Wilson Loops in Large N Field Theories

Author: Matthew Krafczyk University of Illinois Urbana & Purdue University Advisor: Prof. Martin Kruczenski

Wilson Loops

- Wilson Loops are a gauge invariant quantity
- With a complete set of Wilson loops, one is able to rebuild all information about a field theory.
- The simplest example of a Wilson loop is the calculation for the Aharonov-Bohm effect.

Aharonov-Bohm Effect

Consider electrons passing around a solenoid and hitting a detector on the other side.

From electromagnetism, we have the 4vector potential $A_{\mu} = (\varphi, A_i)$ $B = \nabla \times A$ $E = -\nabla \varphi + \frac{\partial A}{\partial t}$

Aharonov-Bohm Effect

 Integrating that vector around the contour created by the paths of the electrons, gives a non-zero value, when the solenoid is turned on.

$$\oint A_{\mu}dx^{\mu}\neq 0$$

> This is in essence a Wilson loop.

 $\langle W_P \rangle = e^{i \oint_P A_\mu dx^\mu}$

Wilson Loop Usage

The picture below illustrates a Wilson loop used to calculate the interaction energy between a quark and an anti-quark.

The Wilson Loop in this case comes out to have the following form.

$$\langle W_P \rangle \cong e^{-E_q - T_q}$$

Wilson Loop Usage

- Wilson loops of the following form indicate a coulomb like force. $\langle W_P \rangle \simeq e^{-\frac{c}{L}T}$
- Wilson loops of the following form indicate a confinement like force. $\langle W_P \rangle \cong e^{-cLT}$
- You can see as the distance between the quarks goes to infinity, so does their energy. This is the essence of confinement

Large N field theories and string theory

- Wilson loops are relatively easy to calculate perturbatively in field theories with small numbers of force particles
- As N goes to infinity, higher order terms cannot be ignored
- A paper states that Wilson loops can be calculated with the surface area of a minimal area spanning the contour.

$$\langle W_P \rangle \simeq e^{-Area}$$

Area Minimization

- The path integral for computing the Wilson Loop can be transformed into a surface integral.
- The surface to be integrated is the surface of least area ending on the path.
- The surface of least area can be strange in the string theory metric.

$$ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$$

Calculus of Variations

• We start with an expression for area.

$$A_T = \int A(z,\partial_\mu z)$$

> Then, we allow the path to vary.

$$z = z' + \delta z \qquad A_T = \int A(z' + \delta z, \partial_\mu z' + \partial_\mu \delta z)$$
$$= \int A(z', \partial_\mu z') + \frac{\partial A}{\partial z} \delta z + \frac{\partial A}{\partial (\partial_\mu z)} \partial_\mu (\delta z) + \cdots$$

Calculus of Variations

Then, the variation in the total area is,

$$\delta A_T = \int \frac{\partial A}{\partial z} \delta z + \frac{\partial A}{\partial (\partial_\mu z)} \partial_\mu (\delta z)$$

Using integration by parts, we get,

$$\delta A_T = \int \frac{\partial A}{\partial z} \delta z - \partial_\mu \left(\frac{\partial A}{\partial (\partial_\mu z)} \right) \delta z + \left[\frac{\partial A}{\partial (\partial_\mu z)} \delta z \right]$$
$$\delta A_T = \int \left(\frac{\partial A}{\partial z} - \partial_\mu \left(\frac{\partial A}{\partial (\partial_\mu z)} \right) \right) \delta z$$

Calculus of Variations

 Thus if we want the variation to go to zero, We have the Euler-Lagrange equations for multiple variables.

$$\frac{\partial A}{\partial z} - \partial_{\mu} \left(\frac{\partial A}{\partial (\partial_{\mu} z)} \right) = 0$$

> This gives the equations for two variables,

$$\frac{\partial A}{\partial z} - \partial_x \left(\frac{\partial A}{\partial (\partial_x z)} \right) - \partial_y \left(\frac{\partial A}{\partial (\partial_y z)} \right) = 0$$

Analytic Solutions

- A few situations have been solved exactly.
- If the boundary of the area to be calculated is a circle, the answer can be proved to be a sphere centered at zero.
- Abstracting only slightly to an ellipse gives you an unsolved problem, and the purpose of my summer here.

Solving Computationally

- We have first elected to try to solve the problem computationally.
- The first step is to write a program which tries to find such a least surface area, and show that the program gives the correct answer for a circle, a hemisphere.
- After this has been shown, the idea is to run the program on the ellipse to perhaps determine more clearly a form for the solution.

Renormalization

• Due to the metric string theory operates in, the contour is not allowed to be at z = 0, but at some $z = \epsilon$.

Renormalization

- The Area for any surface then takes on the form, $\frac{P}{\epsilon} + A_0$
- Hence, the piece of information we are most interested in, is the A₀.
- This is a form of renormalization. As $\epsilon \rightarrow 0$, the Area is infinite, but A_0 stays the same.

Results

- The following graphs are the results of interpolation of the resultant areas.
- The closest fit for a circle was of the form

$$Area = A f(n) + B \quad Area = \frac{A}{n^2} + B$$

- Then, treating B as the area for the continuous shape, we apply the above formula to find A₀.
- A similar procedure is applied to different contours, but since most are not solved, we have no way of being sure of the resolution dependence.

Circle Results

Here are some circle results

is within .2 of the correct answer of -2π , or -6.283

Ellipse Results

Here are some ellipse results

> The ellipse gave an average A_0 of -7.95

Square Results

Here are some square results

The square data gave an average A₀ of -33.01 with a wide variance.

Future Goals

- Find the root of the run issues.
- Using clues from the program, try to find an analytic solution for various contours.
- Expand the program's functionality to include concave contours.

Thanks! --- Questions?

