeffi- number of phases, interfaces, common lines, and common
cients capable of modeling dynamic systems points. Here, the conservation equations developed in that
Although the localization theory for a three phase paper will be simplified to the case of three phases (wetting
system provides 35 balance equations of mass, phasew, non-wetting phase, and solid phase) prior to
momentum, and energy for the phases, interfaces, continuing the systematic approach to addressing thermo-
and common lines, it also contains 150 constitutive dynamic and geometric issues. The result of this study is a
functions that must be specified. The dependence of ‘workable’ set of equations that arises from examination of
these functions on other system parameters area three-phase system, composed of a solid and two fluids.
obtained under some assumptions. Also, the func- Additionally, the assumptions needed to reduce the general
tional forms of the dependences of the stress tensorsset of equations to the set traditionally used to model a three-
are obtained. However, in general, the actual func- phase system are made explicit.

tional relations between the constitutive functions

and their independent variables are not known

except at equilibrium. For example, at equilibrium 2 CONSERVATION EQUATIONS

the heat conduction vector is zero; but the general

functional representation of this vector in terms of Fig. 1 depicts a three-phase system consisting of a solid and
independent variables is not known at an arbitrary two fluid phases, denoted Isyw, andn, respectively. Thev
state of disequilibrium. Thus a compromise must be phase will be referred to as the wetting phase because it
employed whereby functional forms are obtained preferentially wets the solid relative to the non-wettimg
‘near’ equilibrium. Experimental and computational phase. The phases are separated by three different interfaces
studies must subsequently be undertaken to deter-denoted asvn, ws, and ns where the paired indices refer
mine the definition of ‘nearness’. By this approach, to the phases on each side of the interface and the order of
which is similar to taking a Taylor series expansion the indices is inconsequential. Additionallypaascommon

of a function and ignoring higher order terms, line may exist. The three-phase system is a simplification of
results such as the heat conduction vector being a more general case involving more phases in that no
proportional to the temperature gradient and a common points exist. General macroscale equations
velocity proportional to a potential gradient are describing conservation of mass, momentum, and energy
obtained. Because multiphase porous media flows for phases and interfaces have been developed pre-
are typically slow, they also satisfy the conditions viously®23 These have been collected, and equations for
of being ‘near enough’ to equilibrium that this common lines and common points have been derived along
linearization procedure provides relations appro- with the entropy inequality for the systetfiHere, these will
priate for many physical situations. It is important be simplified to the forms needed to describe a three-phase
to note, however, that although the equations are system. The reduction to the required forms is a straightfor-
linearized, the coefficients that arise still may ward manipulation of the general forms with the main dif-
have complex dependence on system parametersferences being that summations over common lines reduce
(e.g., relative permeability, which is traditionally to terms involving the single common line and terms relat-
simplified to be a function of saturation). Identifica- ing to transfer processes at common points are zero since no
tion of those coefficients remains a challenging task. common points exist for a three-phase system.
Determination of the physical interpretation of the In addition, for convenience rather than necessity, the
coefficients, as possible, using geometric approxi- energy densities will be expressed per unit mass and per
mations that provide insight into required labora- unit of system volume. Therefore, wiltf being the internal
tory measurements It is important that the  energy of thea phase per unit mass ef phaseE” will
theoretical procedure not simply be a propagator indicate thea phase energy per unit volume of porous
of unknown coefficients that have no chance of medium. These two energy densities are related by
being measured or even understood. Therefore, E* =p%*E*. For an interfaceE*’ is the excess internal
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Macroscopic system Macroscale energy conservation for thephase
DE" .
i V-(e*q%) — (e*t* —E"1) : VV* — *p*h®
=E*> &+ > Qs a=wn,s 3
B#a B#a

The terms on the right side of the equations account for
exchanges with the bounding interfaces. The complete
notation used is provided at the beginning of the text.

.~ w phase fluid
) 2.2 Interface conservation equations

n phase fluid These equations express conservation of mass, momentum,
and energy of the interface. The interfaces may exchange

wn interfacial area

7 ~ s phase solid . . . . f
properties with adjacent phases and with the common line.
ns interfacial area @ The balance equations are as follows:
Microscopic system Macroscale mass conservation for thg-interface

Fig. 1. Depiction of a three-phase system at a macroscale point BB b
(top) and from the microscale perspective (bottom) with notation D*(@"p )+ a8, By .8 — (&5 + b )+ é\%ﬁ
employed to identify phases, interfaces, and the common line. Dt p o of T Sap ns
energy of then interface per unit mass of interface while aff =wn, ws ns @
B — p*8aE*8 is the excess energy per unit volume of the
system. Finally, the common line energy per unit mass o
common line is denoted a&"" while the common line
internal energy per unit volume of the system is

f Macroscale momentum conservation for thé-interface

af _of Daﬁvaﬁ afraf aff _aff aff
a* ™ ——— — V-(@*t*) — a*p*g

E""°= p"YWISEWNS Note that in the case of massless inter- Dt

faces and common lines, the energies per unit volume are - _ Z (@'aﬁvivaﬁij;B)ijjvﬁs a8 =wn,ws ns
still directly meaningful functions, while the product of i=a B

mass density times energy per mass must be evaluated in 5)

the limit as the density approaches zero.
The objective of this section is to provide the needed Macroscale energy conservation for thg-interface

balance equations rather than reproduce their derivation

from the earlier general wor¥. D*E*®

Dt

== > {EHE + (V2 + Thev? + Q)
i=a,B

—V(@*fq*) — (a*ft*® — E*%1):vvP — a2 poBped

2.1 Phase conservation equations

The balance equations for the three-phase system are essen-
tially unchanged from the general case with more phases. + E“%@‘,ﬁﬁ ijﬁs (6)
For the current study, each phase may have two different

kinds of interfaces at its boundary. For example, the phase iS5 3 common line conservation equations

bounded by some combinationwh andwsinterfaces. The

balance equations for the phases are as follows: The balance equations for the common line account for the

properties of the common line and the exchange of those
properties with the interfaces that meet to form the common
line. The appropriate equations for the case where there are

Macroscale mass conservation for thephase

o o o
M_,_eapav.va — Z &5 a=w,n,s (1) three phases, and thus only one common line and no com-
Dt f7e mon points, are as follows.
Macroscale momentum conservation for tag@hase Macroscale mass conservation for the wns-common line
o o DXV () — g Z 20 —wns Dwns(lwnspwns)
Dt € €ep g = & of a =W, ot + |Wnspwnsv_vwns= _ (é\vlms"i' GNW§5+ é‘r;;

) ()
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Macroscale momentum balance for the wns-common line

DWI’]%,WI’]S
Dt

>

ij =wn,ws ns

SWNS

g

|Wnspwns

_ V (IWﬂSthS)

IWnSan

(&4 T 8

Macroscale energy conservation for the wns-common line

DwnsEWI"IS .
o0 _ V_(lwnsqwnS) _ (lwnstwns_ EWHSI ):vans
_ |wnspwnshwns
B Z {ég\/ns[EIJ (VU wns)2/2] + Twns VIJ o4 Qevns}
ij =wn,ws ns

€

2.4 Entropy inequality

An entropy inequality has been derived for each phase,
interface, and the common line as discussed in Gray and
Hassanizadef? However, the entropy exchange terms
between the different components prevent the individual
inequalities from being particularly useful. The power of
the entropy inequalities comes in calculating their sum
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physical independent variables:

15 phase propertieg", p", pS V", v", FS, 6%, 6",

03

« 15 interface propertiess™, o5 0" v*", V"5, v™,
0Wn OWS OHS

« 5 common line propertiegi", v, §¥"

In addition to these quantities, six primary geometric inde-
pendent variables appear in the equations which account for
the distributions of phases, interfaces, and common line in
the system. These variables are:

ws
)

. ns | wns
1

6 geometric variableg;, s", a"", a

It is important to note that the six dynamic geometric vari-
ables, not present in a microscale formulation but arising at
the macroscale, provide an excess of unknowns over and
above the 35 primary variables that are associated with the
35 balance equations. The development of equations that
describe the dynamics of the macroscale geometry is a sig-
nificant challenge.

Finally, there are additional quantities appearing in the
equation that must be expressed as constitutive functions of
the physical and geometric variables. These quantities are:

75 functions from the phase equations:
Eal ta' -,I;zﬂi qa, Qzﬂy ﬁay ég[@: ¢a1 bay
a=W,Nns, ofs=wnwsns

60 functions from the interface equations:

such that the exchange terms cancel. The combined entropy

inequality for the three phase system takes the form:

A= Z{ Daﬁa o

+ 7%V = V(e*9%) — eo‘p“ba}

DzB AozB
+ Z{ + 71:9v*? — V. (a*?¢*P)
ﬂ ﬂ 18 ﬁ i DWnSAWnS
(o9 th a é
P | _Za ;s "Dt
+ ﬁWnSI :VVWnS_ V_(IWFIS¢WFIS) _ IWnSan%WnS
- nwns Z ei;vns =0 (10

ij =wn,ws ns

3 IDENTIFICATION OF UNKNOWNS

For the conservation equations to be useful in an appli-
cation, some determination must be made of the functional
forms of the variables that appear in these equations. In fact,
for the three phase system, there are a total of 35 conserva
tion equations (for each phase, interface, and common line

B A A .
18 Tone 48, Qfne 718, &5, 66, 0°%;

afl =ws wn,ns

E

15 functions from the common line equation:

2WNS wn:
(S

g

Thus to close the system and have a set of equations that
can be used to model the three phase system, there is a need
for 150 constitutive functions of the physical properties and
geometric variables, as well as the six additional relations
among the geometric and physical parameters. The consti-
tutive functions will be assumed to be expressible as func-
tions of the 35 independent variables, the geometric
variables, and gradients of some of these quantities.

WNnS AWnNs wns WnNs
/M M o

Assumption | The 150 constitutive functions may be
expressed in terms of the following set of independent
variables:

z={p", 0", 0% V" V", F% 0", 0",6°% 3", V0", V0", V6°, Ve,

VSW,an’p ,an an V ns 0Wn 0WS ons a a
VGWH VHWS VGHS Vawn VaWS VaﬂS Wns ans wns
= Iwns, VGWHS, VIWHS} (11)

there is one mass conservation equation, three momenturrinclusion of other variables in this list (e.g", V26" is
equations, and one energy equation). For these equationsgertainly possible, and may even be necessary in order to

the following 35 variables will be designated as primary

describe some processes, but the above list is considered to
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be adequate for description of the porous media systemsderived based on postulate (12). However, the goal of
under study here. Should the resulting equations prove to bethis work is to obtain a dynamic description of the multi-
incapable of describing a process of interest, then it may bephase system at the macroscale and the contribution of each
necessary to propose an expanded list of independentcomponent of the system to the dynamic behavior. For
variables. example, when not at equilibrium, phases, interfaces, and
Determination of the constitutive functions such that the common lines co-existing at a macroscopic point might not
equation system may be closed is certainly a significant task,be at the same temperature. Therefore, to describe such a
but one that can be accomplished with a combination of situation, it is necessary to decompose the functional form
systematic thermodynamic postulates, reasonable geometriof the energy given by postulate (12) into its component
conditions, exploitation of the entropy inequality, and parts at each macroscale point and treat those separately.
laboratory verification. The theoretical steps to be employed The path to such a decomposition is not entirely obvious
will be demonstrated next. and certainly is not unique.
One necessary part of the decomposition is to require that
the total system energy be equivalent to the sum of its com-

4 THERMODYNAMIC ASSUMPTIONS AND ponent parts from the phases, interfaces, and common lines
RELATIONS such that:
f:fw+fn+£S+EWH+ZWS+£nS+anS. (13)

One of the important challenges to obtaining a complete
theory of multi-phase flow is the postulation of the appro- The next step is to determine the functional dependence of
priate thermodynamics. Here, an approach is followed that each of the seven components. The most general proposal
is based on the key assumption: for such dependence would be to allow each of the compo-
nent energies to depend on the full list of extensive vari-
Assumption Il The dependence of energy of the phases, ables of the system, as in eqn (12). Although this
interfaces, and common lines on the independent variablesformulation is attractive because of its generality, it lacks
is the same function whether or not the full multi-phase appeal because it fails to dismiss negligible interactions
system is at equilibrium. among system components such that the system description
obtained is unnecessarily complex from a mathematical
This assumption, which means that energy is a function of perspective. Thus, an alternative more restrictive approach
a subset of the independent variables in list (11), may limit will be followed here for specifying the dependence of the
the theory such that it applies only to slowly changing energy on extensive variables that allows for some coupling
systems, but this is the case in most porous media flow of the thermodynamic properties of components, but not all
situations. An advantageous consequence of this assumptiopossible couplings. It must be emphasized that this restric-
is that some mathematically complex relations involving the tion may limit the general applicability of the theory, but it
dependence of energy on quantities such as velocity or tem-is proposed as a reasonable compromise among generality,
perature gradient which are of little physical consequence the need to relate the theory to a real system, and the
do not arise. The postulated dependences will be made withcouplings that are expected to be important. The assump-
the total energy being dependent on extensive properties oftion that will be employed is as follows:
the phases, interfaces, and common line. The postulates of
dependence of energy on the physical and geometric vari- Assumption Il A multiphase system is composed of
ables are made in a manner consistent with the philosophyphases, interfaces, and common lines which will be referred
of Callent? for microscopic systems but is more general.  to as components. The total energy of each component will
be assumed to be a function of the entropy of that compo-
4.1 System thermodynamics nent, the geometric extensive variable of that component,
the mass of that component, and the geometric extensive
For the system consisting of phases, interfaces, and thevariables of all microscopically adjacent components.
common line in which points are viewed from the macro-
scale perspective, the energy is postulated to be a function of Inherent in Assumption Ill is the restriction that compo-
the entropies of the system components, the mass of eactnents only impact the thermodynamics of other components
component, and the geometric extents such that: with which they have physical contact. Additionally, postu-
W N S WA WS NS WNS ~ W ~ N S ~ wn lation of the functional dependence of the macroscale
B=EETSS50S TS SRS TR M, M ML M energy of a component on the geometric properties of an
M, ", S M " VRES, 4, a5, 4, LY. adjacent component, but not on the mass of these com-
(12 ponents, is analogous to approaches taken by Li and
Neumann? and Hirasak® in their studies of films at the
All variables written in script are extensive variables. Many microscale. The thermodynamic dependence of the internal
useful relations describing the equilibrium thermodynamic energy of a component on the geometric properties of the
behavior of the multiphase system as a whole may be adjacent components is expected to be important only when
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the average microscale distance between points in eachMake use of the definition of the grand canonical potential:

component is small (e.g., in thin films or for highly dis-
persed phases, interfaces and common lines). In addition,

Qa: Ea _Oaﬁa _Hozeocpa.
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17)

the functional dependences obtained by Assumption Il and employ Legendre transformations #fh and e*p® to
must still lead to thermodynamic relations involving com- obtain:

ponent properties consistent with the thermodynamic
analysis of the system as a whole.
4.2 Constitutive postulates for phase energy functions

The dependence of energy of the fluid phases on their prop-
erties is postulated as:

QW (0W’ EW, MW, aWﬂ, aWS) I pWGW + CWWnaWI"I + CWWSaWS

(18a)

Qn (0[1, En’ ﬂn, aWI’]’ ans) — _ pnen + C\r;mawn + Cgsans

‘ZW — £W(5w’ ,VW,MW,/an,/(ZlWS) (l4a)

E"=2"(s", ", m", 2", ") (14b)  where
The solid phase energy depends on the state of strain of the  aQ%
solid® such that it is expressed as: 96

£°=E5(5°%, VoE®, M5, 4", 2™) (14c) 202

. . . . . —=—p° =w,n

The inclusion of a dependence on the interfacial areas in  9e P o
these expressions is a departure from the type of postulate Ao
made when a system is to be modeled at the microscale. o0 — S
This is to account for changes in energy that may occur  3(e°E%/)
when the amount of surface area per volume of phase is )
large. Additionally, note that the nature of a solid accounts 90 e
for its energy being postulated as depending on the state of  gu® P
deformation rather than its volume. From these equations, .
because energy is a homogeneous first order funétén, o0* _o
the Euler forms of the energy are: gaB Tk

(18b)

_ US:ESES/j + Ca/saws‘}_ CrS15anS

(18c)

(18d)

(18e)

(18f)

(18g)

(18h)

For eqgns (16a), (16b) and (16c), it is also worth noting that

their respective Gibbs—Duhem equations are:
0= ‘f)W dov — v de + epr d,u,w + ann dcwn + avs dC\%S

EW — OWSW _ pW(VW + MWMW + wanﬂwn + Cwsﬂws (15a)

fn — 0[15“ _ pn,Vn + MnMn + C\r)vn/qwn + Cﬂs/qns (15b)
and

'ESZGSSS— US : V8E5+ ILSMS+ Csvsﬂws_‘r_ CrS]S/,ZlI’]S (15C)

As an example, note that the partial derivativerdf with
respect to one of its independent variables, as listed in egn

(19a)

0=7"d6" — " dp” + €"p" du" + " ey, + ™ dch

(14a), is simply equal to the coefficient of that variable in and

egn (15a). Similar observations apply for all the phase
energies as well as the interface and common line energies
to be discussed subsequently.

Now convert egns (15a), (15b) and (15c) such that they
are on a per unit system volume basis:

EW(ﬁW’ EW, ewpw’ awn' aw3

Eﬂ(ﬁn, En' enpn, awn’ ans)

— onﬁn _ pnen + Mnenpn + C\I?\maWn + Cgsans (16b)
ES <'ﬁs, S S, GSpS’ aWS' ans)

=0%°— ¢° 1 B¥j + u°p° + cpd" + cpd™  (16€)

SES

0=7SdpS— €

WS _ ‘ZWS( SWS, J,z[ws, MWS, ‘VW, ,VS ES, Lwns)

,ZnS: ,Zns(ﬁns’/qns’ MHS’ ,Vn' ‘VSES,LWHS)

(19b)

E
j D de® 4+ %° du® + a* dcj s+ a™ dce

(19¢c)

4.3 Constitutive postulates for interfacial energy
functions

The dependence of the internal energy of the interfaces on
their properties are postulated as:

,EWH — ,EWFI(SWH'/,Z{WH' MWH, (VW’ (VH,LWFIS)

(20a)
(20b)

(20c)
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Here the common line length is included as an indicator ~ 5(*f o8

of the length of the boundary of the interface, a measure of qaB Y (24e)
whether the microscale areas are small and distributed or

large. The inclusion of the volumes of the adjacent fluid 908 o8 af

phases and the strain tensor of the adjacent solid phase adds au_ag: —ap (24f)
generality that may be important when the amount of

volume per area is small. The Euler forms of the energy ;o8

equations are: P cf (249)
EWI’] — 0WI'15WI'1 + ,ywnjqwn + ILWHMWI"I _ CWWI"I(VW
aQes us
— M Gl (212) P =T R (240
£WS= 0W55WS+ WSﬂWS_’_ ,U,WSMWS_ CWWS(Vw Aaﬁ
’ = b, (24i)
— " VGE® — o™ (21b) alwns
hs nsns - meens . nseons  nson From eqns (22a), (22b) and (22c), the Gibbs—Duhem equa-
EW=0"S" 4" W — tions for the interfacial energies are obtained, respectively, as:
— 0" VHES — e L™ (21c) 0= ﬁwn do"" 4 g"n d,ywn 1 g"mpwn Mwn _v dcwn
Conversion of these expressions to a per-unit-volume basis — " dc)" — 1" dcins (25a)

whereE*” is the energy per unit volume of medium gives:
0 — ﬁWS dOWS + aWS d,yws_’_ aWSIOWS d/.LWS _ GW dCWWS

e€E®

AWn AWN /A
E — E (TIWH' awn’ aWanﬂ’ EW, en' Iwns)

= """+ 4" a" - A — e - 5"t dal (25b)
— e — gy (22) Lo
B = E"5 (75,8, a5, ¢, B}, 1"™) 0= 7" d™+ 2" o™+ &"%" du™ — " A"
= 070" " R - e _EE ggns_puns dcls.e (25¢)
— ¢SS — clisgvs (22b)

EHS: Ens(ﬁns, a_ns, a_nspns’ C_n' esEs/j, Iwns)
4.4 Constitutive postulate for the common line energy

— onsﬁns‘i‘ ,Ynsans_i_ “nsanspns _ Cﬂsen function
— 0" ESESj — IS NS (22¢)

The three-phase system under consideration may have a

Make use of the definition of the grand canonical potential common line, but no common points. The dependence of

of the form: the internal energy of the common line on its extensive
O _ g _ Baﬁﬁaﬁ _ Maﬁaaﬁpaﬁ (23) variables is postulated as:
) ) ) EWHS: fwns SWHS, LWI”IS, MWI’]S, /,len,/qws'/qns 26
and Legendre transformation of the independent variables ( ) (26)
g p
7*? anda*®p** to obtain: The Euler form of the common line energy equation is:
~ WNS __ pWnSs wns_ wns -wns WHWWHS Wns/qwn
an(()wn’ g W W N, Iwn% ETP=0T78 YOLT T+ + Cwn
— WGV _ cWNW g jwins ((24a) + Chasa"S - chrsgs 27)
A Conversion of this expression to a per-unit-volume basis
Q0" @S, u"s, €, °E%j, 1) whereE"™ is the energy per unit volume of system gives:
— ,ywsaws_ wasew — oS esEs/j _ waﬁ wns (2 4b) EWHS: Ewns(ﬁwns, |Wns, |wnspwns, awn, aws7 ans)

Qns(ons, a™, Mns, e, eSES/j, |Wn9) — 0WﬂSﬁWﬂS_ ,Ywns1wns+ Mwnslwnspwns+ Cwﬂsawn

— "5 _ SN NS 1 SESj — S WS (24c) +cped" +cpga™ (28)
where Make use of the definition of the grand canonical potential:
8@0‘6 ans: EWHS_ Gwnsﬁwns_ ’uwnslwnspwns (29)

g =i (24d) . .
268 and apply a Legendre transformation to the variahlés
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and """ to obtain:

ans(ewns' Iwns Mwns awn aws ans)

_ ,Ywnslwns+c\%zsawn+ Cwgsaws_’_c\'lwvsns ns (30a)

where

a@wns .
g fHms (30b)
aﬁwns
W = — ’YWFIS (SOC)
a@wns
auwns: _ |Wnspwns (30d)
a@wns
= (30e)

The Gibbs—Duhem equation for the common line is

obtained from the differential of eqn (28) as:
0 _ ﬁwns deWr‘IS |Wns d'YwnS+ |Wns wns dﬂwns+ dCWWI"IS
- n
1 deg+ o™ A @D

WNSAWNS WNSpywns wns wns
D SSZ AwnsD 0 + IWnSanSD

~ eS| Dt Dt Dt

1 (IWnSthS_ QWHSI) : deS

GWI’IS

- Z ewns \7\1[:13 o wns_ Z Z 0a6 aﬁ'va’aﬁ

a BFa

+

o o
€ o o a « (67
+ > o ZB 5 °.v6°°
Iwns qu
wns wns o o
- S (o= )
afs wn!
— ZB: V.| a® <¢a6 _ 37{3) _V. l:lwns<¢wns_ gwn:)}
of
-y [e (b“ - —ﬂ la“ p*? <b"/3 - ';Tﬁﬂ
[0 af
_|wns Wns(bwns_ hwns)
[y 0WnS

The grand canonical potentials developed above are useful
functions for incorporation into the entropy inequality so
that some information concerning constitutive functions
may be obtained. They will be expanded in terms of their

aﬂ roooz o8 apo, af o, af a2
-2 = LA (v“ )
aB#aea

independent variables in the next section.

5 EXPANSION OF ENTROPY INEQUALITY
FUNCTIONS IN TERMS OF INDEPENDENT
VARIABLES

QO‘B 0“6 wns naﬁeaﬁ,wns

Z ewns

1
+Maﬁ,wns+ E(chﬁ,wns)

Z Z P oagQaB

a fFa

0a6, wns of

The grand canonical potentials have been defined in eqns — goB gwns wns = 0 (32
af

(17), (23) and (29). The material derivatives of these equa-

tions are calculated and then used to eliminate the materialAn alternative to substitution of the conservation equations
derivatives of entropy in egn (10). Then the mass and energyinto the entropy inequality was proposed by $iwhereby

conservation equations are substituted in to eliminate thethe conservation equations are multiplied by a Lagrange
material derivatives of mass per volume and internal multiplier and added to the entropy inequality as con-

energy per volume and obtain the following form.

Entropy inequality for three-phase system

DO(QO{ DOZGO( o o DO(MOI
s rep

Dt Dt Dt

+Z ata ):da

aB Aol af paf af of
5 0°f| Dt Dt Dt

P e

straints. A variation on the Lagrange multiplier approach
has also been used by Murad al® with success in the
study of swelling clays. However, the eventual results
obtained using the Lagrange multiplier approach in the
current study would not be different from those obtained
using the substitution approach.

To exploit egn (32), it is necessary to expand the material
derivatives of the grand canonical potential in terms of
the independent variables. This is done in Appendix A
for the phases, interfaces, and the common line taking
into account supplemental information provided by the
conservation equations. Substitution of the expansions pro-
vided by egns (88), (93), (96), (99) and (102) into entropy
inequality (32) provides the form of the entropy inequality
consistent with the thermodynamic postulates employed
thus far:
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Entropy inequality for three-phase system

65 o,s O_WS 0_r| T

+%[65t3—ff|]}:d3+ > Ha(e"‘t“ Q1) 1 d*

a=Ww,n

+ Z o (a“ﬁt“‘;
af

Q1) : d*
awns(lwnstwns
pot DSE(X

3 (z50)5%
(O ) (B D
pws ons 63 ) J Dt

a=w,n
Z Cﬁ wns D& afd
B —+—+9m+076 Dt

QWI’]SI) deS

Civms | Coms . Chms D"
+ gwn gws ons owns Dt
1
I B SRR LA
a=w,n
1
_@mvmgthdm_{mwkw_dwvg_4ﬂkwwﬁ
1 SES
_ Z EVO(S’ s, |:’yasvaas _ CgSVCa _ ODLS -V < € : )
aZwn 0 :

wns s_[

1
— CWns |Wns:| _ 6Tnsv _ ,ywnswwns_i_ cWWRSVaW“

ozB o
+ CWSSV + CnsnsvanS] Z Owns TonsV B, wns

o, Q e a «
- Z Z 0aﬁ Tas v + % )2 Vo

wns

(0WI‘15)2

Wns_vowns

_|_

of
af af
% (eaﬂ)zq VG +

Rl
()
e ) 2o
Sl )

|wns wns( | wns h""
- [ - gwns

q

Qaea o8 apa, of o, of Lo\ 2
—ZZM + %% + p0 o (V“ )

a BFa

QO‘B@&B wns nageaﬁ,wns

Z OWFIS

1
+ Maﬁ,wns+ E(Vozﬁ,wns)Z

Z Z 6« eaﬁQaB

a B#a

0a6, wns

% =0 (33

0a50wns wns

At this point, simplifying assumptions will be made that
impose some restrictions on the dynamic system behavior,
but nevertheless leave the system sufficiently general to
describe many physical realizations.

Assumption IV The fluids and solid are assumed to form
simple thermodynamic systefisuch that:

qu hOl

¢“—0—a=0; ba—(,—a=0 a=W,n,s (34a)
qozB haﬁ
6 — WZO; b — 076:0 aB=wnwsns (34b)
and
anS hWnS

9"~ Jime=0; b~ 0 (34¢)

ewns:
These relations are appropriate for many systems, but will
have to be modified in the future when considering multi-
constituent phases.

Assumption V Any changes in temperature are assumed
to occur slowly enough that the temperature at a macro-
scopic point in the system is unique (i.e., the phase, inter-
face, and common line temperatures at a point are equal).

Note that this restriction does not preclude the existence
of temperature gradients in the system or restrict the study to
isothermal cases. It is a reasonable assumption for systems
in which the dynamic changes are occurring slowly enough
for the temperature to locally equilibrate.

In addition to these assumptions, some identities and defi-
nitions will be used to reorganize the terms involving mate-
rial derivatives of void fractions and interfacial areas. First,
recall that the void fractions of the phases may be expressed
in terms of the porosityg, and the saturations of the fluid
phases according to:

Ee=1—¢ (35a)
€' =9 (35b)
€'=9"e=(1-5"e. (35¢)

These identities indicate that only two parameters are
needed to identify the void fractions of the phases. In
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addition because the three phase system consists of a very _ Z VoSS, [fﬁvis—fis—fisﬂ“SVa”S— Ve
slightly deformable matrix plus the wetting and non- a=wn
wetting fluids, it will be convenient to replace the two
variablesa" and a™ by the variablesx{®* and a° in the
material derivative of a fluid solid interfacial area where:

as e€E° as gywn
— o™V J— _CWHSV| S]

=a"ta® (36a) — V"S5 — Ting— Tins— Tims — ¥""VI""

and +cinval+ V" + VA + Y S v
xS =a%a®=1—x" (36b) @

It must be emphasized that this change in geometric vari- 4 Z iﬁqaﬂ_VQ_’_ &nsqwns_ve

ables in no way diminishes the generality of the formula- i 6

tion but is convenient in considering the internal geometry
of the system.

Application of constraints (34a) through (34c) to entropy
inequality (33), multiplication by the single temperature,
and use of the alternative geometric variables as convenient
restates the entropy inequality as follows.

S WAITEURS el

a B#a
1
- Ze%ﬁs[w — ")+ E(v“B*W”%Z} =0 37
af

This form of the entropy inequality is still very general, and
contains significant challenges for determining the appro-
priate balance equations, at least in part because of the
interactions among the phases, interfaces, and common
lines as accounted for in the thermodynamic postulates
that lead to thec’ coefficients. An additional complicating
factor lies in the absence of enough equations to completely
determine the system. As was mentioned earlier, equations
for the geometric parameters are needed but not available.
Nevertheless, this inequality does provide a path to appro-
+ Z(aaﬁtaﬁ — QB1):do® 4 (1NN _ QWNSy )z NS priate forms of the governing conservation equations for
of certain conditions that will require experimental support.
However, it is useful to consider some of the features of
the inequality and discuss how it might be employed most

Uni-thermal entropy inequality for three-phase system
GS
OA = { j—[aS + 6"+ " [(Vi F)(Vi FS)T — E¥1]

+ et — 08l }:d3+ > (et —0%):d”

a=Ww,n

s
_ |:(US+0WS+Un§:Ej——SW(C\%S—FCVW\m-f—pW)

effectively.
n n n D%
—s'(e’+ e+ p )] Dt
cw 6 CONSIDERATIONS FOR THE ENTROPY
n D’s INEQUALITY

—e[(ecp’+ ey +p") — (e + a4+ pY)] Bt

wns Wﬁ

RS S OIS 1y To facilitate this general discussion of the entropy

inequality, a notationally representative form of eqn (37)

DSaS .
X A €S+ G4 )] will be employed that accounts for all the types of terms

Dt encountered, but leaves out the complete superscript
ATV S gWns o w notation and assumes summation over repeated indices.
(s + Cus + Cus™+ ™) First, it can be shown that summation of the component
D3x{® grand canonical potentials gives the system grand canonical
(Cn +CS +Cwns+ I'I%]
— \bns ns ns TV ial
Dt potential:
(Gt it iy 2T 0=0"4+ 0"+ 0%+ 0"+ 0" 4 0+ 0" (38a)
Dt whose functional dependence, for the unithermal case, may
De be expressed as:
+ (C\\xﬂs‘i' C\%rsw"" C\r/]vsns"i' ,ywns) '
Dt Q= Qw MW Mn MS Mwn MWS Mns ”wns Es/j
— > VTt Tos— Ve + civa™

a=w,n
~Awn AW ~n
+ Cgsvaas] - VWn'S'[Twns_ Town—Twn+ ,Yanawn

— Ve — Ve — I

€,8",a%,x"s, a", 1" (38b)

The Lagrangian time derivative ¢f moving at the solid
phase velocity taken while holding the first nine variables
listed in egn (38b) constant (i.e., the temperature, chemical
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potentials, and solid deformation divided by the jacobian) determined. Typically, such a full representation will not
can be shown to be equal to the sum of the six terms be known, however, and the parameters will be specified
involving material derivatives in egn (37). Thus the entropy based on experimental measurements of specific processes.

inequality in outline form is:

SA
OA=b":d" —v"Se" + 9y — D™
0 Dt ev[.ti,ES/j

(39)

where summation over the repeated indicesand r is
presumed with these indices taking on the values, s,

wn, ws ns wns the notationy' indicates that all seven of

—f&,=0

Although these three equations can be imposed as addi-
tional constraints on the system, a three-equation deficit still
remains that must be overcome to deal with the terms
D%/Dt, D°s"/Dt, and D°x¢*/Dt that survive in the entropy
inequality. Note, however, that if more precise balance
equations for the material derivatives of the geometric
quantities become available, the final system of governing
equations for porous media flow can be improved or made

the chemical potentials are being held constant when More generally applicable.

evaluating the Lagrangian time derivative; and e™, q,
and &, are functions of the variableg, in list (11). It is

With the geometric constraints incorporated, exploitation
of the entropy inequality will make use of an assumption

useful to note that each of the terms in this equation will be conceming the remaining three time derivatives of geo-
zero at equilibrium. An important obstacle to proper exploi- Metric quantities. This may be stated as follows:

tation of the inequality is the equation deficit that has arisen

because of the geometric variables. The absence of Assumption VI Three additional balance equations for

additional equations in terms of the six geometric variables the geometric quantities involving their material deriva-
is the reason the time derivative of the grand canonical tives, although unknown, are such that they do not alter

potential remains explicitly present in the entropy the terms in the entropy inequality of the forbi"d™,

inequality.

v™s.e™ q-ve, andf €.

Balance equations in these geometric terms are needed

but, at present, are not definitively available. However,

This assumption may seem rather speculative, but, in fact,

some approximations may be made that allow one to it is operationally equivalent to stating that the equation
proceed forward to obtain reasonable approximations. Thedeficit may be overcome byscgnsuderlng ;nv?sar equilibrium’
derivation of the approximations used here is found in conditions such thab®/Dt, D°s"/Dt, andD s /Dt may be
Appendix B. The procedure is based strictly on the applica- t8ken as being proportional to their multipliers in the
tion of averaging theorems to the geometric regions with no €Nropy inequality. The physical basis for making this
consideration given to thermodynamic constraints. The fol- @SSumption is the expectation that the changes in the geo-
lowing three relations are obtained which can be used to metry of the phases, interfaces, and common line should not

eliminate D°a*Dt, D®a""/Dt, and D®""9Dt from the
entropy inequality:

D%° _ D%
= 4

Dt  “° Dt 0 (40)
Dsawn DS w S,WS

o — Jivne o —a’cosd Dts =0 (41)
DSIWnS ws sDSX\éVS

a——=0. 42
Dt %9 ¥ Ty (42)

have an impact on the mechanisms of heat transfer, mass
exchange, or stress within each of these regions. Certainly,
if the results obtained under the limitations of this assump-
tion turn out to be without merit, an alternative strategy will
have to be developed for overcoming the lack of governing
equations.

The impact of Assumption VI is to allow the exploitation
of the entropy inequality to be separated into two primary
steps. The first step involves determination of the conserva-
tion equations for the system. This step makes use of the
following observations and manipulations with respect to

A difficulty with these three relations is the fact that four eqn (39).
new variables are introduced relating to the macroscale
average curvature of the interfac €or the solid surface .
as defined in egn (108); anty), for the interface between

the fluids as defined in egn (126)), a macroscale measure of

the contact angl@ defined in eqn (137), and a macroscale
measure of the geodesic curvature of the commondjfie

as provided in egn (145b). It should not be surprising that
such parameters arise as they account for the way that -«
microscale differences in geometric structure evidence
themselves at the macroscale. In Appendix C, the relation-
ship of these four variables to thermodynamic quantities are
developed based on material to be presented subsequently

in the main body of text. Thus, if the equilibrium functional

form of the energy is known, these coefficients can be

Because the symmetric rate of strain tenstitsfor

all m are not included in list (11) as independent
variables of the system, the entropy production may
not depend on these quantities. Therefore each of
the quantities in eqgn (37) representedtdyin egn
(39) must be zero.

Each of the quantities in eqn (37) represented"as
(i.e. the quantities that are dotted with velocity vec-
tors) will be zero at equilibrium. A truncated Taylor
expansion of these quantities in terms of the inde-
pendent variables of the problem provides an
approximation fore™ as being linear proportional
to the relative velocities (with respect to the solid
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phase) of componerrh and of the components of |wnswns _ Gwnsy

the system that are in contact with Although the WRSWNS  WNSWN . WNSWS . NS
quantitiese™ would also be linearly proportional =(=7"1"+ quna™ + cusa™ + crd @™l

to V6, this effect is not considered in the present (43e)
derivation.

The terms that multiply the velocities in inequality (37) will
be zero at equilibrium. Therefore, the following definitions
apply where all ther, quantities are zero at equilibrium:

e The heat conduction vector, is zero at equili-
brium and is proportional t&/6 when determined
from a truncated Taylor series expansion. Depen-

dence ofg on the velocities is not considered her-e. 7%= (T TO) 4 p Ve — ¢, Va — ¢ Va®s
« The mass exchange terngs, are each zero at equi-
librium. Under the assumption that each term is a=W,n (44a)

dependent only on the state of theandr compo- wn AW =N WO e wn . i w
nents, a truncated Taylor series expansion allows 7v =Twn+Tun—Tuns— 7" V@ +Cy Ve

each term to be expressed as proportiond;to + VY 4 Ny NS (44b)
The completion of this step provides governing conserva- s fa  as  sas o as <
tion equations with constitutive coefficients. 7 = Tas+ Tas— Tuns— v VA" +Co Ve
The set of equations, however, still must be closed in a SES
second step that provides three auxiliary conditions for the + 0% V( j ) +cneV!"™  a=w,n  (44c)

rates of change of the three geometric properties that remain
in the entropy inequality. As mentioned, these terms will be wns__AWN | aws | =ns WNSgWNS WSy ,Wn
obtained by linearization at ‘near equilibrium’ conditions in 7= Tuns Tuns + Tuns+ 7" VITE — G VA
terms of their multipliers in the entropy inequality. Again, it — chivas — giiva (44d)
must be emphasized that the relations developed in this
second step will be approximate and subject to improvement
in the future.

In the next section the first step will be implemented
to develop the equations of mass and momentum conser- q=¢"q" +¢"q" +°g°+a""g"" + a"*q"*
vation. For simplicity, the energy equations will not be + &g 4 NS (45)
written explicitly as emphasis will be focused on the ’
flow equations. The energy equations may be obtainedFinally, the quantities that multiply the phase exchange
directly by substitution of the constitutive forms into the terms must also be zero at equilibrium such that the

The summation of terms that multiply the temperature gra-
dient in the entropy inequality will also be zero at equili-
brium. This sum is denoted apsuch that:

general expressions. following quantities may be defined, which are zero at
equilibrium:
o o o 1 o
7 MASS AND MOMENTUM BALANCES %=y B _ o E(Va, 8)2 (46a)

The development of the conservation equations will proceed 1

according to step one as outlined above. Because none of the 788 = Wns_ b _ Z(08wn92, (46b)
constitutive functions are considered to depend on the sym- 2

metric strain tensors, the coefficients @ff, d*’, andd""s  Substitution of eqns (43a), (43b), (43c), (43d), (43e), (44a),
must be zero. From inequality (37) and the expression for (44b), (44c), (45), (46a) and (46b) into inequality (37), with
the grand canonical potential in eqns (18a)—(18c), (24a)— the terms relating to the material derivatives of the geo-
(24c¢) and (30a), the following forms of the stress tensor are metric properties expressed in terms of the material deriva-

obtained: tive of the grand canonical potential yields the following.
€t = 0% = (= pe* + curd"" + C52™) a=w,n The residual entropy inequality
(43a)
A S 0A = Z VSl + Z VOBiS.70B |\ NS s, pwns
=0 — j—[as + 6"+ 6™ : [(VxF3)(VxF)" — E®I] a=wn B
43b 9y, D0 o o
(430) toVi- o DI
QVngwn _ gwn) _ (NN QW wnen _ cwn jwins) 0, ™, E%j o fto
(43c) + Z e\?(vﬁST\(;\(/ﬁs = (47)
aff

aastaS: Qasl — ozsaozs _ CozSEa _ ESO_O(S : ES/ __ QS wn I ) .
v “ i = ind™) As a consequence of these relations, some of the constitu-
a=w,n ((43d) tive forms required in the conservation equations may be
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deduced. Here attention is focused on the mass andMacroscale mass conservation for the wns-common line
momentum equations for the fluids and the interfaces. Sub-

stitution of the definitions in eqns (43a) and (44a) into the ~ D"™(""%""™) WS WNST WIS (@Wn | AWS | ans
phase mass and momentum conservation equations yields Dt T ~ (Bans Guns Ean
the following. (52)

Macroscale mass conservation for thephase Macroscale momentum balance for the wns-common line

DO{
(|; ) € aV Ve = [;y o =W, N (48) |WnspwnsDwr;tlwnS+|wnsv,ywns_awnvcwgs stc\vzgs
_ nSVCxISnS |WnSanSanS
Macroscale momentum conservation for the i iwns_wns
a-phase = Z EunV" T — Ty (53
ij =wn,ws ns
oy O
e*p” ot e*Vp* —a""Vey, — a*Vels Consider a linearization of residual entropy inequality (47)
whereby each of the quantitie$ is obtained from a Taylor
—e%g*= -1y a=w,n (49 series expansion around the velocity terms for phases, inter-

For an interface between phases, the form of the mass/aces, and common lines with which timgth part of the

conservation equation is the same regardless of the typeSYStem is in contact. Movement of a phase with respect to
of interface. Thus, the mass balance equation is as in egn the solid will be resisted due to viscous effects. However,

). movement of any of the interfaces adjacent to that phase
will tend to encourage movement of the phase; this
phenomenon has been called a viscous coupling effect by
Rose™ Therefore, the linearizations are expressed as
D (a2 po%) 5 s 5 follows y\{here it might. pe expected that all t'he coefficients
———+a"p*VV are positive semi-definite tensors and the impact ofrthe
coefficients will be less than that of the terms:

Macroscale mass conservation for tag-interface

Dt
— (& +€&,)+&ns aB=wnwsns (50)

wn,
7y = R*W° —roeveSS —ry S

a=Ww,n (54a)
For the fluid—fluid interface, the constitutive relations of

importance are given in eqns (43c) and (44b) while the  wn_ gwnywns_ pwnyws_ pwnyns_ pwn
constitutive forms for the fluid—solid interfaces are given (54b)
in eqns (43d) and (44c). After application of these expressions

to egn (5), the momentum balances are of the following form. 705 _ ROS /0SS
s —

Wwns s

_yos Wwns s
o

VS iV a=w,n (54c)

Macroscale momentum conservation for the Ty o= RWISYWISS _ phSyWILS WIS\ WSS Sy NS S
af-interface (54d)
wn wn DYV e wn . wewn - e wn Note that in obtaining this expression, the possible expres-
ap Dt atVy T4+ eVey eV sion of 7' as a linear function oV has not been included.

junoyqun__ g, wncn _ Z g yiin _ If the t(lamperature'grad.ient is high, an additional term
ns™ n v expressing proportionality to the temperature gradient

= (51a) may be a needed addition to eqgns (54a), (54b), (54c) and

(54d). Similarly to the neglect of dependence of velocity

and deviation terms ofvVé, the dependence of the heat conduc-

as, oS SES tion on velocity will also be considered unimportant. Thus

a“Sp“ST— Vy* + Ve + — 1 Vo*° the linearized version of the heat conduction vector will

J be:
wn OzS aS oS
+1 S’VCwns I_Z);. SéWnV —Tv q=K-Vé. (55)

@=W,Nn (51b) For use in the energy equations for the phases, interfaces

and common lines, the linearized heat conduction vectors
For the common line, the constitutive relations of impor- of each component may be taken to be similar in form to
tance are given in eqns (43e) and (44d). These do not alteregn (55), each with its own conductivity tensor.

the mass conservation equation for the common line so that The terms&}, andé&™’ associated with phase change will
the flow equations are as follows. also be linearized as functions of their coefficients in the
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entropy inequality. Interactions between competing mass Macroscale momentum conservation for the
exchange processes will be assumed to be negligible suchy@-interfaces
that cross terms may be neglected to obtain:

éaﬁ _ L"‘BTO‘B (563) awn(v,ywn 4 pn wn) envcmm _ |wnsvcw25
and — RWN\WS _ rwn_vw,s _ l,\r/1vn_vn,s _ rwﬂs_vwnss (63a)
é\%ﬁs— L\lfxvﬁsT\(/Xvﬁs (56b) aaS(V'yaS + pasgas) _ Eavcgs _ ? S VoS — Iwnsvc\(fvfws

Note that if thea interface is massless:
— ROS.,\0SS _ (aS\ xS __  aS | WNSS a=w,n (63b
aﬁ + éiﬁ — 0 (57a) o wns ( )
and the linearized expression for mass exchange becomes:

Macroscale mass conservation for the wns-common line

&5 =Los(r25 — 7o) (57b)
If the wnscommon line is massless: D™(1"%™™) - [Wnsjwnsgy  wns
s+ éwwns+ nsns: 0 (583-) Dt
i _ Z L Wr'IS Ot ) (64)
such that only two of the expressions for mass exchange
between the interfaces and the common line are indepen-
dent. Thus, the linearized exchange terms may be expressed
. Macroscale momentum balance for the wns-common line
as:
ns
s— L& ns(Twns Twn afS =wn,ws (58b) _ Iwns(v,ywns_ pwnsgwnS) +av C\vl\\;ns
If both anaf interface and the common line are massless, WSy IS | sy s
then:
— RYNS,\Wnss _ rwgs_vwn,s _ rwgs_vwss _ r\rqvgs_vnss (65)
&ins=0. (59)

Substitution of the linearizations provided by eqns (54a), The residual entropy inequality

(54b), (54c), (54d)—(56a) and (56b) into the mass and

momentum conservation equations of the last section and p, _ Z VO SRy ®S ZvaB,S_RaB_VaB,s
into the residual entropy inequality, as appropriate, and a=w.n B

neglecting advective terms, terms involving velocity

i + ans S_RWnS_VWHSS
squared, and the impact of phase change on the momentum
equations yields the following. _ Z z VS 4 (re8)T b
a=W,NB+*a

Macroscale mass conservation for thephase
Zv“ﬂ S[raBe+ (rig9 T Vs (Vo) K Vo

D*(€*0”) & oo .« @ [ a
Top eI VY= 3 L — ) a=win 5 LS _ a2
f7a + 2 D Laglu® _"]+ZL —#
(60) a f+a
D%
_ =0 (66)

Macroscale momentum conservation for tagphase t
0, u™, ES/j

— €*(Vp* — p*g™) +a"Vein + a*Veys

Qas, S

If desired, Gibbs—Duhem eqn (19a) or egn (19b) may be
— oV (62) substituted into the phase momentum eqn (61) to obtain the
alternative form:

o ,0,S
=R*Vv*® —rgev

Macroscale mass conservation for thg-interface — (0 + V0% — p%g%)

D3 (g8 ,B —RYW*S _ re WOSS e\ wns —w,n 6
(Dt p )+aa6paﬁv_vaﬁ S wn (&3 (67
o L% — )+ LE X o _ B Similar substitutions of Gibbs—Duhem eqns (25a), (25b) and
N op # K K (25c) may be made into the corresponding interface
wns _ab _ momentum eqns (63a) an . For the case of a massless
+ LB )  af=wnwsns (62 (63a) and (63b). For th f |

interface, only the term involving the temperature gradient
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will survive on the left side of the interface momentum Each of the time derivatives in this equation will be zero at
equation after this substitution has been made. For theequilibrium. If they are linearized in terms of the velocities
common line, Gibbs—Duhem egn (31) may be used to and the temperature gradient using Taylor series expan-
express the driving force for the flow as found on the left sions, the coefficients that appear in the expansion will be
side of eqn (65) in terms of the chemical potential, gravity, vectors. Because such coefficients must be isotropic, and
and the temperature gradient. If the common line is mass-the only isotropic vector is the null vector, the time deri-
less, this chemical potential and gravitational terms will vativesD%/Dt, D°s"/Dt, andD®x¢ /Dt cannot be linearized
drop out. In the remainder of this text, the momentum as expansions in terms of vector quantities. The simplest
equations in terms of the chemical potential will not be linearization approach is to require that the coefficients of
examined. each of the three derivatives as given in eqn (68) be zero at
In eqns (60)—(66), the scalar coefficiehtghat appear  equilibrium and assume that each derivative is linearly
are non-negative. When the solid material is isotropic, the proportional to that coefficient. A more general approach
flow resistance tensors are diagonal such Ehat Rl and would involve each derivative being linearly proportional
r = rl. Egns (60)—(65) are a set of 24 equations. If the to all three of the coefficients, but this will not be employed
thermodynamic constitutive forms for the energy of the here. Therefore, the following linearized relations are
phases, interfaces, and common lines are available suctassumed to apply:
that the chemical potentialsi), interfacial tensions+), DS

pressures ), and component interaction terms) (are LEFte: — (6" 4+ 6™+ 6% : E¥j — 8" (c’+ "+ pY)
known as functions of the primary variables, these 24 equa- s wn o n cwsw s wis  w
tions contain 30 unknowns (6 densities, 18 velocity compo- —s(cn*+cn" +p") — Joxs (cws + Cus - Cws + ™)
nents, and the 6 geometric parameters). Thus solution of B (U LWL (69)

these equations requires that information about the geo-
metric parameters be available in the form of six equations wD%"

or constitutive forms. Three of these six restrictions have ~ Ls 5= —el(er’+ " +p") — (G’ + " +p")
been approximated as egns (40)—(42). The remaining set of W n whs . wn
three equations will be developed based on the entropy + Jwn(Can + Cwn + Cwn +77)] (70
inequality (66) and the thermodynamic postulates. Dy
Lye=2 = — al(Cle G+ G+ 1)
8 SUPPLEMENTARY GEOMETRIC CONDITIONS — (Cns+ Chs+ Cha>+ ™)

\'" n wns wn
The material derivative of the grand canonical potential that + (Can + Cun + Cun”+ 7 7)COSP
appears in eqgn (66), which is equal to the sum of all the + (Cwns+ Cwns+ Cwns+ 7" kg | (71

terms in egn (37) involving time derivatives of geometric . . . .
properties, can now be employed to obtain the required threel.n these three equations, the multipliers of the time deriva-
tives must be non-negative to assure that the entropy

additional conditions to close the system. Expansion of this . lity i t violated. At ilibri the right sid
term and insertion of the constraints provided in eqns (40)— Inequality 1S not violated. equilibrium, the right side

(42) provides the following identity which can be substi- of each of these equations is 2€r0. Th.e dgnvaﬂon n
tuted into residual entropy inequality (66): Appendix C relates the geometric quantities in the right
’ side of these equations to thermodynamic definitions such

D% _ :
_ — _ [(O'WS+ ans+ US) : ES/J that
0, 4™, ES)j os 9a°
J@,e)= — | — ) (72)
_ SW(Cws_'_ Cwn + pW) _ Sn(CRS+ C\[{]Vﬂ + pn) 86 9, Mm’ ES/j‘awn’ |wns’ SW, ngs' Q
B JSX&VS(C&S—F C§VS+ CWW23+ ’YWS) ‘]VV\\I’n(Swi awni ngs! asv 6) = }(aawn)
s ns,n S wns N DSG € GSW 6, u™, ES/j, €, @, XU, [WnS, a
— JsXs (Cns+Cps+ Cns +7¥ S)] ﬁ (73)
—e(er+ e +p") — (o +p") w o ws s 1[0
DSQ cog®(s’,a ,xs,a,(-:)]zgS W D g e
W (W n wns | _wn ™ ES, 8", e, 25
+ Jwn(Cwn + Cun + Cun +7 )] Dt (74)
— (st s+ s +7"™) — (Crs F Crs+ Cns ™ +7™) 1/ g
w n wns wn KWS(X;V S 1S, as) = — = L (75)
+ (Cwn +Cun+Cun +7v )COS‘I) 9 as (")Xg/S 0, 4™ ESfj, <, ¢, 85, O
DSyWs _ _ _ .
FE Qs s ’ywnS)K\éVSJ s (69) Thus eqns (40)—(42), (60)—(65) and (69)—(71) constitute a

Dt closed set of equations that can be used to model two-phase
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flow in porous media. To demonstrate the utility of the Macroscale mass conservation for thephase
equations, an example of a simple system that they describe

will be presented. (Dt )+ p*Vv* =0 a=w,n (76)
9 EXAMPLE: SLOWLY-DEFORMING SOLID; NO Macroscale momentum conservation for thg@hase

PHASE CHANGE; NEGLIGIBLE INTERACTIONS

—*(Vp* — p*g*) =R*v**® a=w,n (77)

This example is presented so that the assumptions needed to
simplify the general equations to those commonly used in

multiphase porous media models will be explicitly identi-

Constitutive equation for the fluid—fluid interface

fied. Heretofore, the assumptions have been intrinsic to the s.wn DSV DSy
model and thus paths to improved models based on relaxed — Jon€ o a coséTthz 0 (78)

assumptions have not been apparent. The first set of assump-

tions to be applied are the following.

o Constitutive equation for the common line
The system is isothermal such that the dependence

of equations and coefficients on temperature need  psjwns
not be considered. Dt
Transfer of material between phases is negligible.
This is enforced mathematically in the general
equation set either by setting the phase change
terms € and &) to zero or by requiring the DS

chemical potentials of the mass in each of the L¥——- TR —e[p" —p" + iy (80)
phases, interfaces, and the common line to be equal.

The interfaces and common lines are taken to be

masslessg®® and p"™ are zero). This assumption Constitutive equation for wetted fraction of solid surface
eliminates the need to consider the interface and

common line mass balance equations in the stD Xs = ATy S cosI>+:<‘éVS wng (g1
formulation. Dt

The surface tensions of the interfaces and the lineal
tension of the common line may all be treated as
constants. This assumption eliminates the need to
consider the momentum balance equations for the
interfaces and common lines in the formulation.
The velocities of the interfaces and common lines
do not impact the phase velocities such that they
can be neglected in the flow equations for the
phases. This assumption allows the terms on the 0 ara
right side of flow eqn (61) with resistance coeffi- o =p"(p") a=wn (82)
cients of the fornr s to be neglected. Functional forms must be available for the following
The decomposition of the energy function into its gyantities:

component parts may be accomplished without con-

DS WS

WS S
- = 7
+ g% =0 (79)

Constitutive equation for saturation

Two equations of state for the density in terms of pressure
(for the isothermal system), as alternatives to the functional
form of the energy functions of the phases, must be speci-
fied to obtain an equal number of equations and primary
unknowns.

Equation of state

sidering the interactive effects of a phase with its ~ Jwn=1Jwn(S",a"", x5, & ¢) (83a)
boundaries, of an interface with the adjacent phases

and its common line boundary, and of a common ~ COS®=cos®(s",a™", x" a% ¢) (83b)
line with its adjacent interfaces. This assumption ws WS WnS S

allows all the coefficientsc in the governing equa- kg =Kg (X "% @) (83c)

tions to be set to zero.

The deformation of the solid matrix is such that the
porosity and area of the solid phase may be consid-
ered to be time invariant. Thus egns (40) and (69)
are not needed asand a® are spatially dependent
specified parameters of the problem.

These quantities are, respectively, the average fluid—fluid
interfacial curvature, the cosine of the average contact
angle of the wetting phase with the solid, and the average
geodesic curvature, with respect to the interface between
the wetting and solid phases, of the common line. The
influence of dynamic conditions on these quantities must

These assumptions reduce the system of equations to theilso be accounted for. Note also that egn (80) provides the
following set of 12 equations in the 14 variable% o", s", equilibrium condition on the pressure difference between
v, vh pY p", at, xS, andIM", the two fluid phases. This capillary pressysg, is defined
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such that: requires that the entropy inequality, subjected to internal
O(s, 8" XIS a8, ¢) = — Mg geometric constraints, be applied to gain constitutive
X &€= Y Yun forms that close the system. Even in a simplified system,
A" oa™" knowledge of the evolution of the interfacial area between

(84)

phases and of the functional form of the capillary pressure is
essential to a model that is based on the system physics.
Here, assumptions were identified that the flow system
must satisfy if the standard multiphase equations are to be
used. Thus, consideration of a problem of interest in light of
these assumptions may lead one to conclude that a model
more complex than the simplified form is required. These
more complex models carry with them the burden of requir-
ing more complete thermodynamic relations for the phases,
interfaces, and common lines and more parameters that
must be measured. However, the physical processes that
each of these parameters account for are known; and this
should give rise to innovative experimental and simulation
programs that allow for their quantification. Thus a route to
more complete models has been developed which is fol-
lowed by eliminating assumptions made to the general
There is no explicit dependence of the system beha- model. This is a more satisfying route than one that is
vior on the interfacial area between the fluid phases based on heuristic addition of terms to simple equations
a"", the fraction of the solid phase surface in con- that seem to be helpful in allowing the model to match data.
tact with the wetting fluidk®, or the common line

length 1", As a consequence, these variables may

be eliminated from the problem along with €eqns ACKNOWLEDGEMENTS
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( as" )e,um,ES/j,e,as,x;VS,lwns,fz

Therefore, the equilibrium condition resulting from eqgn
(80) is:

p'—p"—p°=0 (85)

Capillary pressure is usually obtained experimentally as a
function of saturation only. However, the derivation here
indicates that it actually has a broader functional depen-
dence. The parameteR", R", LY, andL}® that appear in
the equations must be specified in order to mathematically
complete the system.

Although the set of eqns (76)—(84) employs a large
number of simplifications, they must be simplified further
to obtain the most widely used set of equations by making
the additional assumptions.

€
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APPENDIX A. EXPANSIONS OF GRAND and VxF® is the deformation gradient. The macroscale
CANONICAL POTENTIALS jacobian of the solid phase deformatignaccounts for a
change in volume and is governed by the equation:

Incorporation of the Lagrangian time derivative of the DY .
grand canonical potential into the entropy inequality E=Jd a (A6)

requires that the derivative be expanded in terms of the o . .
independent variables. These expansions are obtained in thié\Pplication of the chain rule to expand eqn (18c) gives:

appendix D0 D%, ot
Dt 6° Dt ' a(¢E%))
ES DSES ES DSES GSES DSJ

Fluid phases

bt ] Dt i2 Dt

For a fluid phase, from eqgns (18a) and (18b), the deriva- ]

tive of the grand canonical potential is: a0°D%S  9Q° D% 9Q° D% (A7)
el =2 (A7
DaQa B aQa D*g~ N aQa D% aQa Doz’uoz a,u.s Dt Javs Dt oa"s Dt
Dt 4 Dt = ae* Dt ~ 9u* Dt Substitution of egns (A4) and (A6) into this expression

aQa Daawn aQa Daaas yieldS:
ga™ Dt ' 5a Dt 1D 140°D%° 1 o0° | ESD°E
It will be convenient to have the material derivatives of the 6> Dt~ 6°06° Dt  6°9(eE%j) | Dt

geometric properties written with respect to the solid phase 1 905 S
velocity. Thus egn (A1) becomes: S G FS)(ViF)T —E®I] p : d°
y an (A1) 03{ e T (TP ]} d
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- 6% ou" Dt ~ %@ DI 6992 DI Use of defln_|t|ons (1_8d) through (18h) allows simplification
of the notation in this expression to the form:
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of this equation as: o G
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CinD%a™  cgsD%a™ Fluid—fluid interface
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1 .s o @ T WD o aS The functional form of the grand canonical potential of
- 0—av 1= p*Ve" + cunVa™ + CisVa™] (A3) the interface between the wetting and non-wetting phases,
as given in eqn (24a), can be expanded such that:
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For the solid, eqn (18c) indicates that the grand canonical GQUNDINN  GGAN WA G pwnpwns
potential depends on the Lagrangian strain tengdrand + +
i i i eV Dt oe" Dt alWns Dt
the macroscale jacobian,Note that the symmetric Lagran-
gian strain tensor, with componerg, , behaves according  Expression of all the material derivatives of the geometric

(A10)
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properties in terms of the solid phase velocity yields:
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Use of definitions (24d) through (24i) simplifies this
expression to:
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Fluid—solid interface

Similarly, based on eqgns (24b) and (24c), the functional

form of the grand canonical potential of a fluid—solid inter-
face can be expanded such that:
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Substitution of kinematic eqns (A4) and (A6) into this
expression along with expression of all the material deri-
vatives of the geometric properties in terms of the solid
phase velocity yields:
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Substitution of definitions (24d) through (24i) into this
equation results in the form:
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Common line

Finally, from egn (30a) for the common line, expansion
of the grand canonical potential yields:
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With the material derivatives of geometric properties taken
with respect to the solid phase, eqgn (A16) becomes:
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Then from the definitions in egns (30b), (30c), (30d) and
(30e), this equation reduces to:
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1 ; (B1) and (B2) and obtain:
— /S =MLY Al | (A18)

" ij =wn, ws ns oa’ 1/0e s s 0€
E:V[§<E>(VE ):| +Jo— (B7)

Expansion of the second term in egn (B7) yields:
APPENDIX B. GEOMETRIC CONSTRAINTS

9a° 1 /0
» o o () e+ Srmeve
For proper exploitation of the entropy inequality, informa- (@ 2 at
tion is needed concerning the relations among changes in 1/ o€ 9€S
the geometric variables. As a first step toward obtaining + <¥> S+J§E (B8)

geometric relations, consider the solid phase. The following
relations for the void fraction follow directly and exactly or, after rearrangement:
from the averaging theorerffsand for systems with one

S S
solid phase and two fluid phases. Integration is performed ai_ { S+ _VZ S_ 2(V6 Vaﬂ
over the surface area of the soli#f, that is contained in an t (@)
averaging volume. The following equations result, respec-
tively, from the averaging theorems for a time derivative + gﬁ(v Ved) (B9)
and for the gradient of a constant: . ) o
. For a porous medium, the radius of a grain is much smaller
%z % swda (B1) than the average volume characteristic dimension so that:
1
. NN §Ivzesl (B10)
Vee= — — S B2
Y (B2)
1331 > —5IVes-Va’l (B11)

The material derivative obtained using the macroscale solid s (a 5)2
phase velocity is obtained as the sum of egn (B1) and the

macroscale velocity dotted with egn (B2): and
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where the fact that®=1— e has been employed. Therefore, eqn (B9) simplifies to:

To obtain an equation for the time derivative of the solid a_as_ 38_63
phase surface area contained within an averaging volume, at = > ot

the surficial averaging theorem may be applied to aconstantthen i the velocity of the solid is small, as it is for most

(B13)

surface property to obtain: porous media situations, the Lagrangian time derivative
ga® s moving with the solid is a reasonable approximation to
i vl PRUAL °n° dquF ﬂs(v'” )(n"-w) da the partial time derivative such that eqn (B13) may be
(B4) approximated as:
This equation may be approximated by estimating the DSaS_JsDSGS (B14)

average of the products appearing in these integrals as the Dt ~ ° Dt
product of the average of each of the quantities. Then an g, gincees=1— ¢
order of magnitude estimate of the relative importance of

the three terms is obtained as: Constitutive equation for solid phase surface
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5 Dt “° Dt
+ 50 Ja Jn*wda (B5) such that
where the average curvature of the solid surface calculated J=J3(@° ¢) (B16)
on the basis of the unit normal in the direction pointing
outward from the solid))$ is defined as: Now, as a prelude to the development of other constitutive
1 forms, the time averaging theorems (as found in Ref.
XK= =) Vn°da (B6) Ref’ for a volume; Ref:® for a surface; and Réf: for a

common line) applied to a constant yield the following
and is of the order of magnitude/e®>. Now substitute into relations for a volume fraction, area per volume, and
eqn (B5) to eliminate each of the integral terms using eqns common line length per volume are stated as follows
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where the integrations are over the appropriate region For the interface between the fluids, eqn (B21) may be

within an averaging volume: written:
9e* 1 J 1 gan 1
—_—= n“wd4+ — n%w d4 B17 - ___V. nAWaW
ot = 8V Jaw tov Jam (B17) YA J P AL
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W
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For the interfaces between the wetting and non-wetting aawn: _ iVJ wnn" dg
phases, eqn (B18) becomes: ot oV Jaw
w
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n i S (821) Since the normal velocity of the solid surface is of a smaller
SV ) pws order of magnitude than the velocity of the fluid—fluid

while for the interface between the wetting and solid nterface, eqn (B28) may be approximated by writing the
phases, it takes the following form: first integral as being over the entire wetting phase surface

< ws L such that:
wsai saxs____J NShS wn
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Now rearrange eqn (B22) such that the terms on the right
are all on the order of the rate of changeadfor less and 1 wn
- . B2
thus are smaller than the terms on the left: + 5V J mns” ud (B29)
xS 1 ws Now if the correlation betweew-n* andn" is neglected in
at oV Joms udz the first term on the right such that the average of the
s integral of their product is approximated as the product of
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or Constitutive equation for the interface
ga™" 1 [ o€" s wn SW S WS
=V | = — (Ve D a D°s D
at {a""( at )( ‘ )} Sp — Jine-p- —a cos® Dxts =0 (B40)
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Expansion of the derivatives on the right side and collection ~ cos® = cos®(s",a"", x>, a° €) (B42)

of terms yields:

Next consider the equation for the common line given by

wn W

oa™ 2w egn (B19). For this equation, the divergence term is also
= [Fmt g V 7 Z(V Ve ) ; . e
ot @") small in relation to the remaining terms so that:
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+ ﬁ&(v Ve )— SV e W A = v Lwns)"w"“ dc (B43)
+ 6% Lwns,,wn.u dr (B32) The principal curvature of the common line is defined as:
AV =«kp = k(p-n°)n® + k(p-»")p"* (B44)

Now if the terms of lower order of magnitude (i.e., those

relating to changes due to solid movement as opposed towherex is the magnitude of the principal curvature gnib
fluid movement) are neglected, this equation simplifies to: the principal unit normal to the line. Therefore, eqn (B43)

sa" a1 n becomes:
— = = u B33
TRl VA Py (B33) gns g
. — = k(p-ndn-u dzc
Next, note that the normal to the edge of the interface at the ot oV J oms
common line is also normal to the common line such that: 1 .
W
(ns wn)ns_’_(vws.ywn s (B34) 5V Jos k(pv % udc (B45)
Therefore, egn (B33) becomes: The quantityx(p-n®) is the normal curvature andp-»") is
wn w the geodesic curvature. If the average of these over the
oa w 0S 1 S Wn S :
T WnGW:(S_V Lwns(n »'n>-u do common line are indicated as, and K , respectively,
then eqgn (B45) may be approximated as
1
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The first integral involves the velocity of the common line
normal to the solid grain, which is small in comparison to where
the velocity tangential to the grain. Thus the first integral 1
may be neglected in comparison to the second to obtain: Kn=_wns Lwnsx(p-ns) dc (B47)
oa™ 08" 1 ws,_wn
— == — Sudc B36 and
at wn€ at RV, LW”S( ) ( ) .
Now define a dynamic macroscale contact angjleccord- Ky = Zwis Lwns (p-»"™) dz (B48)
ing to:
The first integral is small in comparison with the second
cosd = _J (»"Sp") d (B37) since it involves movement normal to the solid grain, so
"BV ) cems that this equation approximates further to:
so that egn (B36) becomes: gwns ws
=2 “S.ude (B49)
oa"" w as"  cos® J WS dr (B38) ot oV Joms
©o_gw = 2 ps.
T R A Substitution of eqn (B24) into this expression yields:
Substitution of eqn (B24) into this expression yields: gwns 5
wn w W + kg a° X" =0 (B50)
9a w 0s Xy’ ot ot

— Jné — — a° cosh =0 (B39)
at ot at Once again, because the velocity of the solid phase is small,

Since the solid velocity is assumed small, the partial deri- the partial derivatives may be replaced by total derivatives

vative may be replaced by the total derivative moving with moving with respect to the solid phase to obtain the

the solid phase to obtain: following.
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Constitutive equation for the common line

DSanS WSS DSX;VS
Dt +kg @ DL = 0 (B51)
where
Kg= Kg(giS, ", a%) (B52)

APPENDIX C. THERMODYNAMIC EQUILIBRIUM
INFORMATION

A state of stable thermodynamic equilibrium of the total
system is one for which the grand canonical potential of
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At equilibrium, the left side of this equation will be zero
sinceQ will be at a minimum. A comparison of the right

side of this equation with eqns (69) and (B16) yields:
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Next, egn (C1) will be examined for equilibrium conditions
such that its right side is of similar form to the rigAht side of
egn (70). Evaluation of the partial derivative @f with

the system is less than it is for any other thermodynamic respect to saturatios” while holding other independent
state having the same temperature, chemical potential, andsariables constant yields:

geometric parameterd Thus the equilibrium state is a state

of minimum energy. Therefore, deviations in the indepen-
dent variables around this equilibrium state will cause
no change in the energy. In the entropy inequality, the
energy form that is minimized at equilibrium is the grand
canonical potential. The expression for a deviation in this
guantity is:
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whered, x™, and E%j are held constant to coincide with
the conditions of entropy inequality (37) as indicated in
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0, ™ E%/j, €, 8%, X¢5, 1M1
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Comparison of this equation with eqns (70) and (B42)
yields:

+ (Can+ Cin+ (C4)
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asV

1
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Finally, the differential of the grand canonical potential
near equilibrium conditions will be examined to determine
if the coefficients that appear in egn (71) can be related to
thermodynamic variables. The differential @fvhile hold-

ing 8", e, anda® constant may be obtained directly from egn
(C1). Then, ifQ is also held constant, since its variation will
be zero at an equilibrium state, the following equation
results:

the compressed representation (39). The goal of this analy- dQIaw,Es,]-vé,asvfz =0

sis is to examine this equation in light of eqgn (69) through

(71). Since the right sides of these equations are zero at

equilibrium, an examination of the conditions giving rise
to that equilibrium state will provide information about the

relation of the coefficients that appear to the thermodynamic

state.

The first study involves examination of eqgn (151) to
obtain conditions where its right side is of similar form to
the right side of egn (69). This is obtained by holding some

wns

=a%[(cws+ s+ Cus- + 71"
— (ens+ s+ Cng™+ v Axs®
+ (Can+ Cin+ G + ") da™
— (Guns+ Guns+ Guns+ ") A (C6)

Comparison of this equation with the right side of eqn (71)
at equilibrium and invoking the functional dependence

of the independent variables constant while evaluating the indicated in egns (B42) and (B52) yields:

change inQ with respect to the void fraction such that:

a0
de

0, ™, ESfj, ann, [wns, g, s

- P e+ )

_|:(0,WS+0_nS+o_S):ES
a j

1 /9"
cog®(s”,a"", xs* a% e)] = = ( —)
S as\ xe® ) g, um Esjj, s e 25,0
(C7)
1 /9"
O [0S s =__< 5) cs
o(%s ) as\ ax® /g, um e o, e, a5.0 (©8)



