Atmospheric Characterization of El Peñón: The Site of the Large Synoptic Survey Telescope

Mallory Young Hendrix College

Advisor: Dr. John Peterson Purdue University 25 July 2009

Overview

- LSST: most powerful telescope yet (2014)
- Site: Cerro Pachón, Chile
- Atmosphere: series of turbulence sheets
- Photons altered according to Snell's Law
- Defining parameters: wind speed, wind direction, and seeing
- Poor seeing for distorted images

Wind Speed Characterization

Wind Speed Distribution

Rayleigh form of Weibull distribution

Excellent model for wind speeds

where

N

Wind Direction Distribution

Gaussian Probability Distribution Function

Excellent model for wind directions

Random Variate: $X \square Q = Z$

Where μ = mean

 σ = standard deviation

Seeing Characterization

Cutoff Height

- No seeing = no effects on photons ⇒ no need for modelled turbulence sheet
- We can safely set the highest sheet at 20km

Wind Magnitude Outliers

The predicted outliers were generally within 30% of the 20th Century Reanalysis outliers, and were almost always higher.

Individual Instances

Predicted values for Jan.

Data from the 20th vs. Century Reanalysis on 12:00am Jan. 1st, 1940

Vertical Wind Shear

Definition: a change in wind speed over a relatively short altitude difference in the atmosphere.

Causes: jet streams and streaks, temperature and pressure changes, convection, mountainous terrain, storms...

Jet Stream Characteristics:

 Typically found between 200 and 300 mb (9 to 12km above sea level)

- Between 1.5 and 4km thick
- Follows wavelike path
- Not continuous

Effect on Wind Speed Profile

Cause of Smoothness?

20th Century Reanalysis: wind data from 1908 to 1958.

Surface pressure
 observations are combined
 with a short-term forecast
 from integrations of an
 NCEP numerical weather
 prediction model to estimate
 the complete state of the
 atmosphere.

 Averaged over 6-hour intervals

Poor resolution (approx. 2.0°×2.0°×50mb))

Same Goes for Seeing Gemini campaign balloon launched at 2:33am on January 13, 1998 reveals lack of smoothness.

Causes of Discontinuity:

 Gravity waves (vertical waves of air caused by mountainous terrain, thunderstorm updrafts,...)

 High temperature gradients

Air moisture changes

Implementation

height	0	20.0000
wind	0	3.66568
winddir	0	315.762
Cn ²	0 1.2	24790e-16
height wind winddir Cn ²	1 1 17.6	79.6213 3.71343 317.824 33503e-17
height	2	316.979
wind	2	4.94487
winddir	2	315.041
Cn ²	2 2.4	9666e-17

Height: given in meters above the telescope (sits at an altitude of 2660m above sea level)

Wind: magnitude of wind speed given in meters per second.

Winddir: wind direction given in degrees, where 0 points due east. Cn^2 : in (m/s)^{-2/3} Seeing: measurement in arcseconds of the full width at half maximum of the image point spread $f_{max} =$

Х

Acknowledgements

- Dr. John Peterson, Purdue Physics Dept.
- Dr. Garrett Jernigan, UC Berkeley
- Dr. Mike Baldwin, Purdue Atmospheric Science Dept.

Jacob Carley, Atmospheric
Sciences graduate
student
National Oceanic
and Atmospheric
Association