

Particle Physics

Tools and strategies

What we want to discover

A view of what we do at Purdue

All in 15 minutes including a small show

Daniela Bortoletto

PURDUE UNIVERSI

Accelerators

Very piercing electronic eyes

- $\lambda = \hbar / p$
- $p \approx E = 1TeV = 10^{12}eV$
 - = 1,000,000,000,000 eV
- $\lambda \approx 10^{-19} m$

Time machine

- E = kT
- E = 1 TeV
- $T = 3 \times 10^{15}$ degrees

Timeline

PURDUE PARTICLE Physics

	Circumference	Energy	Collisions/s
TEVATRON	6.4 Km	2 TeV	10 ⁶
LHC	27 Km	14 TeV	10 ⁷ - 10 ⁹

The CDF experiment

CDF:

- 4 stories tall
- 5000 tons
- 1 million electronic channels
- Full coverage
 (cylindrical geometry
 + end caps)

The CDF collaboration

Antz. Z (Woody Allen) feels underappreciated "as the middle child in a family of five million." When Z complains to his shrink that he's feeling insignificant, the bug-world psychologist sensibly responds, "You are insignificant."

PURDUE **The CMS experiment** NIVERSITY

U

PURDUE **Elementary Particle Physics**

Neutrinos (v):

Stars: Ω=0.005

Free H & He:

 $\Omega = 0.04$

Cold Dark Matter:

 $\Omega = 0.25$

 $\Omega = 0.0047$

Standard Model of $\Omega_i \equiv \rho_i / \rho_{\text{CRITICAL}}$ **Heavy Elements:** particle physics is very successful. It has been $\Omega = 0.0003$ $\Omega_{\text{TOTAL}} = 1$ tested at 1% level at LEP + Tevatron Cosmic Pie ELEMENTARY PARTICLES ACDM Dark Energy (A): $\Omega = 0.70$.eptons Va Vu Standard model of cosmology and WMAP data tells us that we do not know the composition of 95% of the Three Generations of Matter universe

Fermilab 95-759

PURDUE Elementary Particle Physics

COSMOLOGY MARCHES ON

J. Feng

PURDUE The Higgs mechanism

To understand the Higgs mechanism, imagine that a room full of physicists quiety chattering is like space filled only with the Higgs field ...

... a well known scientist walls in, creating a disturbance as he moves across the room, and attracting a cluster of admires with each step ...

... this increases his resistance to movement, in other words, he acquires mass, just like a particle moving through the Higgs field

... if a rumour crosses the room...

... It creates the same kind of clustering, but this time among the scientists themselves. In this analogy this cluster is a Higgs particle.

<text>

What is mass?

- We still do not understand what mass is and why the quarks and leptons have different masses.
- Our best idea is that a "Higgs Field" fills the universe and mass measures the resistance to movement through this field

From an idea by David Miller, University College, London

Higgs events

 Detectors requirements: granularity, time response, and radiation resistance, measurement of 1 TeV muons with 10% resolution

daniela bortoletto

PURDUE Critical contributions

CDF: silicon microstrip detectors

LHC/CMS: silicon pixel detectors

