EPR spectroscopic studies of the electronic and atomic requirements in

Catalytic Water Oxidation by Ruthenium Complexes

Outline

- Introduction to my projectEPR
 - What is EPR?
 - How does it work?
- Data
 - Temperature Dependence
 - Power Dependence
 - Analysis of EPR Spectra
- Oxygraph
 - Overview
 - Graphs

Water Splitting

- Utilization of sun light requires solar capture, light-to-energy conversion and storage
- Ruthenium complexes are capable of water splitting

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

 $4Ce(IV) + 2H_2O \rightarrow 4Ce(III) + O_2 + 4H^+$

What is EPR?

Electron

 Paramagnetic
 Resonance

 technique for

 studying chemical
 species that have one
 or more
 unpaired electrons

How does EPR work?

- Magnetic moment makes electron act like a bar magnet
- Apply external magnetic field
- Unpaired electrons can move between their two spin states
- net absorption of energy, and it is this absorption which is monitored and converted into a spectrum

EPR Spectrometer

EPR signal – First derivation of absorption signal

G Factor

- Knowledge of the *gfactor* can give information about a paramagnetic center's electronic structure.
- Isotropic: gx = gy = gz
- Uniaxial: Two principal values coincide but the third is different
- Rhombic: $gx \neq gy \neq gz$

Some important classes of paramagnetic systems that show such anisotropy include:

- 1. Free Radicals
- 2. Transition ions surrounded by ligands
- 3. Point Defects

Orientations

Fig. 1. Schematic representation of g-tensor and the consequential e.p.r. spectra

Ru 3 Solution

Rhombic Ru 3

Power Dependence

Temperature Dependence

Curie's Law (general overview)

$$\mathbf{M} = C \cdot \frac{\mathbf{B}}{T},$$

$$C = \frac{Ng^2\mu_B^2J(J+1)}{3k_B}$$

- This relation was discovered experimentally by Pierre Curie.
 It only holds for high temperatures, or
 - weak magnetic fields.

Curie's Law 44 OOH

B/T	Intensity	
	0.0175	2.517E+11
	0.00875	1.105E+11
	0.005833333	79990000000
	0.004375	58950000000
	0.0035	4854000000
	0.002916667	4201000000

correlation= **0.997337449**

Curie's Law 3,4

B/T intensity 0.0175 1.901E+11 0.00875 1.253E+11 0.005833333 89750000000 0.004375 60380000000 0.0035 5067000000 0.002916667 50130000000 0.0025 4049000000

correlation= **0.985821465**

Temperature Dependence

O₂ Evolution Measured with Hansatech Oxygraph

Hansatech Oxygraph System for Photosynthesis & Respiration Measurement in Liquid-Phase.

Oxygen Evolution

Low Concentration Ru

Where is this Project headed?

- Understand critical electronic, energetic and geometric requirements of the water oxidation reaction
- This will constitute major steps towards development of future light-to-fuel energy solutions
- XANES and EXAFS analysis at Argonne National Lab.

Thanks!

 I would like to thank my advisor, Professor Yulia Pushkar, and graduate student, Dooshaye Moonshiram, for working with me this summer!

Questions?

