Higgs Analysis for the CMS

Lee Coates Purdue University Advisor: Daniela Bortoletto 24 July 2009

Extend the Standard Model

- The Standard Model of Particle Physics does not account for masses.
- The theorized Higgs Boson, however, if added to the Standard Model, would allow particles to have mass.

The Higgs Mechanism

- There are no mass terms in Lagrangians
 - Simply adding the mass terms would violate gauge invariance
- Higgs Field
 - A spin-zero field that carries a non-zero hypercharge extends through all of space
 - breaks gauge invariance, but in a subtle, helpful way
 - Lagrangian is invariant, but the vacuum is not.

Spontaneous Symmetry Breaking

- Give Lagrangian Weak Isospin—left and right-handed chiralities have different charges, i.e. left-handed particles are doublets, right-handed particles are singlets
- Vacuum

 Because the quantum numbers of the vacuum are non-zero, the symmetries are effectively broken

Spontaneous Symmetry Breaking

- Higgs Field takes on the value of the vacuum expectation, v
 - $-v = \pm \sqrt{(-\mu^2 / \lambda)}$
 - The field stays symmetric when you take +v, but when you take -v, the vacuum does not have the symmetry of the original Lagrangian
- Consequentially, the Higgs-Goldstone Boson is emitted when SSB occurs

NOTE: μ and λ are potential energy parameters

Evidence of the Higgs Mechanism

- At the CMS, we will look for the product of SSB—the Higgs-Goldstone Boson
- Massive Higgs decays before it reaches our detectors
 - Decays into two
 weak force bosons,
 which then decay into
 leptons and neutrinos

Evidence of the Higgs Mechanism

- By reconstructing the decay products, we can see if the Higgs Boson really exists
- Problem: hadron colliders produce messy collisions
 - Background elimination
 - Isolated signal will appear as some new physics that we haven't seen yet
 - Mass peak, MET, etc.—no one knows yet

Higgs Analysis

• $H \rightarrow ZZ^{(*)} \rightarrow 4I$ channel

- 4 muons
- 2 electrons, 2 muons
- Others exist (4 electrons, taus)
- Three other physics processes will also occur during the collision that could be misinterpreted as a Higgs decay

 Our goal is to remove these processes so that we can find the Higgs signal amongst this background

Search for the Higgs Boson

- The Background
 - ttbar
 - Zbbbar – 77
- ttbar→Wb (W→lv)
- qqbar/gg→Zbbbar (Z→2I)
- qqbar→ZZ→4l
- Obviously, the muons need to be discriminated from each other

Search for the Higgs Boson

- In order to discriminate amongst the muons, we classify the muons into different types
 - Global, Tracker, Calorimeter, Stand Alone
 - Each muon is spatially different from the others
 - By segmenting the muon paths, we can analyze the stages much easier

Search for the Higgs Boson

- At the CMS, the 4I strategy currently uses only global muons to uncover signal
- We proposed to use tracker muons along with global muons to increase significance
- Create custom-made ROOT files on the CMSSW to retrieve Tracker Muons
 - Calorimeter Muons
 - Missing Transverse Energy

Tracker Analysis

- With the addition of the tracker muons, a lot of background is accepted
- Use the ROOT files for physics analysis
 - Reveal decay angles, momentum, energy, MET
 - Signal Discrimination
- We analyzed the physical processes to discriminate between signal and background
 - Decay angles, momentum, missing energy, what the detectors accept

Results

- Chi Squared—4
- Isolation of the Z* muons depends on their Transverse Momentum
 - Isolation = $1.5 * P_{T,3} 15$
- ZZ background is currently overwhelming at 1 fb⁻¹
- Significance increase of about 11% when tracker muons are added
 - Significant?

S/B comparison

CMS, Coates

21

The Future

- Other possibilities
 - MET
 - Great discrimination for ttbar—possibly ZZ if we stick to H → ZZ → 2l2v
 - Calorimeter Muons
 - Hits in the calorimeter towers (will ZZ have them)
 - Relaxation?

Probably not...

Acknowledgements

Daniela Bortoletto Roberto Casagrande Petra Merkel Amelia Uecker Jakub Zablocki Nicola de Filippi