
CMS Tier-2 Analysis Facility Demo 
October 28, 2022 

Stefan Piperov
spiperov@purdue.edu 

Erik Gough
goughes@purdue.edu 

1



What is an ANALYSIS FACILITY ?
● How we did Physics Analysis in the past

○ Local machine (laptop/desktop/workstation)
○ SSH access to login nodes, ideally with X11-support
○ Write C++ analysis code
○ Run batch jobs for full-scale analysis (crab, etc.) 
○ Run ROOT using data on local or shared file systems

● How can we improve this today
○ Interactive, browser-based computing with immediate feedback
○ Python instead of C++
○ Provide a set of common environments for analysis
○ Ability to fully scale analysis via Slurm or Kubernetes, GPUs
○ While maintaining current analysis methods (you can still run ROOT in 

the old-fashioned way and submit batch jobs if desired…)

● These are new technologies being investigated across the field, some 
are still under development
○ In this demo, we want to show you what is possible today at Purdue
○ We will have a follow up survey to gather your feedback for future plans

2



Interfaces to the AF
Analysis Facility Landing Page 

● JupyterHub
○ Provides immediate access to notebook environments
○ Shared resource - runs on Hammer front-end nodes
○ https://notebook.hammer.rcac.purdue.edu 

● Open OnDemand - NEW!
○ Provides queued access to notebook and desktop environments
○ Exclusive access - runs on Hammer compute or Gilbreth GPU nodes
○ https://gateway.hammer.rcac.purdue.edu
○ https://gateway.gilbreth.rcac.purdue.edu 

● Composable JupyterLab - NEW!
○ Provides immediate access to notebook and desktop environments
○ Exclusive fine grained access - runs on Geddes Kubernetes
○ https://cms.geddes.rcac.purdue.edu 

3

https://www.physics.purdue.edu/Tier2/AnalysisFacilityCMS/AnalysisFacilityFrontPage.php
https://notebook.hammer.rcac.purdue.edu
https://gateway.hammer.rcac.purdue.edu
https://gateway.gilbreth.rcac.purdue.edu
https://cms.geddes.rcac.purdue.edu


Environments
● What are they, and how they get referred to

○ Conda environments
○ LMOD modules
○ Jupyter kernels

● Why do we need them
○ Add functionality

■ missing software packages
■ different versions (needed vs installed at system level)

○ Manage complexity
■ not all software packages are compatible with one another
■ finding compatible versions, and storing them in one place is the essence of building 

those new environments
● Available pre-defined analysis environments (kernels)

○ Python 3 - PyROOT
○ ROOT - C++
○ COFFEA
○ CMSSW
○ Python Machine Learning (ML)

● Create your own environments!
○ Share with colleagues via Data Depot, or experiment privately

■ using ‘conda create’
■ using ‘conda-env-mod’

4

https://github.com/piperov/Purdue_AF_Demo/blob/main/BuildYourOwnCondaEnvironment_simple.md
https://github.com/piperov/Purdue_AF_Demo/blob/main/BuildYourOwnCondaEnvironment_shareable.md


Today’s Demo

● How to access the Analysis facility

● Example #1 - Typical Analysis Procedure - standard 
steps of a CMS analysis, performed locally on single files 
and single CPU

● Example #2 - Full-size CMS Physics analysis of large 
datasets, using GPUs for training a DNN, and DASK for 
scaling-out to multiple CPUs/computing nodes.

● Purdue Analysis Facility Demo Materials in GitHub
● Analysis Facility Landing Page 

5

https://github.com/piperov/Purdue_AF_Demo
https://www.physics.purdue.edu/Tier2/AnalysisFacilityCMS/AnalysisFacilityFrontPage.php


Analysis Example
● Includes main steps of a typical CMS analysis

○ Read data and MC root files from storage element 
(COFFEA like: using uproot and awkward array)

○ Perform selection on physics objects
○ Fill and plot histograms using ROOT or matplotlib
○ Perform event selection (on multiple objects)
○ Compute a new quantity (invariant mass) from existing 

quantities (using vector library)
○ Train a DNN to distinguish between signal and 

background
○ Use DNN score in event selection and plot final 

distribution for data and MC 
○ Save final plot

6



Scale-out Techniques

● From single files to full datasets
○ Use xrootd protocol to access local (or remote) datasets
○ Read in parallel using DASK

● Using GPUs
○ Switch to GPU-enabled version of pytorch, and make use 

of the local GPU for the training the DNN 
● Parallelize analysis to run on multiple CPUs (cluster)

○ Split the whole processing in multiple chunks using DASK, 
and run it in parallel on a small cluster with automatic 
dynamic scaling of the number of CPUs.

7



Current status and Future plans

8

Analysis Facility Platforms

Resource Cluster Access GPUs

JupyterHub Hammer Shared Front-Ends Yes (T4)

OnDemand
Hammer Dedicated Nodes Yes (T4)

Gilbreth Dedicated Nodes Yes (A100, A30, V100, P100)

Bell Dedicated Nodes No

Composable Geddes Dedicated Pods Yes (A100)

● Currently available at Purdue:

● Future plans
○ Will be formulated based on your needs and feedback
○ Consolidate OnDemand into a single entry point for all clusters
○ Permanent DASK queues reservation, Jupyter DASK extension
○ Incorporate AMD GPUs that are becoming available



Summary
● We showed you what the AF at Purdue looks like, and how you can access 

it to run a simple CMS Physics analysis on it. 
● We also demonstrated how you can scale that analysis to run on full 

datasets in real time, using multiple compute nodes and GPUs for speeding 
it up.

● The future shape and size of the facility will strongly depend on your needs. 
● We want to hear from you

○ Do you find it useful?
○ What additional features you want to see?
○ Is the capacity enough?

● Survey coming soon!

● Special thanks to Amandeep Kaur and Dmitry Kondratyev for preparing the 
Physics Analysis examples!

● Email us for support at cms-support@lists.purdue.edu 

9

mailto:cms-support@lists.purdue.edu

