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Abstract

We give several examples of weaknesses in classical, empirically derived models of transport phenomena in porous medium sys-

tems. We also place recent attempts to develop improved multiscale porous medium models using averaging theory in context and

note deficiencies in these approaches. These deficiencies are found to arise in part from the manner in which thermodynamics is

introduced into a constrained entropy inequality, which is used to guide the formation of closed models. Because of this, we briefly

examine several established thermodynamic approaches and outline a framework to develop macroscale models that retain consist-

ency with microscale physics and thermodynamics. This framework will be detailed and applied in future papers in this series.
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1. Introduction

The study of hydrologic systems is considered mature

by some [69]. Models of porous medium systems are ap-

plied routinely in practice and for a wide range of appli-

cations. Many classical models have been reduced to

textbook form and routinely appear, seemingly as mat-

ter-of-fact statements of the physics of transport phe-

nomena in porous medium systems [3,43]. This is not
only the case for single-fluid-phase flow under low

Reynolds number conditions, but is also increasingly a

common occurrence for multiple-fluid-phase flow, spe-

cies transport and reaction, and energy transport

[15,65,80]. One could argue that hydrologic analyses
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have led to classical models, deemed to be definitive;
and simulators based upon these models exist for the

corresponding applications.

Classical models have become so established that

concerted efforts are undertaken routinely to account

for parameter uncertainty [49] and to produce stochastic

solutions of low-order moments to these models

[17,25,32,79]. While originally focused on single-fluid-

phase flow, stochastic approaches are increasingly being
extended to solute-transport and reactions, and to mul-

tiple-fluid-phase systems [1,18,24,81]. To be sure, natu-

ral systems are indeed stochastic in nature, and

meaningful analysis of natural systems will benefit from

stochastic approaches for the foreseeable future. How-

ever, the foundation of such stochastic analyses is the

accuracy of the underlying mathematical description of

the physical processes in the problem of concern.
An alternative viewpoint is that the study of

hydrologic systems is far from mature [62]. Specifically,
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Nomenclature

Roman letters

E conservation of energy equation
E internal energy

E internal energy per unit volume

I internal variable vector

J flux vector

M mass

M conservation of mass equation

N number of chemical species

P conservation of momentum equations
p fluid pressure

S entropy

S entropy equation

t time

V volume

X vector of independent variables

x position vector

Greek letters

�a volume fraction of the a phase

g entropy per unit volume

h temperature

K entropy production rate

k Lagrange multiplier

k vector of Lagrange multipliers

l chemical potential

q mass density

x mass fraction

Subscripts and superscripts

E energy equation qualifier

i species qualifier

M mass equation qualifier

P momentum equation qualifier

t temporal derivative qualifier for Lagrange

multipliers
w wetting phase qualifier

x spatial derivative qualifier for Lagrange

multipliers

a entity qualifier

Acronyms

CIT classical irreversible thermodynamics

EI entropy inequality
EIT extended irreversible thermodynamics

ET equilibrium thermodynamics

RET rational extended thermodynamics

REV representative elementary volume

RT rational thermodynamics

TCAT thermodynamically constrained averaging

theory

TIV theory of internal variables
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classical models of porous medium systems need further

extension and revision to reach ultimate, or even func-

tional, utility and may contain significant representa-

tional errors in some cases. Even for cases where the

numerical solution is precise and the parameters are

specified, model errors may result for two fundamental

reasons: (1) the representation of the physics is inade-

quate, or (2) the parameters that appear in the model
are not clearly defined and easily measurable. We believe

both of these types of errors routinely occur in the

modeling of porous medium systems.

Deficiencies in porous medium models have been

noted in the past, and sustained efforts have been under-

taken to develop a sound theoretical base upon which

a rigorous set of new models can be constructed

[36,42,44,53,58,70,74,76]. While significant progress has
been made, the conceptual and mathematical difficulties

associated with these formulations and technical issues

with model closures have slowed the maturation into

simulators, deployment, and verification of a new gener-

ation of well-defined models. However, the evolution of

theoretical tools, mathematical machinery, and recent

conceptual insights have, in principle, removed barriers

to progress. We believe that substantive advances be-
yond the formulations in classical models are now

possible.

The overall goal of this manuscript is to introduce a

systematic framework for producing macroscale models

of transport phenomena in porous medium systems that

are consistent with microscale, or pore scale, representa-

tions of transport phenomena and thermodynamic con-

straints. The specific objectives are to:

• note examples of weaknesses in both classical models

and previous averaging based approaches to mode-

ling porous medium systems;

• highlight the critical role of thermodynamics and

detail available theories that may be of use in porous

medium model formulation;

• detail a consistent and flexible framework to guide
the formulation of models to describe transport phe-

nomena in porous medium systems;

• illustrate how the new framework can be used

to derive thermodynamically consistent models;

and

• comment on some open issues remaining with the

current theoretical work and some potentially fruitful

future endeavors.
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Although the emphasis here is on porous media, the

framework applies to any development of larger scale

equations based on physical and thermodynamic proc-

esses. Subsequent efforts in the present series of papers
will detail the mathematical machinery required, provide

details on applications of the framework presented here-

in to a range of porous medium systems, and compare

and contrast a set of new models with classical models.
2. Background

The purposes of this section are (1) to give examples

of deficiencies in classical models of porous medium sys-

tems; (2) to place the last three decades of work on the

development of averaging methods to describe transport

phenomena in porous media in context and highlight the

open issues; (3) to note the critical role of thermodynam-

ics in constraining models to describe transport phe-

nomena in porous media; and (4) to evaluate available
classes of thermodynamic theories that may be used.

2.1. Deficiencies with classical models

Classical approaches to modeling transport phenom-

ena in porous media e.g., [10,29,30,77] have become so

common that we run the risk of overlooking their defi-

ciencies, inconsistencies, and potential errors. The for-
mulation of the classical model for single-fluid-phase

flow includes writing a conservation of mass equation

for the fluid phase; employing an equation of state relat-

ing the fluid pressure, temperature, composition, and

density; imposing a linear compressibility model for

the solid phase related to fluid pressure; and invoking

Darcy�s law to relate the specific discharge vector to

the gradient in pressure and gravitational forces. For
multiphase flow, a similar approach is taken with the

exceptions that equations are written for each fluid

phase; fluid saturations are related to the fluid pressures

using empirical, hysteretic relations involving equilib-

rium states and neglecting transient behavior; and an ex-

tended version of Darcy�s law is used, which typically

includes relative permeabilties that are nonlinear and

hysteretic functions of fluid saturations e.g., [61]. The
single phase approach has its roots in the empirical

observations of Darcy [26,27] in regard to one-dimen-

sional flow in a column packed with homogeneous sand.

The multiphase approach is an attempt to retain the

simple structure of the Darcian equation even in more

complex systems while accounting for the physics of

interfaces between phases by allowing model parameters

to take on values that depend on system state variables
and history.

The situation for species transport is similar. Conser-

vation of mass equations are written typically for each

chemical species in each phase; dispersion is accounted
for using either a classical Fickian model or a represen-

tation of the effect of sub-scale velocity variations; clo-

sure relations are used to express species reactions and

exchange of mass between phases; and the phase veloc-

ities are calculated from Darcy equations. Increasingly,

the focus is on complex sets of biogeochemical processes
and multiple species systems, which require sets of spe-

cies transport equations [9,78].

For most classical flow and transport models, conser-

vation of energy is omitted by virtue of isothermal con-

ditions; and constraints implied by the second law of

thermodynamics are almost universally neglected. The

classical approach to modeling transport phenomena

in porous medium systems leads to several problems.
These include: lack of a rigorous connection with pore

scale physics; inadequate definition of variables; implicit

approximations concerning system behavior; and lack of

a structured framework for model refinement, extension,

and simplification.

Common notions such as temperature and pressure,

and even more complex concepts such as capillary pres-

sure and fluid wettability, are well understood at the
pore scale, also called the microscale. However, a rigor-

ous connection of these quantities, and pore-scale phys-

ics in general, to the macroscale, or porous medium

continuum scale, at which classical porous medium

models are formulated is lacking. For example, if the

microscale pressure is not constant within a macroscale

region under conditions of no flow, the selection of a

representative macroscale pressure that describes the
thermodynamic state of that region is not obvious. Also,

it is unclear as to which property�s gradient is balanced
by gravitational effects [41].

The absence of cross-scale consistency is a result of

formulation approaches that by-pass the microscale

and instead propose conservation equations and closure

relations directly at the macroscale. When microscale

physics is not a part of the macroscale formulation pro-
cedure, correspondence of physical descriptions between

scales is not attained. A consequence of this circum-

stance is that macroscale closure relations must be

invented directly at the macroscale to account for phe-

nomena that are, in some cases, well-understood at the

microscale. An example of this situation is fluid wetta-

bility as measured by the contact angle between fluid

interfaces and the solid phase at the pore scale. Wetta-
bility is well known to affect dramatically behavior of

multiphase flow at the macroscale, but does not appear

in classical models of flow at that scale.

The lack of a rigorous connection between the micro-

scale and the macroscale thus has two serious conse-

quences. First, although macroscale equations are

written in terms of nominal macroscale quantities, these

quantities are ill-defined or defined too vaguely to guide
measurements designed to confirm macroscale descrip-

tions of the system physics. Second, processes observable
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and studied at the microscale that are known to

influence system behavior are neglected explicitly at

the macroscale, perhaps in the interest of model simplic-

ity, with their effects buried in highly-variable, non-

unique coefficients. For macroscale models to develop

to the point where the influence of scale is apparent
and subject to both simulation and experimental study

and verification, precise definitions of model variables

is required. By careful analysis, the macroscale variables

appearing in currently employed classical models can be

shown to relate to a variety of averages of microscale

quantities. Some are spatial averages, some mass

weighted averages, and still others can be shown to be

averages obtained using other weighting functions.
Other macroscale variables can be shown to be trun-

cated approximations to averages of microscale

quantities.

Standard modeling approaches include implicit

approximations that result from the closure relations

used to produce solvable systems. While such ap-

proaches may provide useful models for some cases,

the implicit nature of the assumptions causes difficulty
in assessing model errors and proposing corrective ac-

tions to reduce those errors. Examples of this situation

occur in assessing when deviations from Darcy�s law

for single-fluid-phase flow lead to significant errors

and in determining alternative closure approximations

superior to Darcy�s law [53]. More generally, the classi-

cal approach of using a modified form of Darcy�s law in-

stead of a formal conservation of momentum equation
for multiphase flow obscures potentially important

physical phenomena—such as viscous coupling between

different fluids and the transient nature of relations

among fluid pressures, saturations, and entrapment—

which are increasingly being understood as important

in some cases [4,68].

Even if one understands a classical model to be defi-

cient, the usual approach of formulating models in con-
junction with a common set of ad hoc closures directly at

the macroscale does not provide a rigorous means to

examine modeling assumptions or suggest any directions

of inquiry that could lead to more accurate models. Ide-

ally, a consistent and comprehensive theory would exist

to guide model formulation and simplification which

would allow for natural, well-specified approaches to

both model simplification and extensions. Such a theory
does not currently exist. The absence of a strong theoret-

ical foundation for current models certainly limits op-

tions and paths for improvement. Such a limited

situation is at odds with any claim of maturity of the

field.

2.2. Averaging theory

Some researchers have attempted to develop a rig-

orous framework for formulating macroscale models
that are consistent with smaller-scale representations

of transport phenomena [6,11,12,23,38,44–46,50,63,

76]. We use the term ‘‘averaging theory’’ to denote ef-

forts based upon procedures that are designed to pro-

duce systematically macroscale quantities expressed as

integral expressions involving microscale quantities
and that yield and close conservations equations

at the macroscale. The motivation behind such

approaches is the achievement of a correspondence

between well-described microscale physics and the

model formulation and closure of less-well-described

macroscale physics. Success in these efforts will over-

come, at least, some of the deficiencies of classical

models.
A number of the components of models based on

averaging theory have been examined with varying de-

grees of rigor in an effort to arrive at a closed, consistent

set of macroscale equations. We will indicate these com-

ponents here, albeit briefly.

2.2.1. REV notions

One of the most useful conceptualizations that has
permeated the development of a macroscale view of

porous medium systems is the idea of a Representative

Elementary Volume, or REV [7]. This concept is very

similar to the microscale approach whereby a system is

viewed as a continuum with each ‘‘point’’ deriving its

properties from the large collection of molecules associ-

ated with that point. In fact, the point is a very small re-

gion in time and space. The number of molecules within
the region is considered to be so large that variations in

a property, such as mass density, are negligible for small

changes in the size and duration of measurement of the

sampling device. In essence, the objective in making this

definition is to identify measurement regions such that

the value of a quantity measured can be meaningfully re-

ported without having to stipulate the size of the sample

examined.
The REV, as applied to a macroscopic formulation,

makes use of a representative region of a porous med-

ium, large enough to include all phases present. The re-

gion is assumed to be of sufficient size that the values of

averages that characterize a phase are independent of

that size. Further, the size of the REV is considered to

have a characteristic length scale that is much smaller

than the system length scale such that gradients of
macroscale quantities within the system are meaningful.

However, since this REV includes multiple phases, inter-

faces, common curves, and common points, geometric

densities must also be defined that stipulate, for exam-

ple, the fraction of the REV occupied by a particular

phase or the amount of interfacial area between two

phases that exists within the volume. In practical terms,

the transition from the microscale to a macroscale point
eliminates distributions of function values within a

phase in favor of average values of those distributions
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over a portion of that phase. For example, the velocity

distribution of a phase within the pores is replaced in

favor of an average volumetric flow over a cross-

sectional area. Certainly, this macroscale velocity is con-

ceptually easier to compute, especially in light of the fact

that the actual distribution of the pore space is typically
unknown. However, in practice, this simplicity is coun-

tered by the need to deal with the geometric densities

and the need to obtain closure relations in terms of

the macroscale variables.

The REV approach is sometimes criticized because it

is invoked without proving the existence of the REV for

the system under study and without determining that the

REV employed is appropriate for all quantities being
studied. In some instances when a porous medium

exhibits fractal behavior, or when larger scale heteroge-

neities preclude the identification of an REV, ap-

proaches that depend upon a set of discrete and

separable length scales fail [23]. Thus, the common

assumption of the existence of discrete, separable length

scales is a key premise which affects the applicability of

models developed. However, even in cases when an REV
does not exist, explicit definition of macroscale variables

in terms of microscale quantities can be retained, allow-

ing for the development of larger scale variables whose

dependence on the size of the averaging volume em-

ployed can be investigated.

2.2.2. Averaging theorems

Important tools for the transformation of the conser-
vation equations from the microscale to the macroscale

are averaging theorems [2,5,39,71,75]. These equations

convert averages of derivatives of microscale quantities

into derivatives of macroscale averages. These equations

are similar in form and utility to the well-known trans-

port and divergence theorems that facilitate the inter-

change of the order of integration and differentiation

of a function. The forms of the averaging theorems
developed in the 1960s [2,70,75] are useful for dealing

with phases that occupy portions of three-dimensional

space. These theorems involve the transformation of

the integral of a derivative of a function over a phase

within an REV to a derivative of an integral of the func-

tion over the phase plus an integral of the function over

the interface between the phase and the other phases

within the averaging volume.
Recognition of the fact that it was not possible to ac-

count rigorously for capillary pressure without examin-

ing the physics of the interface between fluids led to the

derivation of averaging theorems for surfaces and, addi-

tionally, for common curves [36,40]. These theorems, be-

sides being useful for deriving macroscale surface and

common curve conservation equations from their micro-

scale counterparts, also suggest appropriate definitions
of some macroscale properties in terms of their micro-

scale antecedents.
2.2.3. Alternative approaches

The most common approach to conversion of the

microscale conservation equations to the macroscale is

integration of the mass, momentum, and energy equa-

tions over an REV. However, an alternative, that has

some conceptual attractions, is to use a localization ap-
proach [38]. Conservation equations for an entity within

the system are written in terms of microscale variables

integrated over the entire domain. The averaging ap-

proach involves first obtaining point microscale equa-

tions by shrinking the domain to a microscopic point

and then averaging the resulting microscale equations

up to the macroscale. A localization approach may be

used to obtain macroscale equations directly by shrink-
ing the domain of scrutiny to a macroscale volume.

Then application of localization theorems, which are

simply alternate forms of averaging theorems, provides

the macroscale equations. Certainly, these two different

approaches lead to the same macroscale conservation

equations, as they must, but the mathematical and con-

ceptual steps to those equations are different.

We note, also, that averaging over small regions of
time may also be included in the approaches to obtain-

ing macroscale equations. However, since time is contin-

uous and the entities each occupy all of time within an

increment of time studied, averaging over time only al-

ters the interpretation of macroscale quantities but not

the form of the macroscale equations.

In addition to averaging over macroscale regions,

some investigators have employed weighting functions
intended to account for the sampling characteristics of

measurement instruments [2,22,66]. Also, theorems have

been proposed that allow for the averaging volumes to

vary in size and shape with position and time [21,33].

Further, the fact that the averaging volume at a point

may be different for different quantities has been consid-

ered [22]. However, in practice, none of these more

complex formulations has been employed in model
applications.

2.2.4. Multiple-scale approaches

The philosophy behind the development of macro-

scale equations opens the door to a range of conceptual-

izations of porous medium systems. For example, if the

porous medium is fractured, fluid in the fractures can be

considered to be a different phase from the fluid in the
small pores. Then the averaging approach leads to sep-

arate conservation equations for the fluids in the pores

and in the fractures. Closure relations are needed to de-

scribe the transfer of fluid between these two regions,

but the different dynamics in the two scales of pore sizes

are accounted for separately.

It has been pointed out previously that the microscale

approach makes use of a set of equations formulated at a
scale smaller than the pore diameter in a porous medium.

These equations may be averaged up to the macroscale.
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These macroscale equations can be averaged up

again to an even larger scale, if desired. Indeed a hierar-

chy of length scales can be considered to account for

large scale heterogeneities and inclusions [67]. To formu-

late equations at a large scale, one may simply develop

the equations directly from the microscale or else formu-
late intermediate scale equations that are sequentially

obtained from a smaller scale. Ideally, the equations ob-

tained at the large scale using these two different ap-

proaches will be identical. However, this identity

depends on the closure relations being identical. In fact,

closure relations are only approximations to material

behavior. In some instances this behavior can be best

approximated by averaging closure relations up from a
smaller scale rather than simply hypothesizing the rela-

tions at the large scale. Averaging of closure relations

can be employed in conjunction with numerical simula-

tion when the system is of a simple structure. It is also

employed typically without considering the impact of

thermodynamics and without careful successive change

in scale of the thermodynamic functions. Direct hypoth-

esis of closure relations at the largest scale considered is
attractive in that errors made in smaller scale closure

forms are not carried to the large scale.

2.2.5. Constrained closure relations

The averaged equations contain quantities, such as

the stress tensor, the frictional interaction between

phases, and the heat conduction vector, that must be

approximated by constitutive relations. Although some
researchers develop closure relations based on expected

system behavior or through mapping between scales

[76], another approach is to propose closure relations

consistent with the second law of thermodynamics

[13,37,38,46]. One particularly challenging part of the

latter approach is formulating the second law constraint

at a scale consistent with the scale of the governing con-

servation equations. In practice, this aspect of the prob-
lem has received little attention. Although an entropy

inequality has been obtained from averaging, the deter-

mination of the functional dependence of macroscale en-

tropy on macroscale properties has not been developed

in a manner that ensures consistency with microscale

thermodynamics. It is possible to provide the formu-

lation of the thermodynamics in a general form that

allows for either averaging of microscale thermodynam-
ics or direct thermodynamic postulation at the macro-

scale; the averaging approach is more conceptually

satisfying [35] but has not been used to develop complete

porous medium models.

2.2.6. Conservation about areas, common curves, and

common points

This subsection points out one of the most important
developments in efforts to model flow in porous medium

systems at the macroscale. In fact, the issue of conserva-
tion equations for entities other than phases does not

arise when modeling a single fluid in the absence of a

porous medium because there are no interfaces, com-

mon curves, or common points. The roots of formula-

tions to model porous medium systems lie in the

Darcy experiments that are concerned with the move-
ment of a single fluid phase in packed column. Thus

extension of the experimental results to systems that

contain surfaces between fluid phases, common curves

where three phases come together, and common points

where four phases meet involves adventuresome specu-

lation. The properties of the interfaces and the distribu-

tions of the fluid phases within the pore space are

important features that impact the system dynamics
such that models based on specification of phase pro-

perties only are insufficient. Rigorous modeling of the

dynamics of transition regions between phases requires

that the physics of capillary pressure sustained across

interfaces and the spreading pressure at common lines

be incorporated into the equation set. Additionally,

the evolution of the interface between phases is an

important factor in system dynamics. Therefore, the
inclusion of the conservation equations for mass,

momentum, and energy of interfaces, common curves,

and common points provides the opportunity to develop

a complete system model [38,42]. Even if some aspects of

this complete model are subsequently deemed to be too

complex to include in a particular application or are

thought to have insignificant impact on the behavior

of a study system, the assumptions made to arrive at a
reduced equation set will be explicit and provide oppor-

tunities to evaluate the important features of the full

model.

2.2.7. Consistent thermodynamics and additional

approximate equations for closure

The change of scale of the conservation equations

from the microscale to the macroscale can be accom-
plished by direct application of averaging theorems.

This transformation is unique after one decides on the

phases, species, interfaces, common curves, and com-

mon points that will be modeled. However, closure of

the equations requires constitutive forms; and their

development continues to be a most difficult challenge.

The closure has two elements. First, equations of evolu-

tion of the geometric densities, such as volume fractions
and interfacial area densities, must be formed. These

densities are not subject to conservation equations but,

instead, must be considered from just a mathematical

perspective. For example, a volume changes in response

to the extent of the movement of its boundary; the ex-

tent of an area changes due to deformation of the sur-

face as well as from changes in the location of the

bounding curve of the area. We emphasize that unique
relations do not exist among geometric densities in a sys-

tem. What we need, however, are equations that indicate
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how these densities evolve from one configuration to the

next. Equations that describe these evolutions are not,

generally, available [60]. However, some approximate

relations have been developed and can be employed in

system models [34,42]. Then, if better geometric evolu-

tion relations are found, these can be used as replace-
ments.

The second ingredient of a successful approach to

closure is the proper formulation of the system thermo-

dynamics at the macroscale. Classical thermodynamics

relates to the study of systems at equilibrium. Since we

are dealing with dynamic processes, we are forced to

deal with an extension of thermodynamics to systems

that vary in time and space. At the microscale, a number
of approaches to extend thermodynamics have been em-

ployed [51,59]. At the macroscale, the use of thermody-

namics has been limited to forms postulated at that

scale. Although postulation of macroscale thermody-

namic dependences leads to closed equations through

some elegant mathematics, at least two problems exist

with this approach. First, the physical interpretation

and procedures for measurement of the quantities in
the equations are not clear. Second, these REV scale

thermodynamics may not be consistent with the postu-

lates and relations of classical thermodynamics devel-

oped at a smaller scale. If, instead, a macroscale

thermodynamic approach is based on averaging of

microscale thermodynamic equations, macroscale quan-

tities are uniquely defined in terms of microscale coun-

terparts and can be related to physical experiments
across scales. Furthermore, consistency of the thermo-

dynamic framework between scales will be assured.

While preliminary work has been done that introduces

these notions [35], complete models based upon this ap-

proach have yet to be formulated. Ideally, a rigorous

framework to guide the formulation of a wide range of

models based upon these concepts can be developed.

2.2.8. Elements of a complete, consistent theory

The information in the preceding subsections can be

melded to develop a complete and consistent theory

for flow and transport in porous media. The develop-

ment of the theory requires mathematical tools that

allow the equations and the thermodynamics to be

formulated consistently and in such a way that the var-
Table 1

Thermodynamic approaches

Abbreviation Description

ET Equilibrium thermodynamics

CIT Classical irreversible thermodynamics

RT Rational thermodynamics

EIT Extended irreversible thermodynamics

RET Rational extended thermodynamics

TIV Theory of internal variables
iables have physical, measurable meaning. The modeler

still has the somewhat daunting task of deciding whether

elements such as films, fracture flow, common curve

physics, number of chemical constituents, etc. should

be included in the model. Once the elements to be in-

cluded are selected, then the governing equations and
thermodynamics can be formulated. The mathematical,

experimental, and computational effort needed to ad-

vance such a consistent set of rigorous models is cer-

tainly significant; and many open scientific issues must

be resolved. Nevertheless, an approach ensuring consist-

ency across scales and physically meaningful variables

provides a robust foundation for the development of

mature models.

2.3. Thermodynamics

Several theoretical approaches to the general field of

thermodynamics exist, including the following: equilib-

rium thermodynamics (ET), classical irreversible ther-

modynamics (CIT), rational thermodynamics (RT),

extended irreversible thermodynamics (EIT), rational
extended thermodynamics (RET), and the theory of

internal variables (TIV). Because thermodynamics plays

a central role in the formation of thermodynamically

constrained averaging theory models of concern in this

work, it is worthwhile to consider briefly these various

classes of thermodynamics. As will be discussed, several

of these classes may be used to formulate consistent

models that describe transport phenomena in porous
medium systems. Some of these approaches have been

used to produce unclear and ambiguous models. This

discussion will serve as a foundation to support our fur-

ther exposition on topics for which thermodynamics

plays a central role. Table 1 presents a summary of var-

ious classes of thermodynamic approaches that are de-

scribed, in turn, in the sections that follow. The intent

of this table is to provide general notions for the theories
listed. For simplicity, the general functional form indi-

cated is restricted to a single-species phase entity occu-

pying a volume. More complete discussions may be

found in the indicated references for each approach.

Some of these theories can be extended to other types

of entities (interfaces, common curves, and common

points) and such extensions are needed for rigorous
Functional form Reference

E ¼ EðS; V ;MÞ, for X [8,16]

E(x, t) = E[g(x, t),q(x, t)] [28]

E(x, t) = E[g(x, t),q(x, t), . . .] [19,31,64,72]

E(x, t) = E[g(x, t),q(x, t),J] [51,52,55]

E(x, t) = E[g(x, t), q(x, t),J, . . .] [51,59]

E(x, t) = E[g(x, t),q(x, t),I] [56,59]
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models of multiphase porous medium systems. Enlight-

ening discussions of the theories can be found in the lit-

erature (e.g., [51] and [59]).

2.3.1. Equilibrium thermodynamics (ET)

In developing ET, Gibbs� purpose was to cultivate a
methodology by which equilibrium properties of ther-

modynamic systems can be characterized [54]. Absolute

temperature and entropy are assumed to be defined and

to exist. Critical to ET, applied to homogeneous volume

phases, is the fundamental relation, typically [8,16]

S ¼ SðE; V ;MÞ ð1Þ
or its inverted form

E ¼ EðS; V ;MÞ ð2Þ

where S is the entropy of the system, E is the internal en-

ergy, V is the volume, and M is the mass. All of the

above are extensive variables considered to be constant

throughout the system, which is at equilibrium. Legen-
dre transforms allow for the interchanging of extensive

variables with intensive variables such as temperature,

h, pressure, p, and chemical potential, l. While Gibbs�
classic approach is extremely useful, it is limited in that

it applies strictly only to homogeneous equilibrium situ-

ations. It provides information about differences

between equilibrium states, but it provides no informa-

tion about the rate of change from one state to another
and no information about the system properties while

the change is occurring.

2.3.2. Classical irreversible thermodynamics (CIT)

CIT is an extension of equilibrium thermodynamics

generalized for application to irreversible processes. This

approach has been expounded upon with insight and

rigor by De Groot and Mazur [28] and provides for
extension of the Gibbsian formulation to near-equilib-

rium dynamic systems. The fundamental functional

dependence of the internal energy is postulated exactly

as in equilibrium thermodynamics. However, critical to

CIT, and the quality that distinguishes it from ET, is

the local equilibrium hypothesis.

This hypothesis states that the local and instantane-

ous relations between the thermal and mechanical prop-
erties of a physical system are the same as for a uniform

system at equilibrium. Essentially, to satisfy this hypoth-

esis, a system is broken up into subsystems small enough

that the ET formulation may be considered valid within

any particular subsystem at any instant of time. The

local equilibrium hypothesis has two important impli-

cations. First, all of the variables defined in the ET for-

mulation remain significant and well-defined. Second,
equilibrium relationships between thermodynamic state

variables remain valid outside equilibrium provided they

are stated locally at each instant in time. The ET postu-

late of Eq. (2) is made to apply at a microscale point by
expressing the extensive variables on a per unit mass ba-

sis or, as in Table 1, per unit volume.

Subsequently, the assumption is made that the rate of

entropy production for each subsystem is non-negative,

which facilitates the derivation of relationships between

driving forces, such as temperature differences between
subsystems and fluxes. In the development of these rela-

tions using CIT, the system under consideration is as-

sumed to have no memory. Therefore the flux at a

particular instant depends only on the driving forces at

that instant. Furthermore, the relationship between the

fluxes and the driving forces is taken to be linear [16].

The CIT approach has been used with great success

for the situation where each subsystem is a microscale
point. However, after averaging to the macroscale, the

direct application of the procedure, especially the preser-

vation of the energy functional form on macroscopic

variables, is suspect. The local equilibrium hypothesis

in terms of macroscale variables can break down in

the presence of gradients within the averaging region,

and the definitions of temperature, pressure, and poten-

tial are not obvious.
2.3.3. Rational thermodynamics (RT)

Rational thermodynamics is another class of micro-

scale thermodynamic approaches. Initially developed

by Coleman [19], Eringen [31], Noll [64], Truesdell

[72], this approach has proven to be a useful component

of methods for deriving constitutive equations [51]. The

method is mathematically rigorous and is built on prin-
ciples that lead to certain mathematical forms for the

energy and constitutive functions [31]. Although the

principles have some mathematical appeal, Maugin

[59] has pointed out that they are actually only working

hypotheses while Vavruch [73] claims they are more

accurately called useful rules. These rules include the

following:

• equipresence—if an independent variable is present in

one of the constitutive equations, it will, a priori, be

present in all; and

• memory—present effects are dictated by the past as

well as the present values of the independent

variables.

Operationally, equipresence dictates that each
dependent variable will be a function of all of the sys-

tem�s independent variables, except when the presence

of the variable contradicts some law of physics or mate-

rial symmetry. It leads to a postulated form of func-

tional dependence of internal energy that is far more

complex than the ET form and seemingly unrelated.

Memory further requires that the dependent variables

be functions of both past and present values of the inde-
pendent variables.
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In the case of flow in porous media, these two

hypotheses impose some generality that is seemingly

needlessly complicated. A somewhat simplified approxi-

mation that relieves some of the mathematical tedium

has been put forth [48]. Maugin [59] also states that

RT assumes notions that are precisely defined in ET to
exist in any dynamic state. In RT, absolute temperature

and entropy are considered primitive concepts and are

believed to hold far from equilibrium; but they have

no precise physical interpretation or physical relation

to their ET counterparts. Materials are allowed to have

a memory, and the concept of local equilibrium is not

necessarily enforced.

RT is the thermodynamic approach most widely used
in considering macroscale porous medium systems

[14,37,46]. The problem of lack of correspondence be-

tween microscale entropy and temperature between ET

and RT is compounded when the RT hypotheses are

made at the macroscale such that this approach can be

physically unsatisfying. For example, the use of deriva-

tives of energy with respect to saturation as the defini-

tion of capillary pressure e.g. as reviewed in [47] and
the appearance of three different mathematical defini-

tions of pressure [14] are indications that the mathemat-

ical elegance of the RT approach is achieved while

sacrificing the ability to relate easily terms appearing

in derived conservation and constitutive equations to

experimental measurements and observations.

2.3.4. Extended irreversible thermodynamics (EIT)

EIT is a relatively recent approach to microscale ther-

modynamics that extends the local equilibrium assump-

tion employed with CIT by also allowing internal energy

to depend on the local dissipative fluxes, denoted gener-

ically in Table 1 as J [51]. At equilibrium these fluxes

will be zero. Thus at equilibrium, or when the depend-

ence on these fluxes is small, the EIT formulation is

identical to CIT. The range of applicability of non-equi-
librium thermodynamics is considered to be extended by

this formulation over that obtained with CIT because

memory as well as non-local and non-linear effects are

incorporated into the formulation through the extended

dependence of energy on fluxes. The extension of this

approach to the macroscale may be fruitful if the rela-

tion between microscopic and macroscopic variables

can be established.

2.3.5. Rational extended thermodynamics (RET)

The EIT approach of including dependence of inter-

nal energy on dissipative fluxes has been combined with

RT to obtain this method. The RT approach provides

the general framework for the development of constitu-

tive equations using RET. However, rather than the var-

iables of interest being functions of the entire history, the
space of independent variables is enlarged such that the

history is no longer necessary [51]. General dependences
that invoke the rule of equipresence and make other

assumptions are postulated for variables of interest. A

non-equilibrium entropy is employed and assumed to

be a regular and continuous function of the full set of

independent variables. In RET, the second law of ther-

modynamics is not assumed to take the form of the Clau-
sius–Duhem inequality; and the entropy flux is not

assumed to be given by the ratio of the heat flux to the

temperature [51]. The heat flux itself is considered to be

an independent variable, in contrast to RT where the

heat flux is given by a constitutive relation. The entropy

is expressed as a function of the heat flux, a key difference

between RT and RET. RET suffers from the same prob-

lems as RT in regard to the meaning andmeasurability of
the entropy and temperature functions. Likewise, exten-

sion of the method to the macroscale further obfuscates

the physical meaning of the thermodynamic variables.

2.3.6. Theory of internal variables (TIV)

The TIV approach [56,59] has been developed to

model systems that have internal structure. This ap-

proach makes use of the traditional intensive variables
of ET in the formulation of the energy, but also adds

some additional variables of state, the internal variables,

which we denote as I. The classic intensive variables are

considered controllable or observable while the newly

introduced independent variables are not. Rather, these

internal variables of state describe the internal structure

hidden from the observer. Appropriate selection of these

internal variables will depend heavily on the scale at
which the system is being observed. This expansion of

the list of variables at the microscale has some similari-

ties to systematic transformation of CIT to a macroscale

wherein internal variables relating to the geometric

properties arise naturally.

2.3.7. Macroscale thermodynamics

All of the preceding approaches to thermodynamics
have been applied at the microscale to obtain useful re-

sults. Thus they all have potential for application at the

macroscale. However, at the macroscale the local equi-

librium assumption does not apply in general; thus the

specification of the functional dependence of energy is

more complicated. For example, the local equilibrium

assumption allows for temperature to be defined at a

microscale point even when a system is not at global
equilibrium. However, a macroscale ‘‘point’’ actually

contains all the material in the REV centered at that

point. Thus, specification of a macroscale temperature

does not account for temperature gradients that may

exist within the REV and therefore provides limited

thermodynamic information. Furthermore, the tempera-

tures of two different phases at the macroscale may be

different even though, from a microscale perspective,
the local equilibrium assumption would apply. Similar

considerations apply to other intensive variables, such
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as pressure and chemical potential. Therefore to extend

the applicability of any microscale thermodynamic app-

roach, a method is needed that transforms the approach

systematically from the microscale to the macroscale.

Recently, a macroscale thermodynamic formulation

has been developed that is consistent with the microscale
for a multiphase flow system along the lines of CIT [35].

When microscale thermodynamics are averaged, addi-

tional terms arise in the thermodynamic expressions that

must be accounted for. Some of these terms relate to the

geometric densities such that the macroscale thermody-

namics takes on some of the attributes of TIV. However

some additional terms arise that account for heterogene-

ity of the intensive variables within the averaging vol-
ume. These terms do not appear in the RT approach,

the method that has been used heretofore for porous

medium systems, so that consistency between microscale

and macroscale perspectives cannot be established.

Averaging of microscale thermodynamics provides an

approach to develop macroscale closure relations that

are consistent across scales.
3. Thermodynamically constrained averaging theory

(TCAT)

3.1. Overview

We propose a thermodynamically constrained aver-

aging theory (TCAT) approach as a systematic method-
ology that can be used to formulate porous medium

models based upon rigorous averaging starting from

microscale continuum conservation principles in con-

junction with an appropriate microscale thermodynamic

formulation. The TCAT approach involves the follow-

ing steps:

• an entropy inequality (EI) expression for the entire
system of concern is generated;

• an appropriate set of mass, momentum, and energy

conservation equations is formulated at the desired

scale for all relevant entities (volumes, areas, common

curves, and common points) based upon clearly

defined averages of microscale quantities;

• an appropriate microscale thermodynamic theory is

averaged up to the desired scale, and differential
forms of internal energy dependence for spatial and

temporal derivatives are generated;

• the EI is augmented using the products of Lagrange

multipliers with conservation equations and with dif-

ferential, consistent-scale thermodynamic equations;

• the set of Lagrange multipliers is determined to select

the combination of conservation equations that

describes the physics of interest and to eliminate time
derivatives from the augmented EI producing the

constrained EI;
• geometric identities and approximations are applied

to the constrained EI to eliminate additional remain-

ing time derivatives as needed;

• the resultant simplified EI is used to guide the formu-

lation of general forms of closure approximations

consistent with the second law of thermodynamics;
and

• microscale and macroscale modeling and experimen-

tation are used to advance appropriate forms of clo-

sure relations.

The TCAT approach is intended to be a broad frame-

work for generating consistent, closed models of trans-

port phenomena in porous medium systems, as well as
systems composed of any mixture of phases, at scales

ranging from the microscale to the megascale. The result-

ant models are based upon rigorously defined spatial

and, perhaps, temporal averages of microscale quanti-

ties. Transport phenomena of interest include mass,

momentum, and energy transport for both entire entities,

such as volumes, interfaces, common curves, and com-

mon points, and individual species within a set of enti-
ties. The spatial scales of concern include a continuum

of length scales. This continuum consists of the following

four members: (1) the microscale, the minimum scale at

which the laws of continuum mechanics apply; (2) the

macroscale or porous medium continuum scale; (3) the

mesoscale or a scale over which macroscopic properties

are heterogeneous in some regular or stochastic pattern;

and (4) the megascale or scale of the system of concern.
The TCAT approach uses Lagrange multipliers,

based loosely on [57], to constrain a system EI using

conservation equations. Broadly, the Lagrange multipli-

ers are selected to eliminate material time derivatives

from the equation so that the entropy generation is re-

lated to dissipative fluxes. The approach involves gener-

alizations in that conservation equations for species in

phases, interfaces, common curves, and common points
are all accounted for in a single framework. Addition-

ally, thermodynamic relations are postulated at the

small continuum scale. Since the scale of all equations

is transformed systematically, ambiguity about the

meaning of quantities at larger scales is avoided and

consistency between the definitions of quantities at dif-

ferent scales is assured. In the sections that follow, we

present general examples of the TCAT approach at
two different spatial scales: the microscale and the

macroscale. As mentioned above, the framework is

applicable in general across a continuum of length and

time scales and is mathematically consistent regardless

of the scale chosen.

3.2. Microscale formulation

We consider here the general case of species i in entity

a, where the entity may refer to a phase, an interface, or
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a common curve. Let the microscale mass balance equa-

tion be indicated as

Mia ¼ 0 ð3Þ

which describes the time rate of change of the mass of
species i per unit region of entity and unit time. The

terms in the equation include the rate of accumulation,

flux, and generation terms. For simplicity here, and con-

sistent with the idea that this manuscript provides only

an overview, the precise forms of the conservation equa-

tions are not given. We simply state that conservation

equations can be obtained at the scale of interest.

The momentum vector equation is given as

Pia ¼ 0 ð4Þ
which expresses the time rate of change of momentum

and has dimensions of momentum of species i per unit

region of entity and unit time.

The total energy conservation equation is represented

as

Eia ¼ 0 ð5Þ

This form expresses the time rate of change of the

sum of internal, potential, and kinetic energy and has

dimensions of total energy of species i per unit region

of entity. Each of the conservation equations contains

terms that account for rates of accumulation of the
property of interest within the entity, advection, a

non-advective flux, surface and body sources, and rates

of production.

Additionally, an entropy conservation equation for a

species in an entity may be derived using general conser-

vation principles. However, entropy is conceptually dif-

ferent from the strictly conserved quantities of mass,

momentum, and energy because the production term
for each species is unspecified. This characteristic seem-

ingly makes the equation of little use. However, some

advantage is achieved by summing the species entropy

equations over all species, equating the remainder of

the equation to the production term, and noting that

inequality resulting from the second law of thermody-

namics is of the formX
i

Sia ¼ Ka P 0 ð6Þ

This equation has dimensions of entropy per unit re-

gion of entity and unit time. This relation applies to a

‘‘point’’ which, at the microscale, is ‘‘occupied’’ by all
the species comprising the continuum at that location.

At the microscale, the conservation equations may be

considered as constraints on entropy production in that

entropy cannot be produced by any mechanism that

would require violation of these basic laws. Thus the

conservation equations may be indicated as constraints

by making use of Lagrange multipliers such that the

point entropy inequality must satisfy:
X
i

Sia þ
X
i

kEiaEia þ
X
i

kPia �Pia þ
X
i

kMiaMia

¼ Ka P 0 ð7Þ

This equation contains material time derivatives of

entropy; internal, kinetic, and potential energy;

momentum; and mass. Because the time derivatives

that appear in this relation can be either positive or

negative, reduction of the equation to a form that pro-

vides insight into the forms of the dissipative fluxes re-
quires that these time derivatives be eliminated. This is

achieved by requiring the coefficients of the independ-

ent time derivatives to be zero. This is accomplished

by selecting the Lagrange multipliers such that they

eliminate these time derivatives. For example, the time

derivatives of velocity are eliminated by judicious

choice of the Lagrange multiplier for the momentum

equation, kPia , that multiplies the time derivative of
velocity in that equation in light of the Lagrange mul-

tiplier for the energy equation, kEia , that multiples a

time derivative of velocity that arises in the kinetic en-

ergy term. The time derivatives of energy, entropy, and

mass appear in only one of the conservation equations

and therefore will survive the purging of time deriva-

tives unless some additional relation can be provided

that expresses their interdependence. This relation of
interdependence is obtained from thermodynamic con-

siderations and serves as yet one more constraint to be

incorporated into Eq. (7).

Eq. (1) provides an equilibrium thermodynamic rela-

tion for a phase over an entire system X. It is important

to realize that such an expression applies at equilibrium

only and not during a transition or in transient cases or

when there are gradients in the variables. A time deriv-
ative of this equation is formally meaningless. However,

our interests, and the equations we are working with, in-

volve dynamic processes. To model such processes, it is

common to assume implicitly that the laws of thermody-

namics can be applied locally. This assumption is known

as the local equilibrium hypothesis, and it assumes that

a system can be considered to be an assembly of subsys-

tems for which the rules of equilibrium thermodynamics
apply. The local equilibrium assumption is a component

of the CIT theory, for example. Thus rather than impos-

ing Eq. (1) on an entire system as a whole, such an equa-

tion is considered to apply at each point in the system

with the relation expressed in terms of the extensive

quantities per unit mass or per unit entity region. Time

derivatives and spatial gradients of these quantities are

then allowed to exist within the system.
For example, if Eq. (2) is expressed per unit volume

for a point within a phase, it becomes

E ¼ Eðg; qÞ ð8Þ

Note that the functional dependence indicated is very

simple. If energy density depends on time, this is ac-
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counted for through the dependence of entropy and

mass densities on time. Similarly spatial variation of

energy is accounted for through the dependence of

entropy and mass densities on position. In more gen-

eral cases when the system is far enough from equi-

librium that the local equilibrium assumption does
not apply, it may be useful to also include depend-

ence on other quantities that would be zero for a

total system at equilibrium but are non-zero for

dynamic systems. For example, dependence of the en-

tropy on a heat conduction vector may be postulated;

such a situation would require thermodynamics of the

EIT or RET class. The objective of this paper is not

to determine or specify any specific thermodynamic
functional dependence or to restrict the analysis just

to those cases where the local equilibrium assumption

applies. Rather, the objective is to outline a method

of derivation of closed conservation equations in

instances when some thermodynamic functional

dependence is employed. Therefore, we express the

microscale entropy per unit region of species i in

entity a as

Eia ¼ EiaðXiaÞ ð9Þ
where Xia is the vector of independent variables on

which the energy per region of entity of species i in entity

a may depend. Then the equation for the partial time

derivative of energy is

oEia

ot
� oEia

oXia
� oXia

ot
¼ 0 ð10Þ

If the entity a is a surface, common curve, or point,
the partial time derivative is taken holding surface,

curve, or point coordinates, respectively, constant. Sim-

ilarly, a gradient with the appropriate dimensionality

may be obtained as

rEia �rXia �
oEia

oXia
¼ 0 ð11Þ

where $ is the three-, two-, or one-dimensional gradient

operator depending on whether a represents a volume,

interface, or common curve type of entity, respectively.
Of course, there is no gradient operator for a common

point entity.

As an example of Eq. (11), if the entity is a phase w

that is composed of a single species with energy density

depending only on entropy and mass densities then the

gradient of energy is related to the gradient of the inde-

pendent variables according to

rEw �
oEw

ogw
rgw �

oEw

oqw
rqw ¼ 0 ð12Þ

The thermodynamic constraints express relations
among variables that are useful in determining the val-

ues of the Lagrange multipliers. Eqs. (10) and (11) are

applied as constraints to Eq. (7)
X
i

Sia þ
X
i

kEiaEia þ
X
i

kPia �Pia

þ
X
i

kMiaMia þ
X
i

ktia
oEia

ot
� oEia

oXia
� oXia

ot

� �

þ
X
i

kxia � rEia �rXia �
oEia

oXia

� �
¼ Ka P 0 ð13Þ

For this microscale equation, the selection of the La-

grange multipliers determines which entity is under

study and the types of closure relations that can be
obtained.

As an example of the application of Eq. (13), con-

sider a fluid phase, w, that is composed of N chemical

species. Although it is possible to examine this system

using a full set of equations for each species, consider

the simplification where the mass of each species is

modeled while the momentum and energy of the phase

as a whole is of interest. For this situation, Eq. (13) re-
duces to

Sw þ kEwEw þ kPw �Pw þ
XN
i¼1

kMiwMiw

þ ktw
oEw

ot
� oEw

oXw
� oXw

ot

� �

þ kxw � rEw �rXw �
oEw

oXw

� �
¼ Kw P 0 ð14Þ

where

Sw ¼
XN
i¼1

Siw ð15Þ

kEiw ¼ kEw ; i ¼ 1; . . . ;N ð16Þ

Ew ¼
XN
i¼1

Eiw ð17Þ

kPiw ¼ kPw ; i ¼ 1; . . . ;N ð18Þ

Pw ¼
XN
i¼1

Piw ð19Þ

Ew ¼
XN
i¼1

Eiw ð20Þ

ktiw ¼ ktw ; i ¼ 1; . . . ;N ð21Þ

kxiw ¼ kxw ; i ¼ 1; . . . ;N ð22Þ
Additionally, for this system, a common selection of

the independent variables on which the energy density

depends, based on the local equilibrium assumption,

would be the entropy density and the mass density of
each of the chemical species such that

Xw ¼ fg ; q xiwg; i ¼ 1; . . . ;N ð23Þ
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where qw is the density of phase w and xiw is the mass

fraction of species i in phase w. When this selection is

made, the following conditions are also obtained from

standard thermodynamic approaches (e.g., CIT)

Ew ¼ gwhw þ
XN
i¼1

ðqwxiwliwÞ � pw ð24Þ

where pw is the pressure, hw is the temperature defined by

hw ¼ oEw

ogw

� �
qwxiw

ð25Þ

and liw is the chemical potential for species i defined as

liw ¼ oEw

oqwxiw

� �
qwxjw;gw

ð26Þ

In Eq. (25), qwxiw is constant for all i such that the

total mass per volume and composition are constant.
In Eq. (26), qwxjw is constant for all j not equal to i such

that the relative concentrations of all species to each

other, except for species i, is held constant.

The general formulation given by Eq. (13) and the

subsequent definitions are used with a systematic proce-

dure such as the Coleman and Noll method [20] to ob-

tain closure relations for some quantities appearing in

the conservation equations. The expressions requiring
closure include the diffusion vector that appears in the

species balance equation, the stress tensor in the

momentum equation, and the non-advective heat flux

in the energy equation. Equations of state are also

needed to make the system of equations solvable.

One final note that may help explain the workings of

this development is that if one applied the condition

kMiw ¼ kMw for all i, the separate species conservation
equations in Eq. (13) would collapse to a sum that is

equal to the mass conservation equation for the w phase.

Although such a formulation is allowable, it would not

be possible to extract information about the functional

form of the diffusion vector. Only the behavior of the

phase as a whole would be described by the closure rela-

tions. Thus the Lagrange multipliers have a multiple role

in TCAT. First, they indicate the detail of a model of an
entity, either including or excluding mass, momentum,

and energy equations on a species basis and even on

an entity basis. Second, their inclusion to constrain the

entropy inequality with mass, momentum, and energy

conservation conditions ensures that the entropy ine-

quality applies to actual processes. Third, their selection

in conjunction with the postulated extension of equilib-

rium thermodynamic relations to the dynamic state
facilitates the elimination of time derivatives such that

the entropy production rate density, Ka, is related en-

tirely to terms in the conservation equations describing

body and surface sources as well as generation terms

(i.e., the terms other than those originating from tempo-

ral derivatives). This approach allows for derivation of
functional forms of the source terms that require

closure.

3.3. Macroscale formulation

The macroscale formulation involves a change in
scale such that the properties of continuum ‘‘points’’

are obtained from a much larger collection of mole-

cules than the microscale description. Some sort of

averaging procedure is done that involves a region in

the neighborhood of a microscale point. The average

values obtained are then associated with the point of

interest. In this fashion, continuum descriptions are

generated that have larger scale time and space charac-
teristics. The time-averaged momentum equation that

describe turbulent flow, ultimately with the aid of con-

stitutive approximations for the Reynolds stresses, is

an example of averaging in time. Simulation of flow

and contaminant variations along a river channel using

equations that have been integrated over the river

cross-section, and perhaps averaged over a time inter-

val, also involves macroscale forms of mass and
momentum conservation equations. Macroscale simu-

lation of flow and transport in porous media employs

averaging around a point such that the conservation

equations are expressed as functions of time and all

three dimensions in space.

Here, we will consider this last kind of averaging such

that an integration region in space is occupied by a num-

ber of entities such that they are intermixed. Thus, the
macroscale perspective does not recognize phases as

being adjacent to each other but models them as being

present at a ‘‘point’’ and occupying various fractions

of that point. Likewise, the exact placement of the inter-

faces between phases is not known at the macroscale.

Alternatively, the amount of area per volume is consid-

ered as well as macroscale measures of the orientation of

the interfaces within the averaging region. Similar con-
siderations apply to the common curves and common

points. With this averaging perspective, we include inte-

gration over a river cross section, for example, as a spe-

cial case in which one phase occupies the complete

averaging region and the scale of averaging in two of

the dimensions is on the same order as the system

dimension. Thus, the formalism advocated is applicable

to a wide range of problems. Indeed, if the region of
averaging is of microscale dimensions, the subsequent

framework becomes equivalent to that of Section 3.2.

For the macroscale formulation applied to porous

medium systems, the conservation equations for an entity

are averaged by integration over the space of the entity

within an REV. Thus, at each point, conservation equa-

tions for macroscale properties of phases, surfaces, com-

mon curves, and common points are obtained. Let the
macroscopic mass balance equation be expressed analo-

gously to its microscale precursor using superscripts
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rather than subscripts. In entity a, the macroscale mass

balance equation for species i is indicated as

Mia ¼ 0 ð27Þ
Regardless of the entity being considered, this equa-

tion has dimensions of mass per unit volume and unit

time. For example, if one integrates the mass conserva-

tion equation for a species within a surface contained in

an REV over that surface and then divides by the vol-

ume of the REV, the mass conservation equation will
have units of mass per time and volume. This approach

to obtaining macroscale equations is operationally sim-

pler than averaging and dividing by the associated area

because it allows the entity equations obtained to be di-

rectly added together to obtain a full conservation equa-

tion for a species at a macroscale point.

The vector macroscale momentum equation for spe-

cies i has dimensions of momentum of species i in entity
a per unit volume and unit time and is given as

Pia ¼ 0 ð28Þ
The total energy conservation equation models the

rate of change of internal, potential, and kinetic energy

of species i in entity a and has dimensions of energy per

unit volume of REV and time according to

Eia ¼ 0 ð29Þ
Eqs. (27)–(29) account for rates of accumulation of

the properties of interest at the macroscale point due

to the presence of an entity, its interaction with other

entities within the region and the advection, non-advec-

tive transport, surface and body sources, and rates of

production of the properties. The additional condition

that the rate of production of entropy at any point must
be non-negative accounts for the fact that the properties

of the material at a point are made up of contributions

from all entities as well as from all species. Therefore,

the entropy inequality at a macroscale point isX
a

X
i

Sia ¼ K P 0 ð30Þ

At the macroscale, the conservation equations are

again considered to be constraints that limit mechanisms
of entropy production. Since all entities and species are

present at a point, conservation equation constraints are

enforced using Lagrange multipliers such that

X
a

X
i

Sia þ
X
a

X
i

kiaEE
ia þ

X
a

X
i

kiaP �Pia

þ
X
a

X
i

kiaMMia ¼ K P 0 ð31Þ

Although this equation indeed constrains the entropy

inequality by subjecting it to conservation equations,

these constraints may only be utilized to advantage if

the proper system thermodynamics are imposed. This

need gives rise to additional complications.
Specification of thermodynamics for a macroscale for-

mulation is not obvious. Consider a rather simple case

where cold water is poured over very hot rocks. Micro-

scale modeling of this systemwould consider temperature

gradients within each phase and would also identify a

temperature for each point in the phases even though
the system is not at equilibrium. Definition of a tempera-

ture at the interface between the phases would be complex

and, perhaps, could be avoided by use of some two

domain heat transfer relation that only requires specifi-

cation of the temperatures near the interface. Local equi-

librium hypotheses could be used to advantage in

modeling this system. However, if we consider a macro-

scale point containing rocks, water, and a gas phase
composed of air and water vapor, the macroscale temper-

atures of the three phases will be different. Furthermore,

microscale temperature gradients that exist within each

phase suggest that the macroscale temperature does not

convey the full richness of processes occurring in the sys-

tem. The macroscale temperature for a phase is some

average of the microscale temperatures. The idea of tem-

perature as a measure of equilibrium is diminished, as is
the actual meaning of the macroscale temperature as a

quantity to be directly measured. The microscale thermo-

dynamic internal energy function may be employed and

exploited thermodynamically under the assumption of

local equilibriumand systematic extensions to that assump-

tion. However, the local equilibrium assumption is not as

robust for macroscale systems particularly when the time

and space dimensions defining the macroscale of interest
are large enough that variation of microscale properties

within the averaging region may be significant.

In the face of this adversity, the rational thermody-

namic approach moves boldly forward and hypothesizes

dependences of the macroscale internal energy on a se-

lected set of macroscale variables. The actual definitions

of these variables that would lead to them being meas-

ured is disregarded. Furthermore, the requirement that
a macroscale thermodynamic formulation should be-

come equivalent to a microscale thermodynamic formu-

lation when its time and length scales are reduced is not

considered. Essentially, the RT approach borrows some

elements from the microscale, but makes additional pos-

tulates on an ‘‘as needed’’ basis to arrive at mathemati-

cally consistent and useful formulations. Measurement

of the parameters that appear in the equations as they
arise from their mathematical definitions is implicitly

abandoned in favor of using values that actually de-

scribe the physical systems of interest.

This seemingly harsh assessment is not intended to

deny the success that rational thermodynamics has en-

joyed, especially in microscale formulations. However,

a macroscale thermodynamic formulation must lead to

a system description that involves measurable, or at
least well-defined, parameters and that is consistent with

the microscale model.
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To foster these desired traits, we use the TCAT ap-

proach to macroscale modeling. This approach employs

an averaging procedure to transfer whatever microscale

thermodynamic formulation one wishes to employ to

the macroscale. Thus, efficiencies and deficiencies of a

microscale model are preserved, but no new deficiencies
are introduced. The mechanics of this conversion have

been introduced previously [35] and will be employed

for systems of varying complexity in subsequent papers.

The effect of this transformation is to obtain a macro-

scale internal energy per volume with dependence on

an expanded set of macroscale variables in comparison

to the number of variables on which the microscale form

depends. Alternatively, this dependence may be ex-
pressed analogously to the microscale form with some

additional terms arising in expressions for the deriva-

tives of the macroscale energy.

Here the thermodynamic formulation employed will

make use of the internal energy of species i in the a entity
per unit of averaging volume as

Ei��a ¼ Ei��a Xia
� �

ð32Þ

In general, the set Xia consists of macroscopic counter-

parts to Xia as well as some additional variables. Note
that nothing in this specification precludes the use of a

direct macroscale RT specification of dependence of en-

ergy on macroscale variables. Indeed, any macroscale

postulation of thermodynamic behavior may be em-

ployed in the formalism. The TCAT approach, however,

obtains the thermodynamic dependence through system-

atic transformation of variables from the microscale to

the macroscale.
The time derivative and gradient of the macroscale

internal energy are obtained, respectively, as

oEi��a

ot
� oEi��a

oXia �
oXia

ot
¼ 0 ð33Þ

and

rEi��a �rXia � oE
i��a

oXia ¼ 0 ð34Þ

Although these two equations appear to be similar

to their microscale counterparts, Eqs. (10) and (11),
there is one important conceptual difference. The

transformation to the macroscale by integration over

entities within an REV changes all variables such that

they are defined in three-dimensional space, not only

on the corresponding entity space. For example, a

microscale surface property is defined only on that

surface such that its gradient is a two dimensional

function. A macroscale surface property is obtained
as the amount associated with a macroscale volume.

Thus the partial time derivative in Eq. (33) and the

gradient in Eq. (34) are both applied to functions that

depend on time and three macroscale space

dimensions.
The thermodynamic conditions as given by Eqs.

(33) and (34) are applied as constraints to Eq. (31)

yielding

X
a

X
i

Sia þ
X
a

X
i

kiaEE
ia þ

X
a

X
i

kiaP �Pia

þ
X
a

X
i

kiaMMia þ
X
a

X
i

kiat
oEi��a

ot
� oEi��a

oXia �
oXia

ot

� �

þ
X
a

X
i

kiax � rEi��a �rXia � oE
i��a

oXia

� �
¼ K P 0 ð35Þ

Both of the vector Lagrange multipliers in this equation

are three dimensional. Additionally, when the transfor-
mation of the microscale thermodynamics to the macro-

scale is performed systematically, some of the derivative

terms in the thermodynamic expressions may be re-

placed by integral expressions. This situation will be ex-

plored in subsequent papers.

An interesting conceptual point is the fact that by the

TCAT approach in which the macroscale thermody-

namics are averaged from the microscale, Eq. (35) may
be obtained as the average of Eq. (13) written for each

of the entities and summed together if the Lagrange

multipliers are treated as constants for the averaging

process. This highlights the fact that the conservation

equations and thermodynamic relations are consistent

between scales in that the fully averaged constrained

entropy inequality at the larger scale is just the average

of the smaller scale form. In all previous macroscale
formulations, the conservation equations are averaged

between scales to retain consistency, but the thermody-

namic formulations are independent thus making it

impossible to make direct comparisons of terms.

The general expression given in Eq. (35) provides

the largest number of independent constraints that

are available from conservation and thermodynamic

equations. In theory, some additional constraints can
be formulated from relations involving geometric vari-

ables that arise in the averaging process. For example,

the sum of the partial mass entity spaces of the species

within each entity must be 1. Also, the sum of the vol-

ume fractions within the averaging volume must be 1.

These straightforward conditions can be added as con-

straints to Eq. (35). More complex are conditions

involving the evolution of the size of the volume frac-
tions, the interfacial areas per volume, and the com-

mon curve lengths per volume. In general these

conditions are not known [60] but some approximate

expressions can be written for the near equilibrium sit-

uation [42]. For convenience, these approximate rela-

tions will be applied to the entropy inequality

subsequent to the determination of the Lagrange mul-

tipliers in Eq. (35). The reason for this postponement is
that the geometric relations are only approximate, and

it will be useful to have an expression not influenced by
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these approximations. Then, if better approximations

become available, it will be relatively easy to employ

them.

Typically, when studying a system, use of separate

energy equations for each species in each entity is

avoided as being excessively complex. Combining the
energy equations for the species makes it unnecessary

to examine partial energy entities for each species. Only

the partial mass energies for the entities need to be

modeled. This relaxation of the constraints is obtained

by requiring for all species i

kiaE ¼ kaE ð36Þ

kiat ¼ kat ð37Þ

kiax ¼ kax ð38Þ
With these conditions imposed, Eq. (35) becomesX

a

Sa þ
X
a

kaEE
a þ

X
a

X
i

kiaP �Pia

þ
X
a

X
i

kiaMMia þ
X
a

kat
oE��a

ot
� oE��a

oXa �
oXa

ot

� �

þ
X
a

kax � rE��a �rXa � oE
��a

oXa

� �
¼ K P 0 ð39Þ

where the macroscale entropy equation, energy equa-

tion, and internal energy for an entity are defined,

respectively, by

Sa ¼
X
i

Sia ð40Þ

Ea ¼
X
i

Eia ð41Þ

and

E��a ¼
X
i

Ei��a ð42Þ

As an example of the expression for the macroscale
thermodynamic equations for E��a, consider a phase w

with the microscale internal energy defined by Eq.

(24). If the TCAT approach is employed such that this

equation is averaged over the w phase within an averag-

ing volume similarly to the procedures in [35], the

macroscale expression for the energy is

E��w ¼ g��wh�w þ
XN
i¼1

ðqw�wxi�wli�wÞ � �wpw ð43Þ

where

E��w ¼ 1

V

Z
Xw

Ew dr ð44Þ

g��w ¼ 1

V

Z
Xw

gw dr ð45Þ
�wqw ¼ 1

V

Z
Xw

qw dr ð46Þ

xi�w ¼ 1

qw�w
V
Z
Xw

qwxiw dr ð47Þ

�w ¼ 1

V

Z
Xw

dr ð48Þ

h�w ¼ 1

g��wV

Z
Xw

gwhw dr ð49Þ

li�w ¼ 1

qw�wxi�wV

Z
Xw

qwxiwliw dr ð50Þ

�wpw ¼ 1

V

Z
Xw

pw dr ð51Þ

Note the subtle point that the macroscale temperature

and chemical potential obtained using TCAT are de-

fined as weighted averages of microscale counterparts,

whereas the definitions of these quantities at the micro-

scale, as given in Eqs. (25) and (26), are obtained

through partial derivatives of the internal energy. Defi-

nitions similar in form to the microscale definitions,
but in terms of macroscale quantities, are proposed if

one uses the RT approach. However, the precise mean-

ing and measurability of these quantities based on RT is

unclear.

Additionally, the derivative of the macroscale inter-

nal energy based on Eq. (43) is

dE��w ¼ h
��w dg��w þ

XN
i¼1

li�w dðqw�wxi�wÞ � pw d�w þ g��w dh�w

þ
XN
i¼1

ðqw�wxi�wÞdli�w � �w dpw ð52Þ

Further manipulation of the thermodynamic expres-

sion obtained by using the thermodynamics obtained

with TCAT leads to the following relation:

g��w dh�w þ
XN
i¼1

ðqw�wxi�wÞdli�w � �w dpw

¼ � 1

V

Z
Xw

gw½dðhw � h�wÞ�dr

�
X
i

1

V

Z
Xw

qwxiw½dðliw � li�wÞ�dr
� �

þ 1

V

Z
Xw

½dðpw � pwÞ�dr ð53Þ

If microscale point values are constant within an

REV such that the average temperature, chemical pot-

entials, and pressure are equal to those point values,
the three integrals on the right side of Eq. (53) are zero.

The form of the equation is identical to the microscale
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Gibbs-Duhem equation. Additionally, in this case, the

last three terms in Eq. (52) will drop out; and the equa-

tion has a similar form as the microscale equation based

upon a CIT approach. However, in general, the devia-

tions of microscale values from their macroscale aver-

ages introduce the additional terms in the TCAT
approach. Although these terms may seem to be unde-

sirable, in fact they are important in assuring consist-

ency between scales.

This outline of the macroscale formulation is in-

tended to be an introduction to the use of macroscale

formulations in modeling. The full exposition of the util-

ity of the method must be postponed until the develop-

ment of all the mathematical tools has been presented.
Several points related to the richness of the methods

for developing model equations at larger scales and

the degree of refinement of the models are mentioned

briefly here. Specification of the Lagrange multipliers

provides constraints that indicate the detail of the con-

servation equations to be employed in constraining the

entropy inequality. Setting the multipliers of a conserva-

tion equation type, such as energy, to be equal for all
species in an entity eliminates the ability to obtain clo-

sure relations for the governing equations on a species

basis, but also reduces the data required to support

the model equations. Additionally, the Lagrange multi-

pliers may be used to exclude an entity from the model

description. Additional constraints on the behavior of

the system, such as incompressibility or geometric infor-

mation, may be added to the form here via Lagrange
multipliers. Systematic and unambiguous change of

scale of variables must be performed to enhance under-

standing and to allow for information transfer between

scales. In particular, the thermodynamic forms at the

macroscale have historically not received research atten-

tion commensurate with their importance.
4. Discussion

Current modeling of porous medium systems is pla-

gued with inconsistencies and ill-defined variables. In

part, at least, this is due to the traditional roots of por-

ous medium flow equations, even for complex systems,

in the classic experimental work of Darcy for the sim-

plest of single fluid phase porous media. Additionally,
the absence of a careful transformation of all microscale

quantities in a formulation to the scale of interest has

contributed to this problem and hindered progress.

The procedure outlined here provides a systematic

path to continuum scale models for non-isothermal,

multiphase, multispecies porous medium systems across

a range of space and time scales with the common point

of origination being the microscale, or pore scale. The
TCAT approach outlined and shown by example en-

sures the desired consistency and provides a framework
for the development of models across a range of

complexities.

The TCAT, and previous developments upon which

it is based, provides a basis for a systematic development

of a hierarchical set of porous medium models of vary-

ing complexity. To be sure, this formulation approach
involves detailed, technical calculations, and in some

cases some new mathematical machinery. Future work

will report these details and the resulting new closed

models that result from application of the TCAT ap-

proach. Of course, these models must be compared with

both classical formulations and detailed computational

or laboratory experiments to evaluate fully the value

they add to our physical understanding and simulation
abilities.

The preceding should not be construed to suggest

that all porous medium formulation problems are within

reach. We believe that many unresolved issues exist that

will require substantial, creative effort to produce a ma-

ture level of understanding. As an example, we note

three areas in which significant work remains to be

done: thermodynamic approaches, multiple fluid phase
models, and stochastic models.

We have shown how thermodynamics can be system-

atically included in porous medium model formulations

starting from the microscale. However, we consider the

appropriate form of the thermodynamics upon which

one should base a given model an open issue. CIT is a

starting point, but may not be the final word. Detailed

work and comparisons among competing theories
should be investigated for a range of models and

systems.

While the TCAT approach provides a framework to

address complex multiphase, multispecies porous med-

ium models, we believe that many significant unresolved

problems exist with such systems. For example, this

framework will result in non-traditional closure rela-

tions. Reasonable forms of these closure relations need
to be deduced so that they are consistent with the theory

and observations. Once a suitable form of the closure

relations has been determined, issues related to parame-

ter value identification will also need to be resolved. Fur-

ther, multiple fluid phase porous medium systems that

occur in nature involve complex physical interactions

and processes that are not completely understood.

Among the most challenging are accounting for the
influence of disconnected fluid phases, of film flow,

and of mixed wettability systems. Much work remains

to resolve fully these issues.

Natural systems are stochastic in nature and the strict

assumptions of an REV and clearly separable length

scales may not be met for many systems. When such in-

stances occur, it will be necessary to modify the TCAT

approach to include thesemore complex conditions. Such
modifications appear possible, but significant detailed

calculations remain to assess fully the impact of such
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conditions on the resultant models. We do believe, how-

ever, that this is a more satisfying approach than building

stochastic models based upon the implicit, and sometimes

questionable, assumption that a classical model provides

a satisfactory description of the system physics.

Lastly, while the focus of this work is primarily on
the formulation of macroscale models of multiphase

porous medium systems, the TCAT approach is in prin-

ciple much more general than this. The TCAT approach

can be used to formulate consistent multiphase porous

medium models at the microscale, mesoscale, or mega-

scale, or time-averaged models as well. Even more gen-

erally, since most natural and engineered systems are a

subset of the complex systems considered explicity in
this work, models for such systems also may be formu-

lated based upon the TCAT approach.
5. Conclusions

Several observations form the basis of this work and

serve as the motivation for careful analyses to be pre-
sented in subsequent papers:

• classical porous medium models suffer from incon-

sistencies manifested as model variables and parame-

ters that are not rigorously defined and, hence,

cannot be consistently measured;

• averaging theory developed and applied over the last

two decades has resolved some of the problems with
classical models, but it too has led to some ill-defined

variables and inconsistencies;

• a key step in averaging theory is the introduction of

thermodynamics into a system entropy inequality,

and improvements in this step are needed to eliminate

many of the problems with existing models;

• we advocate the use of thermodynamic expressions

averaged from microscale thermodynamics as an
appropriate source of information needed to form a

useful system entropy inequality expression; and

• a framework based upon established and new

notions, which we call the thermodynamically con-

strained averaging theory (TCAT) approach, is out-

lined and is applicable to a wide range of problems.
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