CMS at CERN Higgs Boson Analysis, Part II

Amelia Uecker

Indiana University of Pennsylvania & Purdue University

Advisor: Dr. Daniela Bortoletto July 30, 2009 Final Presentation

Higgs Analysis Goals

- Find the best way to find the Higgs
 - Making the H->ZZ^(*)->4µ decay channel effective
- This work is to ensure that when the LHC gets real data it is understood correctly and conclusively
- Find properties of the Higgs
- Present results to the scientific community

Tracker Muons, Phase II

- New cuts on more and multiple variables
- Understanding detector geometry
 - Implement different muon sorting
 - Lee's event reconstruction
 - Finding viable cuts from interesting variables
- Current level of improvement ~1% additional significance increase
 - Hopefully we can still improve upon this

Reconstructed events for Higgs mass = 150 GeV/c^2

2D cut plots

- Δη: difference in pseudorapidity between the two muons from Z^(*).
 - Pseudorapidity is calculated from the angle between the y and z axes
 - y is vertical
 - z is along the beam
- Transverse momentum is taken from lower-momentum muon from Z^(*).

Interesting: $\Delta \eta$ vs. $\mu_4 p_T$

ZZ^(*) Background Alone

7

Effectiveness varies with mass

8

Detector geometry cuts

- Δη vs. μ₄p_T may be a good highmass cut against ZZ^(*) background
- Δφ between muons from a Z-decay
 φ refers to the angle in the xy plane
 - Perpendicular to the beam
- Δφ is also mass-dependent

 High mass cut possible for Z1
 Center cut possible for Z^(*)

Δφ from Z1: angle between 1st and 2nd muon paths

Δφ from Z^(*): angle between 3rd and 4th muons

Tracker Muons, Phase II

- Revamping our previous strategy currently results in ~1% increase in significance
- What are our other options?
 - 2e2µ, a similar decay channel
 - Calorimeter muon inclusion
 - MET: Missing Transverse Energy

2e2µ Analysis

- H -> $ZZ^{(*)}$ -> $2e2\mu$ decay analysis
- Expanding and adapting current framework to include 2e2µ channel
 - Has been put on hold
 - 4µ analysis has better selection efficiency
- Improve 4µ analysis before analyzing this decay

Current and Ongoing Work

- Calorimeter muon inclusion
 - 4 lepton workshop: adds efficiency for low p_T muons
 - High p_T muons may deposit extra energy here, too
- Conquering software problems
 - Progress is happening

These are muons detected in here

Current and Ongoing Work

- Missing transverse energy
 - Energy associated with missing transverse momentum, such as neutrinos
- Should be highly discriminating for the background
- May be effective on other backgrounds
- Possible use of this variable on other Higgs decays, such as H -> ZZ(*) -> 2μ2v
- Progress is happening despite more software issues and coding challenges

Future Development

- HiggsToZZ4Leptons analysis

 Common to several channels, reproducible
- FeynRules
 - Calculates Feynman rules for physics models to simulate new physics
- Genetic Algorithm for Rectangular Cuts OptimizatioN
 - Cuts "compete" based on performance power and after "generations," the "living" are optimized cuts
 - ~10⁵⁰ permutations in a couple of hours

Thank you to

- Everybody I work with:
- Dr. Daniela Bortoletto, Roberto Casagrande, and Lee Coates, plus Petra Merkel and Jakob Zablocki from CERN
- Images were produced by Roberto, Lee, and/or myself.

Pseudorapidity

Particles in the Standard Model

- Six quarks
- Six leptons
- Force carriers: photons for E&M, gluons for strong force, and W and Z bosons for weak force
- W and Z bosons are observed to have mass

The Science of the Search

- This analysis concerns the Higgs boson in the H -> ZZ^(*) -> 4 lepton decay
 - Ongoing work on the four muon channel
 - Broadening to work on the two electron, two muon channel
- The Higgs mass is unknown, thus the search goes over a range of masses from 115 to 600 GeV/c², focusing on the 115-205 range
- Actual collider data is fairly complex, so signal needs to be separated from background
 - ZZ, Zb-bbar, t-tbar backgrounds
 - These decay into leptons as well and must be cut out from the Higgs signal

Image References

Images:

- Standard Model, http://www2.warwick.ac.uk/fac/sci/ph ysics/teach/module_home/px147/ima ges/standardmodel.jpg
- All other images produced by Roberto Casagrande, Lee Coates, and/or Amelia Uecker at Purdue University

Tracker Muon Inclusion

- Started with a basic set of cut variables and cut values
- Applied to global muons
- Implemented the inclusion of additional tracker muon events
 - These are events with data from only the tracker portion of the detector
- Some early optimization of cuts