Metal Gates for p-type GaAs Heterostructures

Brittany Hoard Pennsylvania State University

Advisor: Dr. Michael Manfra Purdue University

Molecular beam epitaxy system where GaAs wafers are grown

Goals

- GaAs/AlGaAs wafers two-dimensional hole gas
- Create metal gated structures on p-type GaAs/AlGaAs wafers
 - Manipulate the two-dimensional hole gas
 - Shallow vs. deep wafers
- Conditions to test:
 - Different gate metals
 - Gate oxide
 - Photolithography vs. e-beam lithography

Overview

- 1. Characterize wafers
- 2. Ohmic contacts
- 3. Etching
- 4. Metal gates

1. Wafer Characterization

- Cut samples out of wafers
- Solder contacts onto samples
- Anneal contacts
- Graph
 magnetoresistance to
 obtain carrier mobility
 and density

Transport Data for a Shallow Wafer

2. Ohmic contacts

- Test Au/Be contacts and annealing conditions:
 - Evaporate contacts onto sample using metal mask
 - Cut large sample into smaller samples
 - Anneal contacts at various times
 - Test contact resistances

Thermal evaporator

Annealer

Au/Be Contact Data

Sample	Annealing time	Au/Be thickness	Room temp. resistance (ohms)	4 K resistance (ohms)
3-10-05.1 (deep)	5 – 15 minutes	120 nm	11-14 k	40-100
6-29-11.1 (shallow)				
	5 minutes	61 nm	30-70 k	Non-ohmic
	16 minutes	137 nm	40-80 k	80-100 k
	5 minutes	137 nm	60-100 k	Insulating
	5 minutes	112 nm	60-140 k	Insulating
10-21-03.1 (deep)	5 minutes	112 nm	40-90 k	Insulating

Au/Be Contact Problems

- Highly inconsistent results with the deep samples
- Consistently do not work with the shallow samples
- Factors involved:
 - Equipment cleanliness
 - Annealing time and temperature
 - Evaporation rate
 - Thermal evaporator vacuum
 - Au/Be thickness

3. Etching

- Photolithography tests
 - Photoresist
 - Exposure time
 - Developing time
- 30 seconds exposure found to be optimal for the MA-N2403 photoresist (10 second developing time)

Next Steps

- Resolve Au/Be contact inconsistencies
- Deposit gate metal
- Testing