
CMS Tier-2 Computing Tutorial
March 6, 2020

Stefan Piperov
spiperov@purdue.edu

PURDUE T2 ARCHITECTUREPURDUE T2 Overview

COMPUTE
• Dedicated compute resources

– CMS storage cluster
• Provides a limited number of batch slots via HTCondor
• Read-only access to HDFS storage
• File access protocols (XRootD/Gridftp)

– CMS owned Community Cluster nodes
• Provides dedicated batch slots via SLURM
• Our (CMS) main usage is of Hammer cluster

• Purdue opportunistic resources
– A 'standby' queue on each Community Cluster provides short (4h) job

slots. If you scale your jobs correctly (less than 4h run time), you get
access to a lot of free job slots through CRAB and CMS-Connect

STORAGE
• Home area - private area, source code, development, small

○ Available on all clusters
○ /home/<username>

• Data Depot Group space - intermediate, read-write, medium size
○ Available on all clusters. Shared by all CMS users!
○ /depot/cms/
○ Individual users may get dedicated sub-directories - e.g.:

/depot/cms/users/spiperov/
○ Individual sub-groups have dedicated sub-directories, with additional

quotas - e.g.: /depot/cms/top
• Hadoop Distributed Filesystem (HDFS) - long term, large files/datasets

○ Our main long-term storage space
○ /mnt/hadoop on Hammer and CMS cluster (read-only)

• /scratch - The community clusters provide large, fast local filesystems for
temporary storage. Cleaned up periodically

• /tmp - on Hammer, this is the main temporary space (no /scratch there!)

Interactive work
• SSH to Log-in nodes:

○ CMS cluster:
■ ssh <username>@hep.rcac.purdue.edu
■ ssh <username>@cms.rcac.purdue.edu

○ Hammer:
■ ssh <username>@hammer.rcac.purdue.edu

○ Other Comunity Clusters:
(same as Hammer)

■ ssh <username>@halstead.rcac.purdue.edu
■ ssh <username>@rice.rcac.purdue.edu
■ ssh <username>@brown.rcac.purdue.edu
■ ssh <username>@gilbreth.rcac.purdue.edu

Interactive work
• Remote desktop on Community Clusters

○ https://www.rcac.purdue.edu/compute/hammer/

Interactive work

Best Practices
● Setup CMS environment on the local machine:

○ FrontEnd nodes (cms, hep, hammer, ...)
○ laptop/desktop
○ LXPLUS

● Develop and test analysis code locally
● Test analysis code on a small local dataset
● When convinced that analysis runs correctly locally - Submit multiple

batch jobs:
○ either to local clusters via Condor and SLURM
○ or remotely via CRAB and CMS-Connect

● NB. As shared resources, the Front-End (login) nodes deliberately limit
the resources available per individual user (20% RAM, 80% CPU)

● Full-size, long, production jobs should never be run there.
● It is much better to start an interactive whole-node SLURM job and

have all the memory and CPUs to yourself, than to compete/interfere
with everyone else on the FE

Setup CMS environment
● After logging into a FrontEnd machine

$ export SCRAM_ARCH=slc7_amd64_gcc700
$ source /cvmfs/cms.cern.ch/cmsset_default.sh
$ export CMSSW_GIT_REFERENCE=/cvmfs/cms.cern.ch/cmssw.git.daily
$ mkdir MyAnalysis #(only if creating it for a first time)
$ cd MyAnalysis
$ cmsrel CMSSW_10_6_4 #(only if setting up for a first time)
$ cd CMSSW_10_6_4/src
$ cmsenv
$ git cms-init
$ echo $CMSSW_BASE

Old CMSSW, OS versions
● Until recently, default OS for CMS was ScientificLinux6 (SL6,RHEL6)

○ reaching its ‘end-of-life’
○ replaced everywhere with CentOS7 (CC7,RHEL7).
○ However, many CMSSW releases still need SL6 environment

● For compatibility, we provide it via Singularity containers:
○ /depot/itap/singularity/cms/cmssw-slc6

After starting the container, you should set up your CMSSW environment
in the usual way, but for the older SCRAM_ARCH=slc6...
$ export SCRAM_ARCH=slc6_amd64_gcc630
$ source /cvmfs/cms.cern.ch/cmsset_default.sh
$ cmsrel CMSSW_9_3_2 (if necessary)
$ cd CMSSW_9_3_2/src
$ cmsenv
$ git cms-init
$ source /cvmfs/cms.cern.ch/crab3/crab.sh
$ voms-proxy-init -voms cms -valid 168:00
..etc.

Setup Python environment
● On Community Clusters - multiple named environments

$ module spider anaconda
 Versions:
 anaconda/5.1.0-py27
 anaconda/5.3.1-py37

$ module load anaconda/5.3.1-py37
$ conda create --name test_coffea python=3.7
$ source activate test_coffea
$ pip install --upgrade coffea
$ conda install -c conda-forge xrootd
$ conda install nb_conda

$ source deactivate

$ module load anaconda/5.1.0-py27
$ conda create --prefix ~/test/ml/uprootenv python=2.7
$ source activate ~/test/ml/uprootenv
$ conda install -c conda-forge uproot
$ conda install -c conda-forge tensorflow keras numpy pandas

See more examples of managing packages and exnvironments

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

Copy small dataset locally
● To develop/test your analysis code, you only need one (or a few) input

files, and not the complete dataset.
● You can use these commands to copy such files locally:

$ voms-proxy-init -voms cms -valid 168:00 #(in case you have not done so already)

$ xrdcp
root://cmsxrootd.fnal.gov//store/relval/CMSSW_10_6_4/RelValZMM_13/MINIAODSIM/PUpmx25ns_106X_upgrade201
8_realistic_v9-v1/10000/EC35B5C1-A0A7-574F-8D7A-FCB4C3FBECBE.root ./

$ gfal-copy
gsiftp://cms-gridftp.rcac.purdue.edu//store/relval/CMSSW_10_6_1/RelValZEE_13/MINIAODSIM/PU25ns_106X_mc
2017_realistic_forECAL_v6_HS-v3/20000/83E6A167-6CD2-BF48-8937-AC79791ACC72.root
file:///home/spiperov/DAS2020/CMSSW_10_6_4/src/

$ gfal-copy -r
gsiftp://cms-gridftp.rcac.purdue.edu//store/relval/CMSSW_10_6_1/RelValZEE_13/MINIAODSIM/PU25ns_106X_mc
2017_realistic_forECAL_v6_HS-v3 file:///home/spiperov/DAS2020/CMSSW_10_6_4/src/

NB. Sometimes the OSG tools are conflicting with CMSSW tools, and gfal-copy starts crashing. To fix that, execute:
$ source /cvmfs/oasis.opensciencegrid.org/osg-software/osg-wn-client/3.5/current/el7-x86_64/setup.sh
$ source /cvmfs/oasis.opensciencegrid.org/osg-software/osg-wn-client/3.4/current/el6-x86_64/setup.sh

Note: redirector - no need to know the exact location!

Note: Precise locations needed!

But, can do recursion!

Working with Datasets
• Main navigational tool - Data Aggregation System (DAS) at CERN

(https://cmsweb.cern.ch/das/)
○ Universal and (somewhat) intuitive
○ Slow!

• Command-line tool - dasgoclient
○ Much faster
○ Very flexible, when combined with other UNIX-shell tools

$ voms-proxy-init -voms cms -valid 168:00 -rfc
$ /cvmfs/cms.cern.ch/common/dasgoclient -examples
$ /cvmfs/cms.cern.ch/common/dasgoclient -query="dataset=/EG/Run2010A*/AOD"

• python APIs - cmssw_das_client.py,DBS client examples
○ can be integrated in directly in your code

https://cmsweb.cern.ch/das/
https://www.physics.purdue.edu/Tier2/user-info/cms_dbs_client.php
https://gitlab.cern.ch/cms-sw/cmssw/blob/fe4862be5e2e1f7fa861fe3c756d0a1be3f33164/Utilities/General/python/cmssw_das_client.py
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DBS3APIInstructions#Examples

Working with Datasets
• Do we have this dataset at Purdue?

• Or ask the DAS GO Client:
$ dasgoclient -query="site dataset=/EG/Run2010A-Apr21ReReco-v1/AOD"
T1_UK_RAL_Buffer
T1_UK_RAL_MSS
T3_CH_CERN_OpenData
T3_TW_NTU_HEP

Ask DAS:
● Enter Dataset Name
● Click “Sites”

Working with Datasets
Do we need this dataset at Purdue?

Well, it depends:
● If it exists at another Tier-2, and you only want to run over a few

events/files, then - NO. You can access it remotely via XRootD (AAA):
○ directly in ROOT:

TFile *f
=TFile::Open("root://cmsxrootd.fnal.gov//store/mc/SAM/GenericTTbar/GEN-SIM-RECO/CMSSW_5_3_1_START53_V5-v1/
0013/CE4D66EB-5AAE-E111-96D6-003048D37524.root");

○ or in CMSSW:
process.source = cms.Source("PoolSource",
 fileNames = cms.untracked.vstring('root://cmsxrootd.fnal.gov//store/myfile.root')
)

● But if you plan to run your analysis multiple times, on the entire
dataset, then - YES, it’s better to copy it here at Purdue.
○ Create a PhEDEx “Transfer Request” - very easy!
○ Copy the files yourself (tedious, but only option for privately

produced datasets at other sites, not registered in PhEDEx)
E.g.:
xrdcp root://stormgf3.pi.infn.it:1094//store/user/PrivateProd/... root://xrootd.rcac.purdue.edu//store/user/piperov/

https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookXrootdService
https://www.physics.purdue.edu/Tier2/CMS%20Data%20request%20policy.php

Submitting Jobs
• Distributed:

○ CRAB
■ Send CMSSW jobs to many CMS sites

○ CMS-Connect
■ Send Condor jobs to many CMS sites

• Local:
○ Condor

■ Send jobs to our local CMS cluster
○ SLURM

■ Send jobs to Hammer cluster

https://www.physics.purdue.edu/Tier2/user-info/tutorials/crab3.php
https://www.physics.purdue.edu/Tier2/submitting_CMS_Connect_jobs.php
https://uscms.org/uscms_at_work/computing/setup/batch_systems.shtml#condor_2
https://www.rcac.purdue.edu/knowledge/hammer/run

Storing and Sharing Data
● Once the jobs are finished, where to put the

Ntuples?

○ NOT in /tmp or /scratch - for sure!
■ those get cleaned - frequently

○ Home directory - probably too small
○ Data Depot - for R/W access and sharing with the group
○ HDFS - best for long-term storage (R/O) and sharing with

the collaboration worldwide
■ just point them to your /store/user or /store/group directory

$ xrdcp root://xrootd.rcac.purdue.edu//store/user/piperov/…

■ HDFS is already the default stage-out location for your CRAB jobs
■ for local jobs - add a bunch of gfal-copy commands at the end of the job

○ Fortress - for archival storage on tape
■ HTAR/HSI commands

https://www.rcac.purdue.edu/storage/fortress/
https://www.rcac.purdue.edu/knowledge/fortress/storage

Jupyter Notebooks
• Jupyter Hubs on Community Clusters

○ https://www.rcac.purdue.edu/compute/hammer/

Jupyter Notebooks
• “...web application that allows you to create and share documents that

contain live code, equations, visualizations and narrative text.”

• Nice introductory tutorial and a gallery of interesting examples
• Best experienced live! (watch the COFFEA demonstration)

https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

Speeding things up
When your analysis gets too big to fit in RAM, or on one CPU or node…
➔ run it in parallel!

◆ Apache Spark
● big, general purpose Big Data framework
● well integrated with the rest of Apache’s ecosystem (e.g. Hadoop)
● best for Machine Learning
● requires a cluster manager and a distributed storage system

◆ DASK
● purely Python library, designed for parallel computing - either on the

laptop, or on a cluster
● dynamic task scheduling
● “Big Data” types of collections for distributed environments
● smaller, lightweight, runs on your laptop

https://spark.apache.org/
https://docs.dask.org/en/latest/

Speeding things up - Spark

$ spiperov@hammer-a074:~ $ spark-submit --total-executor-cores 30 --executor-memory 2G pi.py 100

User Guides and Contact
• Main page of User’s guide:

https://www.physics.purdue.edu/Tier2/user-info/

• Community Clusters docs

• For most CMSSW related issues - the CMS WorkBook

• Email us for support:
• cms-support@lists.purdue.edu

https://www.physics.purdue.edu/Tier2/user-info/
https://www.rcac.purdue.edu/compute/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook
mailto:cms-support@lists.purdue.edu

CMS Cluster in MATH

