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Outline

• Models, parameters, parameter estimation, and uncertainty.

• A simplified example, the van Genuchten model.

• Methods for propagation of uncertainty.

• Nonlinear regression as an approach to parameter estimation.

• A Bayesian approach to the parameter estimation problem.

• How does this apply to CRONUS?



Models and Parameters

• In this talk we will consider models of the form

y = f(x, p)

where x is an independent variable, y is a dependent variable, p

is some collection of parameters that enter into the model.

• The model might be physically based, or completely empirical,
or somewhere in between.

• In practice there will always be uncertainties in x, y, and p.

• Furthermore, there might be uncertainty in f itself.



Three Problems

• The parameter estimation problem is to find p given a
suitable collection of x and y values and/or information from
other experiments.

• Once we have p, we can consider the problem of predicting y

from x.

• We will also be interested in the backwards prediction
problem of estimating x from y.

• In CRONUS, x would be the exposure time for a sample, y

would be the TCN production, and p would include factors
such as the cosmic ray flux, reaction cross sections, etc.



The van Genuchten Model

• In hydrology, the van Genuchten model is often used to relate
the volumetric water content of an unsaturated soil to the head.

• The model is

θ(h) = θr +
θs − θr

(1 + (−αh)n)(1−1/n)
.

• Here θs is the volumetric water content at saturation, and θr is
the residual volumetric water content at a very large negative
head. We will assume that these are known.

• The two parameters α and n can be fit to laboratory
measurements.



Propagation of Errors by Linearization

• Let δx be the uncertainty in x, δpi be the uncertainty in the
ith parameter pi, and let δy be the uncertainty in y.

• For independent random errors,
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• For errors that may not be independent,
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Example

• Suppose that α = 0.013± 0.001, and n = 1.86± 0.04. Also,
θs = 0.44 and θr = 0.09. Suppose that h = −100± 1. What is
θ(h)?

• Simply substituting the nominal values into the formula gives
θ(−100) = 0.31.

• Using the propagation of errors formula, we obtain an
uncertainty of δθ = 0.01.

• If we allow for correlation between α, n, and h, we obtain
δθ ≤ 0.014.



Example

Note that computing δθ required the computation of derivatives
with respect to α, n, and h.

dθ

dα
= − (θs − θr) (1− 1/n) (−α h)n

n(
(1 + (−α h)n)1−1/n

)
α (1 + (−α h)n)

.

dθ

dh
= − (θs − θr) (1− 1/n) (−α h)n

n(
(1 + (−α h)n)1−1/n

)
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.
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Monte Carlo Propagation of Errors

• We are given nominal values for x and the parameters p,
together with their associated uncertainties.

• Generate many (say n = 1000) random values of x and p using
the nominal values and uncertainties.

• For each realization of x and p compute y.

• Produce a histogram, average, and standard deviation of the y

values.



Example

• We randomly generated one thousand values of α, n, and h.
The values of α were normally distributed with mean 0.013 and
standard deviation 0.001. The values of n were normally
distributed with mean 1.86 and standard deviation 0.04. The
values of h were normally distributed with mean −100 and
standard deviation 1.

• For these 1,000 realizations, the mean value of θ(h) was 0.3095
with standard deviation 0.0043.

• In this case the linearized propagation of errors formula gave a
somewhat larger uncertainty in θ than the uncertainty revealed
by the Monte Carlo technique.
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Advantages of the Monte Carlo Approach

• The Monte Carlo approach avoids any errors associated with
the linearization of the model. These can be substantial,
especially when the model is highly nonlinear in its parameters
or when the parameter uncertainties are quite large.

• The Monte Carlo approach produces a distribution for the
uncertain output as well as the mean and standard deviation.

• The propagation of errors formula requires the computation of
derivatives, which can be quite complicated for larger models.
The Monte Carlo approach needs only a black box routine for
computing f(x, p).

• The Monte Carlo approach can handle correlated parameters
as well as independent parameters.



Nonlinear Regression

• Nonlinear regression is the classical approach to estimating the
parameters p from a collection of x, y measurements.

• We assume that the x values x1, x2, . . ., xn are known exactly,
but the y values y1, y2, . . ., yn have independent and normally
distributed errors with standard deviations σ1, σ2, . . ., σn.

• The basic idea is to solve the nonlinear least squares problem

min χ2(p) =
n∑

i=1

(
yi − f(xi, p)

σi

)2

.

• Call the optimal parameter vector p∗.



Nonlinear Regression

• The value of χ2
obs = χ2(p∗) provides an important statistical

measure of the goodness of fit.

• In theory, the value of χ2
obs should follow a χ2 distribution

with n−m degrees of freedom.

• An extremely large value of χ2
obs would be extremely unlikely,

indicating that parameters were not fit correctly or that there
was some other problem with the model.

• The p-value is the probability of obtaining a χ2 value that is
larger than the one that was actually obtained.



Covariance of the Fitted Parameters

• Let

fi(p) =
yi − f(xi, p)

σi
.

• Let

J(p) =
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• The covariance matrix for the fitted parameters is then

C =
(
J(p∗)T J(p∗)

)−1
.

• From C, we can construct approximate 95% confidence
intervals and confidence ellipsoids for the fitted parameters.



Example

• Returning to our earlier example, suppose that we have the
following data.

h -2 -6 -8 -12 -14 -17 -26 -35 -46 -59

θ 0.44 0.44 0.44 0.44 0.44 0.44 0.42 0.42 0.41 0.37

h -71 -85 -97 -107 -118 -125 -144 -167 -182 -209

θ 0.35 0.33 0.32 0.30 0.29 0.29 0.28 0.26 0.25 0.24

h -230 -266 -321 -388 -457 -514 -599 -647

θ 0.22 0.21 0.20 0.18 0.17 0.16 0.15 0.14

• The measurements of θ are assumed to be accurate to 2%.

• From other measurements, we know that θr = 0.09 and
θs = 0.44.
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Example

• χ2
obs = 31.3. Since there are 28 data points and two

parameters to estimate, we have 26 degrees of freedom, and
this χ2 value is not large. The p–value is 22%.

• 95% confidence intervals for the individual parameters are
α = 0.01257± 0.00066 and n = 1.85664± 0.03667.

• However, the two parameters are strongly correlated, with
ρ(α, n) = −0.90.

• The following plot shows a 95% confidence ellipsoid for the
parameters.
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The Bayesian Approach

• In the Bayesian approach, we use probability distributions to
quantify the uncertainty in the model parameters.

• We begin with a prior distribution for the parameters,
prob(p|I), that depends on any initial information that we
might have.

• As data becomes available, we update the distribution using
Bayes’ theorem

prob(p|d, I) =
prob(p|I)prob(d|p, I)∫
prob(p|I)prob(d|p, I)dp

.

• prob(d|p, I) is the likelihood of observing data d given
parameters p and prior information I.

• prob(p|d, I) is the posterior distribution for the parameters.



The Bayesian Approach

• In practice, computing the integral in the denominator of
Bayes’ theorem can be computationally difficult. This integral
is a normalizing constant for the posterior distribution.

• For many purposes, a simplified version of the formula is
sufficient:

prob(p|d, I) ∝ prob(p|I)prob(d|p, I).

• For example, we can find the vector of parameters p∗ that has
the maximum posterior probability without evaluating the
integral. This vector p∗ is called the maximum a posteriori
(MAP) solution.

• Also, we can generate random values for the parameters
according to the posterior distribution without computing the
integral.



The Bayesian Approach

• An important practical advantage of the Bayesian approach is
that we can repeatedly apply Bayes’ theorem to incorporate
additional data.

• If we receive data d1, d2, . . ., dn, then

prob(p|d1, . . . , dn, I) ∝ prob(p|I)prob(d1|p, I) · · · prob(dn|p, I).



Example

• Returning to our earlier example, suppose that we know from
prior experience that α lies between 0.005 and 0.02 and that n

lies between 1.0 and 3.0.

• Since we do not know anything else, we simply assign a flat
prior distribution to α and n.

• This distribution needs to be normalized so that it integrates
out to one. The result is

prob(p, I) = 33.3333



Example

• Now, we obtain a data point: at a head of h = −2, θ = 0.44.
Since the measurement of θ is assumed to have a normally
distributed measurement error with standard deviation
σ = 0.008, the likelihood is normal.

prob(d1|α, n, I) =
1

√
2πσ

exp

((
θr +

θs − θr

(1 + (−α(−2.0))n)(1−1/n)
− 0.44

)2

/(2σ
2)

)
.

• Now we can compute the posterior distribution

prob(p|d1, I) ∝ prob(p|I)prob(d1|p, I).

• In the same way, we can incorporate data points
d2 = (−59, 0.37), d3 = (−125, 0.29), ...

• Here are contour plots of the posterior distribution after 3, 10,
and 28 data points.
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Example

• Now, suppose that we knew from some other measurements of
the soil that n was near 1.8.

• We could assign a prior distribution of

prob(α, n|I) ∝ exp

(
−
(

n− 1.8
0.1

)2
)

.

• Here are contour plots of the posterior distribution after 3, 10,
and 28 data points.
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Example

• Once we have a posterior distribution, we can easily generate
random sets of parameters according to the posterior
distribution.

• This can be used as input to a Monte Carlo procedure for
propagation of uncertainty.

• The following plot shows 100 random sets of parameters for our
example.
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Advantages of the Bayesian Approach

• The Bayesian approach allows us to incorporate data from
many different kinds of experiments, as well as prior
information that may not be in the form of experimental data.

• The Bayesian approach is incremental, not “all-at-once” as in
nonlinear regression. We can simply incorporate new data as it
becomes available.

• The Bayesian approach with sampling from the posterior
distribution does not require us to linearize the nonlinear
model to obtain uncertainties for the parameters.

• In the Bayesian approach, the posterior distribution provides a
natural input to a procedure for propagating uncertainty in x

and p to y.



Some Questions

• How do we deal with multiple data sets that bear on the same
parameter?

• This is easy- just construct appropriate likelihood functions for
each type of data set.



Some Questions

• How do we deal with anomalous data?

• Sometimes anomalous data is just wrong, while other times it
points to fundamental modeling problems. By examining the
likelihood of each new data point, we can identify data that
don’t fit with the existing model. Then the challenge is to
determine whether the data are bad or whether the data are
pointing to a modeling error. Unfortunately, this is not
something that can be done statistically.



Some Questions

• How do we intercompare disparate types of data?

• If the data are all valid, then they should be incorporated into
the posterior distribution. If there is some doubt as to the
validity of a data set, then the specifics of that experiment
need to be investigated.



What Next?

• The first step in the parameter estimation process is to settle
on the parameters that need to be incorporated into the model
and the exact form of the function that relates the parameters
to TCN production.

• If there are conflicting models, a heirarchical Bayesian
approach may be needed to distinguish between them.

• Likelihood functions need to be developed for the different
types of experiments that have been and will be conducted.

• As data sets become available, they need to be incorporated
into the analysis. At each stage there will be a current working
distribution for the parameters.



What Next?

• Once enough data has been accumulated, the working
distribution can be published along with the software for
performing TCN production predicition and TCN dating. This
will be an iterative process, with versions 1.0, 2.0, ...

• Once the statistical model is well established, we can perform
additional “what if” analysis to determine how the results of
different types of experiments might reduce the uncertainty in
the parameters and the resulting uncertainty in TCN dates.



How Can You Help?

• For this effort to worthwhile to the community of researchers
that use TCN methods, there must be widespread
understanding and acceptance of the statistical model
produced by the CRONUS project.

• If the CRONUS community can agree on reasonable prior
distributions for the parameters this would help greatly. To the
extent that there is disagreement, the prior distributions need
to reflect the different theories.

• There’s an obvious need to integrate the results of the
parameter estimation with the development of software for
TCN applications.

• Experimenters providing data for the analysis will have to
provide information about the experiments and help with the
development of Likelihood functions.
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