Wilson Loops in Large N
Field Theories

Author: Matthew Krafczyk
University of lllinois Urbana & Purdue University

Advisor: Prof. Martin Kruczenski




Wilson Loops

» Wilson Loops are a gauge invariant quantity

» With a complete set of Wilson loops, one is
able to rebuild all information about a field
theory.

» The simplest example of a Wilson loop is the
calculation for the Aharonov-Bohm effect.




Aharonov-Bohm Effect

» Consider electrons passing around a solenoid
and hitting a detector on the other side.
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» From electromagnetism, we have the 4-
vector potential _
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Aharonov-Bohm Effect

» Integrating that vector around the contour
created by the paths of the electrons, gives a
non-zero value, when the solenoid is turned
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» This is in essence a Wilson loop.

(WP> _ eigﬁp Ay dxH



Wilson Loop Usage

» The picture below illustrates a Wilson loop
used to calculate the interaction energy -+
between a quark and an anti-quark.
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» The Wilson Loop in this case comes out to
have the following form.

— E

(Wp) = e 1




Wilson Loop Usage

» Wilson loops of the following form indicate a

coulomb like force. c
(Wp) = e 1"

» Wilson loops of the following form indicate a

confinement like force. LT
(Wp) = e™ €

» You can see as the distance between the
quarks goes to infinity, so does their energy.
This is the essence of confinement




Large N field theories and string
theory

» Wilson loops are relatively easy to calculate
perturbatively in field theories with small numbers
of force particles

» As N goes to infinity, higher order terms cannot be
ignhored

» A paper states that Wilson loops can be calculated
with the surface area of a minimal area spanning
the contour.
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Area Minimization

» The path integral for computing the Wilson
Loop can be transformed into a surface
integral.

» The surface to be integrated is the surface of
least area ending on the path.

» The surface of least area can be strange in
the string theory metric.
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Calculus of Variations

» We start with an expression for area.
Ar = f/il(z,a z)
» Then, we allow the path to vary.
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Calculus of Variations

» Then, the variation in the total area is,
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» Using integration by parts, we get,
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Calculus of Variations

» Thus if we want the variation to go to zero,
We have the Euler-Lagrange equations for
multiple variables.
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» This gives the equations for two variables,
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Analytic Solutions

» A few situations have been solved exactly.

» If the boundary of the area to be calculated is
a circle, the answer can be proved to be a
sphere centered at zero.

» Abstracting only slightly to an ellipse gives
you an unsolved problem, and the purpose of
my summer here.
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Solving Computationally

» We have first elected to try to solve the
problem computationally.

» The first step is to write a program which
tries to find such a least surface area, and
show that the program gives the correct
answer for a circle, a hemisphere.

» After this has been shown, the idea is to run
the program on the ellipse to perhaps
determine more clearly a form for the
solution.




Renormalization

» Due to the metric string theory operates in,
the contour is not allowed to be at z = 0, but
at some z = €.




Renormalization

» The Area for any surface then takes on the

form, p

Area = - + Ag

» Hence, the piece of information we are most
interested in, is the A,.

» This is a form of renormalization. As € -> 0,
the Area is infinite, but A, stays the same.




Results

» The following graphs are the results of
interpolation of the resultant areas.

» The closest fit for a circle was of the form

Area = Af(n) + B Area = 4+ B

n2
» Then,treating B as the area for the continuous
shape, we apply the above formula to find A,.

» A similar procedure is applied to different

contours, but since most are not solved, we
have no way of being sure of the resolution
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Circle Results

» Here are some circle results
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» The Circle had an average A, of -6.843. This
is within .2 of the correct answer of =211, or

X Axis Title




Y Axis Title

Ellipse Results

» Here are
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some ellipse results
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» The ellipse gave an average A, of -7.95




Square Results

» Here are some square results
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The square data gave an average A, of
. -33.01 with a wide variance.
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Future Goals

» Find the root of the run issues.

» Using clues from the program, try to find an
analytic solution for various contours.

» Expand the program’s functionality to include
concave contours.




Thanks! --- Questions?




