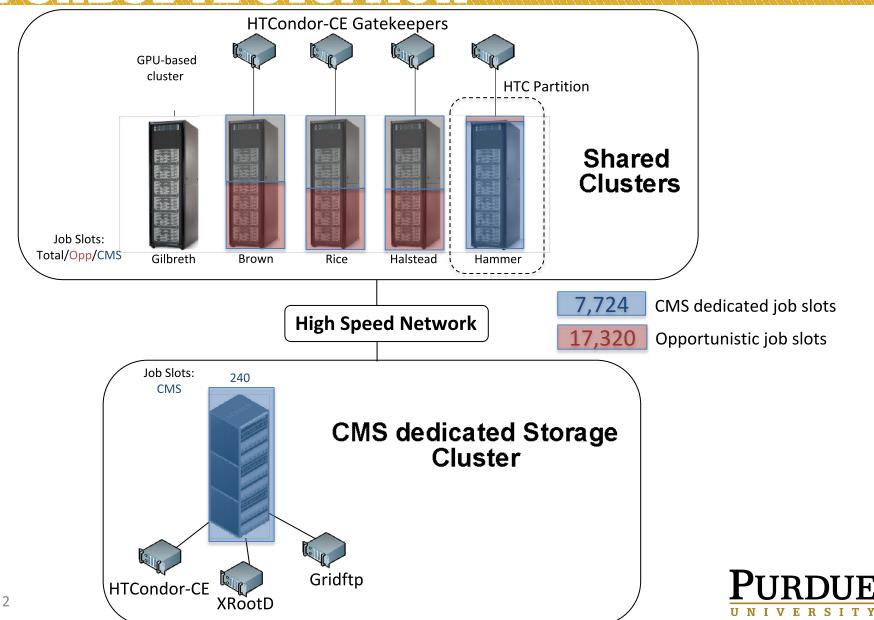


PURDUE USCMS Tier-2 Compact Mulon Solenoid Experiment

CMS Tier-2 Computing Tutorial March 6, 2020


Stefan Piperov

spiperov@purdue.edu

Research Computing

PURDUE T2 Overview

COMPUTE

Dedicated compute resources

CMS storage cluster

- Provides a limited number of batch slots via HTCondor
- Read-only access to HDFS storage
- File access protocols (XRootD/Gridftp)

- CMS owned Community Cluster nodes

- Provides dedicated batch slots via SLURM
- Our (CMS) main usage is of Hammer cluster

Purdue opportunistic resources

 A 'standby' queue on each Community Cluster provides short (4h) job slots. If you scale your jobs correctly (less than 4h run time), you get access to a lot of free job slots through CRAB and CMS-Connect

STORAGE

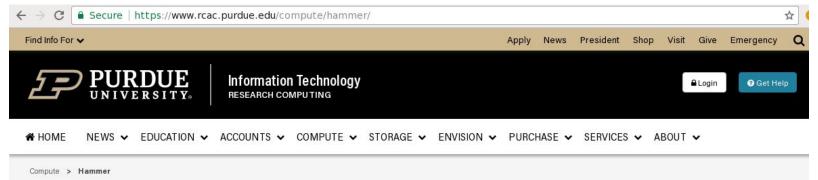
• Home area - private area, source code, development, small

- Available on all clusters
- o /home/<username>
- Data Depot Group space intermediate, read-write, medium size
 - Available on all clusters. Shared by all CMS users!
 - o /depot/cms/
 - Individual users may get dedicated sub-directories e.g.: /depot/cms/users/spiperov/
 - Individual sub-groups have dedicated sub-directories, with additional quotas - e.g.: /depot/cms/top
- Hadoop Distributed Filesystem (HDFS) long term, large files/datasets
 - Our main long-term storage space
 - /mnt/hadoop on Hammer and CMS cluster (read-only)
- /scratch The community clusters provide large, fast local filesystems for *temporary* storage. Cleaned up periodically
- /tmp on Hammer, this is the main *temporary* space (no /scratch there!)

Interactive work

- SSH to Log-in nodes:
 - CMS cluster:
 - ssh <username>@hep.rcac.purdue.edu
 - ssh <username>@cms.rcac.purdue.edu
 - Hammer:
 - ssh <username>@hammer.rcac.purdue.edu
 - Other Comunity Clusters:

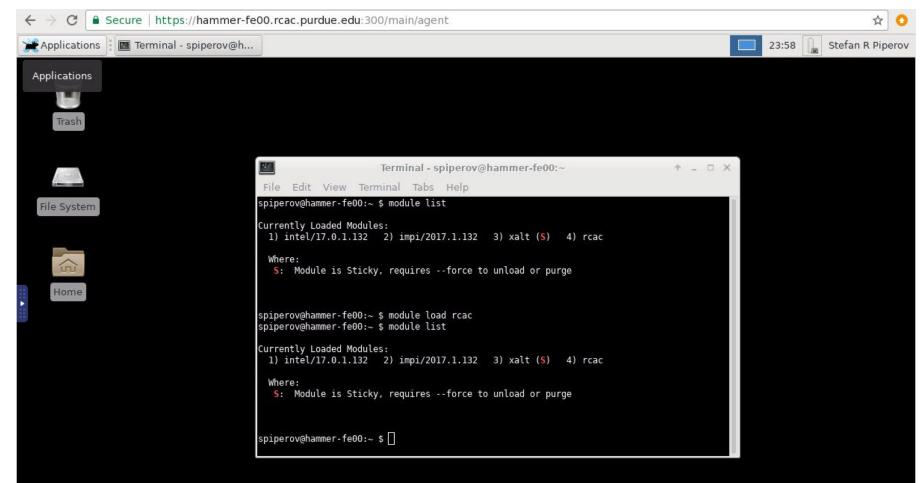
(same as Hammer)


- ssh <username>@halstead.rcac.purdue.edu
- ssh <username>@rice.rcac.purdue.edu
- ssh <username>@brown.rcac.purdue.edu
- ssh <username>@gilbreth.rcac.purdue.edu

Interactive work

Remote desktop on Community Clusters

https://www.rcac.purdue.edu/compute/hammer/


Overview of Hammer

Hammer is optimized for Purdue's communities utilizing loosely-coupled, high-throughput computing. Hammer was initially built through a partnership with HP and Intel in April 2015. Hammer was expanded again in late 2016. Hammer will be expanded annually, with each year's purchase of nodes to remain in production for 5 years from their initial purchase.

To purchase access to Hammer today, go to the <u>Cluster Access Purchase</u> page. Please subscribe to our Community Cluster Program Mailing List to stay informed on the latest purchasing developments or contact us via email at <u>rcac-</u>

Interactive work

Best Practices

- Setup CMS environment on the local machine:
 - FrontEnd nodes (cms, hep, hammer, ...)
 - laptop/desktop
 - LXPLUS
- Develop and test analysis code locally
- Test analysis code on a small local dataset
- When convinced that analysis runs correctly locally Submit multiple batch jobs:
 - either to local clusters via Condor and SLURM
 - or remotely via CRAB and CMS-Connect
- NB. As shared resources, the Front-End (login) nodes deliberately limit the resources available per individual user (20% RAM, 80% CPU)
- Full-size, long, production jobs should never be run there.
- It is much better to start an interactive whole-node SLURM job and have all the memory and CPUs to yourself, than to compete/interfere with everyone else on the FE

Setup CMS environment

• After logging into a FrontEnd machine

\$ echo \$CMSSW_BASE

Old CMSSW, OS versions

- Until recently, default OS for CMS was ScientificLinux6 (SL6,RHEL6)
 - reaching its 'end-of-life'
 - replaced everywhere with CentOS7 (CC7,RHEL7).
 - However, many CMSSW releases still need SL6 environment
- For compatibility, we provide it via Singularity containers:
 - /depot/itap/singularity/cms/cmssw-slc6

After starting the container, you should set up your CMSSW environment in the usual way, but for the older SCRAM_ARCH=slc6...

```
$ export SCRAM_ARCH=slc6_amd64_gcc630
$ source /cvmfs/cms.cern.ch/cmsset_default.sh
$ cmsrel CMSSW_9_3_2 (if necessary)
$ cd CMSSW_9_3_2/src
$ cmsenv
$ git cms-init
$ source /cvmfs/cms.cern.ch/crab3/crab.sh
$ voms-proxy-init -voms cms -valid 168:00
..etc.
```


Setup Python environment

• On Community Clusters - multiple named environments

\$ module spider anaconda Versions: anaconda/5.1.0-py27 anaconda/5.3.1-py37

\$ module load anaconda/5.3.1-py37 \$ conda create --name test_coffea python=3.7 \$ source activate test_coffea \$ pip install --upgrade coffea \$ conda install -c conda-forge xrootd \$ conda install nb_conda

\$ source deactivate

```
$ module load anaconda/5.1.0-py27
$ conda create --prefix ~/test/ml/uprootenv python=2.7
$ source activate ~/test/ml/uprootenv
$ conda install -c conda-forge uproot
$ conda install -c conda-forge tensorflow keras numpy pandas
```

See more examples of managing packages and exnvironments

Copy small dataset locally

- To develop/test your analysis code, you only need one (or a few) input files, and not the complete dataset.
- You can use these commands to copy such files locally:

\$ voms-proxy-init -voms cms -valid 168:00 #(in case you have not done so already)

\$ xrdcp root://cmsxrootd.fnal.gov//store/relval/CMSSW_10_6_4/RelValZMM_13/MINIAODSIM/PUpmx25ns_106X_upgrade201 8_realistic_v9-v1/10000/EC35B5C1-A0A7-574F-8D7A-FCB4C3FBECBE.root ./

\$ gfal-copy Note: Precise locations needed!
gsiftp://cms-gridftp.rcac.purdue.edu//store/relval/CMSSW_10_6_1/RelValZEE_13/MINIAODSIM/PU25ns_106X_mc
2017_realistic_forECAL_v6_HS-v3/20000/83E6A167-6CD2-BF48-8937-AC79791ACC72.root
file:///home/spiperov/DAS2020/CMSSW_10_6_4/src4

\$ gfal-copy -r But, can do recursion! \$ gfal-copy -r But, can do recursion! \$ gsiftp://cms-gridftp.rcac.purdue.edu//store/relval/CMSSW_10_6_1/RelValZEE_13/MINIAODSIM/PU25ns_106X_mc 2017_realistic_forECAL_v6_HS-v3 file:///home/spiperov/DAS2020/CMSSW_10_6_4/src/

NB. Sometimes the OSG tools are conflicting with CMSSW tools, and gfal-copy starts crashing. To fix that, execute: \$ source /cvmfs/oasis.opensciencegrid.org/osg-software/osg-wn-client/3.5/current/el7-x86_64/setup.sh \$ source /cvmfs/oasis.opensciencegrid.org/osg-software/osg-wn-client/3.4/current/el6-x86_64/setup.sh

Working with Datasets

- Main navigational tool Data Aggregation System (<u>DAS</u>) at CERN (https://cmsweb.cern.ch/das/)
 - Universal and (somewhat) intuitive
 - \circ Slow!
- Command-line tool <u>dasgoclient</u>
 - Much faster
 - Very flexible, when combined with other UNIX-shell tools

\$ voms-proxy-init -voms cms -valid 168:00 -rfc

\$ /cvmfs/cms.cern.ch/common/dasgoclient -examples

\$ /cvmfs/cms.cern.ch/common/dasgoclient -query="dataset=/EG/Run2010A*/AOD"

- python APIs cmssw_das_client.py, DBS client examples
 - can be integrated in directly in your code

Working with Datasets

• Do we *have* this dataset at Purdue?

CMS Data Aggregation Service - Google Chr	rome 💿 🔿 💌	
S CMS Data Aggregation Ser × +		
\leftrightarrow \rightarrow C \triangle \triangleq cmsweb.cern.ch/das/re \Rightarrow i \Box \subseteq \Leftrightarrow	🦹 🗟 🤞 🕐 🧐 🧱 🧖 🔕	
Data Aggregation System (DAS): <u>Home Services Keys Bug report S</u>	Status CLI FAQ Help	
results format: 50 ▼ dbs instance prod/global ▼ list ▼, results/page, dataset=/EG/Run2010A-Apr21ReReco-v1/AOD><	autocompletion disable ▼ Search Reset Ask DAS: • Enter Dataset	Namo
Show DAS keys description	Click "Sites"	Name
Showing 1—1 records out of 1.	<pre>first prev next last></pre>	
Dataset: <u>/EG/Run2010A-Apr21ReReco-v1/AOD</u> Creation time: 2011-04-22 18:12:14 Physics group: NoGroup Status: VALID Type: data D Number of blocks: 74 Number of events: 53163466 Number of files: 3503 Release, Blocks, Files, Runs, Configs, Parents, Children, Sites, Physics Groups XSDB S		
Showing 1—1 records out of 1.	<first last="" next="" prev="" =""></first>	
	processing time: 6.960020008 sec	
DAS version: git=04.06.05 go=go1.12.5 date=2020-03-04 18:29:29.046915631 +0100 CB	ET m=+0.040029733	

Or ask the DAS GO Client:

\$ dasgoclient -query="site dataset=/EG/Run2010A-Apr21ReReco-v1/AOD"
T1_UK_RAL_Buffer
T1_UK_RAL_MSS
T3_CH_CERN_OpenData
T3_TW_NTU_HEP

Working with Datasets

Do we need this dataset at Purdue?

Well, it depends:

If it exists at another Tier-2, and you only want to run over a few events/files, then - NO. You can access it remotely via <u>XRootD</u> (AAA):
 o directly in ROOT:

TFile *f

```
=TFile::Open("root://cmsxrootd.fnal.gov//store/mc/SAM/GenericTTbar/GEN-SIM-RECO/CMSSW_5_3_1_START53_V5-v1/
0013/CE4D66EB-5AAE-E111-96D6-003048D37524.root");
```

• or in CMSSW:

Just prepend the address of the XRootD redirector

```
process.source = cms.Source("PoolSource",
    fileNames = cms.untracked.vstring('root://cmsxrootd.fnal.gov//store/myfile.root')
```

- But if you plan to run your analysis multiple times, on the entire dataset, then - YES, it's better to copy it here at Purdue.
 - Create a PhEDEx "Transfer Request" very easy!
 - Copy the files yourself (tedious, but only option for privately produced datasets at other sites, not registered in PhEDEx)

E.g.:

xrdcp root://stormgf3.pi.infn.it:1094//store/user/PrivateProd/... root://xrootd.rcac.purdue.edu//store/user/piperov/

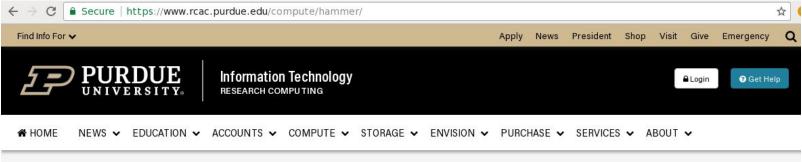
Submitting Jobs

- Distributed:
 - CRAB
 - Send CMSSW jobs to many CMS sites
 - CMS-Connect
 - Send Condor jobs to many CMS sites
- Local:
 - Condor
 - Send jobs to our local CMS cluster
 - SLURM
 - Send jobs to Hammer cluster

Storing and Sharing Data

- Once the jobs are finished, where to put the Ntuples?
 - **NOT** in /tmp or /scratch for sure!
 - those get cleaned frequently
 - Home directory probably too small
 - Data Depot for R/W access and sharing with the group
 - HDFS best for long-term storage (R/O) and sharing with the collaboration worldwide
 - just point them to your /store/user or /store/group directory

\$ xrdcp root://xrootd.rcac.purdue.edu//store/user/piperov/...


- HDFS is already the default stage-out location for your CRAB jobs
- for local jobs add a bunch of gfal-copy commands at the end of the job
- Fortress for archival storage on tape
 - HTAR/HSI commands

Jupyter Notebooks

Jupyter Hubs on Community Clusters

https://www.rcac.purdue.edu/compute/hammer/

Compute > Hammer

Overview of Hammer

Hammer is optimized for Purdue's communities utilizing loosely-coupled, high-throughput computing. Hammer was initially built through a partnership with HP and Intel in April 2015. Hammer was expanded again in late 2016. Hammer will be expanded annually, with each year's purchase of nodes to remain in production for 5 years from their initial purchase.

To purchase access to Hammer today, go to the <u>Cluster Access Purchase</u> page. Please subscribe to our Community Cluster Program Mailing List to stay informed on the latest purchasing developments or contact us via email at <u>rcac-</u>

Jupyter Notebooks

• "...web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text."

	View Insert	Cell Kerr	nel Widgets	Help				Trusted	<i>(</i>	Python [conda env: dmitry_c
• 🗶 🗠	I	н п	Code 🔻							
	Set up VON			an option i	n Kernel ->	Change Kern	el to run the no	tebook u	sing d	lesired conda environment
In [1]:	‰bash -l hostname free -g									
	hammer-fe00 Mem: Swap:	total 62 46	used 15 9	free 42 36	shared 3	buff/cache 4	available 42			
In [2]:	%env X509_USI	ER_PR0XY=/h	ome/spiperov/x	509up_u63	8764					
	env: X509_USE	ER_PR0XY=/ha	ome/spiperov/x	509 up_u63	8764					
In [3]:	<pre>import socket at_purdue = from coffea :</pre>	a version: t ('hammer' i import util	", coffeave n socket.getho as processor							
	angeore correc									

- Nice introductory <u>tutorial</u> and a gallery of interesting <u>examples</u>
- Best experienced *live*! (watch the COFFEA demonstration)

Speeding things up

When your analysis gets too big to fit in RAM, or on one CPU or node...

 \rightarrow run it in parallel!

Apache <u>Spark</u>

- big, general purpose Big Data framework
- well integrated with the rest of Apache's ecosystem (e.g. Hadoop)
- best for Machine Learning
- requires a cluster manager and a distributed storage system

DASK

- purely Python library, designed for parallel computing either on the laptop, or on a cluster
- dynamic task scheduling
- "Big Data" types of collections for distributed environments
- smaller, lightweight, runs on your laptop

Speeding things up - Spark

Spork 244 Spark Master at spark://hammer-a074.rcac.purdue.edu:7077

URL: spark://hammer-a074.rcac.purdue.edu:7077 Alive Workers: 34 Cores in use: 34 Total, 0 Used Memory in use: 6.2 TB Total, 0.0 B Used Applications: 0 Running, 0 Completed Drivers: 0 Running, 0 Completed Status: ALIVE

- Workers (35)

Worker Id	Address	State	Cores	Memory
worker-20200306090327-128.211.149.152-39476	128.211.149.152:39476	DEAD	2 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-32842	128.211.149.152:32842	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-33076	128.211.149.152:33076	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-33219	128.211.149.152:33219	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-33505	128.211.149.152:33505	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-35530	128.211.149.152:35530	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-37168	128.211.149.152:37168	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-40131	128.211.149.152:40131	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-40297	128.211.149.152:40297	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-40312	128.211.149.152:40312	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-40642	128.211.149.152:40642	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-42300	128.211.149.152:42300	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-42403	128.211.149.152:42403	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-44020	128.211.149.152:44020	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-44036	128.211.149.152:44036	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-45067	128.211.149.152:45067	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090723-128.211.149.152-46338	128.211.149.152:46338	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)
worker-20200306090724-128.211.149.152-34769	128.211.149.152:34769	ALIVE	1 (0 Used)	186.6 GB (0.0 B Used)

\$ spiperov@hammer-a074:~ \$ spark-submit --total-executor-cores 30 --executor-memory 2G pi.py 100



User Guides and Contact

- Main page of User's guide: <u>https://www.physics.purdue.edu/Tier2/user-info/</u>
- Community Clusters <u>docs</u>
- For most CMSSW related issues the CMS <u>WorkBook</u>
- Email us for support:
- <u>cms-support@lists.purdue.edu</u>

CMS Cluster in MATH

