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Spectroscopy of Rydberg states in erbium using electromagnetically induced transparency
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We present a study of the Rydberg spectrum in 166Er for series connected to the 4 f 12(3H6)6s, Jc = 13/2, and
Jc = 11/2 ionic core states using an all-optical detection based on electromagnetically induced transparency
in an effusive atomic beam. Identifying approximately 550 individual states, we find good agreement with a
multichannel quantum defect theory (MQDT) which allows assignment of most states to ns or nd Rydberg series.
We provide an improved accuracy for the lowest two ionization thresholds to EIP,Jc=13/2 = 49260.750(1) cm−1

and EIP,Jc=11/2 = 49701.184(1) cm−1 as well as the corresponding quantum defects for all observed series.
We identify Rydberg states in five different isotopes, and states between the two lowest ionization thresholds.
Our results open the way for future applications of Rydberg states for quantum simulation using erbium and
exploiting its special open-shell structure.
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I. INTRODUCTION

Rydberg states in neutral atoms have been highly suc-
cessful in realizing strongly interacting many-body quantum
platforms. The large dipole-dipole (van der Waals) interac-
tion, typically exceeding the MHz scale, enables unique paths
for quantum information processing and many-body quantum
simulations [1–3]. The conditions of strong interaction, long
internal-state coherence, and microscopic control can now be
satisfied simultaneously when driving Rydberg (Ry) excita-
tions in tweezer-trapped neutral atoms [4]. This important
advance was initially developed with alkaline atoms [5–8].
Due to their relatively sparse atomic structure, alkali are well
suited for the implementation of robust, yet simple, cooling
and trapping methods. However, this simplicity comes at the
cost of somehow restricted opportunities for state prepara-
tion and manipulation of the available internal degrees of
freedom.

Recently, there has been growing interest in extending
the Rydberg toolbox to more complex multi-valence-electron
atomic species, opening possibilities for, e.g., laser cooling
and trapping, high-fidelity optical read-out, and quantum-
information storage [9–12]. In multi-valence-electron atoms,
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the key paradigm shift is that, after Ry excitation of one of
the available valence electrons, the core remains optically
active, effectively resembling a single-charged positive ion.
This active core leads, for instance, to a comparatively large
polarizability [11], allowing for optical trapping despite the
repulsive ponderomotive potential for the Ry electron [13].
Remarkable progress has been made with two-electron atoms,
i.e., the alkaline-earth Sr [14–17] and the alkaline-earth-like
Yb atoms [18], for ground-state tweezer trapping [19–21],
and, more recently, the combination of tweezer trapping and
Ry excitation [13,22].

Pushing the boundaries even further, the next step is to
consider atomic species with more than two valence electrons,
like open-shell lanthanides for which laser cooling and quan-
tum degeneracy have been demonstrated [23–27]. Compared
to alkaline earth, these species might exhibit an ionic-core
polarizability resembling even more the ground-state polar-
izability, and might allow access to a large hyperfine manifold
[9,12]. Besides the plethora of laser cooling transitions, they
could also allow direct access to high orbital-momentum Ry
states with negligible quantum defects, which are expected
to have strong pair interactions because of the multitude of
nearby degenerate quantum states. However, being a com-
paratively new quantum resource, open-shell Ry lanthanides
remain rather unexplored in the ultracold regime.

So far, the only reported high-resolution Ry spectroscopy
in ultracold open-shell lanthanides has been performed with
holmium in a magneto-optical trap (MOT) [28]. For Dy and
Pm, resonance ionization spectroscopy (RIS) has been per-
formed on a hot atomic vapor [29–31]. Using RIS, preliminary
data for erbium are also available [32].

The present paper reports on the first high-resolution Ry
spectroscopy of erbium atoms. Using a two-photon scheme
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FIG. 1. Electronic levels and experimental setup. (a) Excitation scheme involving the probe transition at about 401 nm with single photon
detuning �p and the coupling transition around 411 nm. Also shown, the two-photon detuning �c. (b) Schematic Rydberg level scheme of the
two lowest ionization thresholds for different total J . Red (blue) lines indicate the ns (nd) series. (c) Schematic drawing of the experimental
setup with the vacuum apparatus, atomic beam, and probe, reference, and couple laser beams.

based on electromagnetically induced transparency (EIT)
[33–36], we observe the ns and nd Rydberg series with prin-
cipal quantum number n ranging from 15 up to 140. Using
slope minimizing fits in Lu-Fano style plots [37], we provide
an improved value of the first ionization potential. Our method
does not require the magnetic quadrupole field present in a
MOT, and thus allows an effortless high-resolution study of
Zeeman shifts of the Rydberg states. We use these shifts to
assign the total angular momentum, J , of a subset of Ry ns
and nd states, which serves as an important input parameter
for the modeling of the Rydberg series.

Moreover, we identify characteristics of the Rydberg states
using procedures based on multichannel quantum defect the-
ory (MQDT), similar to recent work on Sr [38] but accounting
for Rydberg perturbers from a spin-orbit split threshold. Using
the approximation that the ns and nd states do not mix at all,
we successfully perform a MQDT fit to the ns series. For the
nd series, we introduce two different approximate methods
which are fairly successful in representing most of the states
but are less precise in representing the nd perturbers or the
measured g factors.

Finally, we surprisingly observe that using just a two-
photon transition we could presumably couple ground-state
atoms to an ng Ry state (�� = 4) thanks to the interaction
between the submerged shells in Lanthanides. This result pro-
vides a first example of the uniqueness of Ry lanthanide with
respect to alkali and alkaline-earth atoms.

The paper is structured in the following way: Section II dis-
cusses the energy levels and coupling schemes of erbium with
all relevant states for this paper. The experimental setup and
measurement techniques are reviewed in Sec. III. In Sec. IV,
we will discuss the experimental data by demonstrating the
EIT signal and present the determination of J and gJ for a

set of nd states as well as an accurate value for the ionization
threshold. Section V presents our MQDT results for both ns
and nd series and will compare the results with our experi-
mental results.

II. CONSIDERATIONS ON THE ERBIUM
LEVEL STRUCTURE

Figure 1(a) shows the excitation scheme used in this
paper and Fig. 1(b) a zoom-in on the most relevant Ryd-
berg series attached to the lowest two ionization thresholds.
The electronic ground-state configuration of erbium reads
[4 f 12(3H6)6s2(1S0)]6. This type of configuration is often
called submerged because the partially filled inner f shell
is surrounded by the outer s shell. Erbium has a total of
14 valence electrons and each of those can be excited to
a higher-lying state. The interactions inside the submerged
shell determines the type of angular momentum coupling of
the state. Generally speaking, the spin-orbit coupling scheme
depends on the specific configuration and on the energy of the
state—i.e., overlap between the submerged wave functions.

For our two-photon Rydberg spectroscopy, we couple the
ground state to the intermediate state [4 f 12(3H6)6s6p(1P1)]7.
Here, the angular momentum coupling results from the small
size of the 4 f orbital compared to that of the sp electrons.
This leads to the 4 f 12 electrons coupling together to give a
particular angular momentum term, (3H6), and the sp elec-
trons coupling to give (1P1). These two partial J’s are then
coupled to give the total J = 7 for the intermediate state. A
similar argument holds for the ground and first excited state of
the ion [4 f 12(3H6)6s(2S1/2)]Jc with Jc = 13/2 for the ground
ionic state and Jc = 11/2 for the first excited state. For the
Rydberg states, the energy scale of the Rydberg electron is
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TABLE I. Quantum numbers of all relevant states for the EIT
scheme, with the total ground state, intermediate state, and ion core
states with Rydberg series attached. The table lists the configuration,
state energy, as well as total angular momentum J . For Rydberg
states, the core total angular momentum Jc is also given. Only states
with |�J| � 1 with respect to the intermediate state (Jex = 7) are
shown as our two-photon scheme only couples to such states.

Configuration Term, J Energy (cm−1) (threshold)

4 f 12(3H6)6s2(1S0) (6,0) 6 0
4 f 12(3H6)6s6p(1P1) (6,1) 7 24943.298
4 f 12(3H6)6s1/2 (6,1/2) 13/2 49260.750
4 f 12(3H6)6s1/2 (6,1/2) 11/2 49701.184

4 f 12(3H6)6s1/2ns1/2 (13/2,1/2)6,7 (Jc = 13/2)
4 f 12(3H6)6s1/2ns1/2 (11/2,1/2)6 (Jc = 11/2)

4 f 12(3H6)6s1/2nd3/2 (13/2,3/2)6,7,8 (Jc = 13/2)
4 f 12(3H6)6s1/2nd5/2 (13/2,5/2)6,7,8 (Jc = 13/2)
4 f 12(3H6)6s1/2nd3/2 (11/2,3/2)6,7 (Jc = 11/2)
4 f 12(3H6)6s1/2nd5/2 (11/2,5/2)6,7,8 (Jc = 11/2)

the smallest, suggesting the angular momentum of the positive
ion should be coupled to that of the Rydberg electron. There
are three ways to order the addition of angular momenta
but the interaction between the Rydberg states will typically
preclude the states from being nearly pure in one ordering or
the other. The order used in the MQDT simulations is to add
the spin and orbital angular momenta of the Rydberg electron
together to get the total angular momentum, j, of the Rydberg
electron; this is then added to the total angular momentum of
the core electrons to get the total angular momentum of the
final state. Our two-photon excitation scheme leads to even
parity Rydberg states with most of the states having ns or
nd character. Also, Lanthanides offer the unique possibility
to directly couple to ng states with � = 4 due to the angular
momentum of the submerged shell. Table I lists the relevant
quantum numbers for the states discussed in this paper.

III. EXPERIMENTAL SETUP

Figure 1(c) shows a schematic drawing of the experimental
spectroscopy setup, consisting of an ultrahigh vacuum setup
with a high-temperature effusion cell, a transversal cooling
chamber, a differential pumping section (not shown here),
and the probe chamber. The design is similar to the one in
Ref. [39]. Erbium atoms are evaporated in the effusion cell at
1300 ◦C. From the effusion cell, the atoms pass through three
apertures to form a collimated beam, propagating along the
horizontal x direction. In the subsequent probe chamber, the
atomic beam crosses the interaction region with the coupling
and probe laser beam. The coupling and probe beam coun-
terpropagate and intersect the atomic beam perpendicular (y
direction) to reduce Doppler shifts. They are overlapped and
separated by dichroic mirrors. An additional reference beam,
split from the probe beam, propagates parallel to the probe
beam and acts as a reference to cancel out power fluctuations.
We can block the atomic beam between the probe and refer-
ence beam to provide a reference with and without the atomic
absorption. We use about 10 to 500 μW, with a waist (1/e2

radius) of about 0.5 mm for both the probe and reference
beam, while the coupling beam approximately has 130 mW at
the interaction region and a waist of 1 mm. We modulate the
coupling beam with an optical chopper at 7 kHz, monitor both
the probe and reference beam on balanced photodiodes (PD1
and PD2), and feed the ac-coupled difference of these signals
as input for a lock-in amplifier. Both lasers are commercial
resonantly frequency-doubled devices; the probe and refer-
ence beam are derived from an amplified diode laser locked
onto the 401 nm transition line using a Doppler-free modula-
tion transfer spectroscopy in a hollow cathode lamp [25]. The
coupling laser is derived from a continuous-wave free-running
Ti:Sa laser. Both lasers are monitored on a wavelength meter
with 60 MHz absolute accuracy, see Appendix C.

We add quarter- and half-wave plates to the probe and
coupling beam path to control the light polarization, and apply
a magnetic field on the order of 10 G in the z (B = (0, 0, Bz ))
direction. This enables us to drive σ± and/or π transitions
in a controlled setting, which facilitates the assignment of the
total angular momentum J and estimation of the g factor of
Rydberg states, see Sec. IV B.

IV. DATA ANALYSIS

To detect the Rydberg levels, we make use of EIT [33].
In short, we detect the probe laser transmission through the
atomic beam, which experiences absorption when in reso-
nance with the atomic transition to the intermediate state.
In case the coupling laser hits a resonance condition, i.e.,
couples the intermediate state to a Rydberg state, this absorp-
tion gets reduced. This can be understood in a dressed state
picture where the coupling leads to a doublet of dressed states
(Autler–Townes doublet) [40] and, together with destructive
interference of the absorption of these states, to a transparency
window at resonance. This tell-tale sign of EIT is shown in
Fig. 2(a), where we directly record the probe laser power
after passing the atomic beam. The probe laser frequency is
scanned over the absorption resonance, while the coupling
laser frequency is fixed, in this case on resonance to the Ryd-
berg state at 49147.967 cm−1, identified as the lowest-lying
fine-structure state of the 31d Rydberg manifold, see later
discussion. The narrow transmission peak due to EIT appears
in the center of the absorption line.

For a survey of Rydberg states, we lock the probe laser onto
the hollow-cathode lamp spectroscopy on resonance with the
401 nm transition to the intermediate state, scan the coupling
laser frequency, and again record the transmitted probe laser
power. We additionally improve our signal-to-noise ratio by
using a reference beam, which we subtract to reduce noise
from power fluctuations, and using a lock-in technique where
we modulate the coupling beam with a chopper, see Sec. II
for details. In case we hit the resonance condition to a Ry-
dberg state, we observe directly the increased transmission.
Figure 2(b) shows an excerpt of the total spectroscopy data in
the region from about 49112 cm−1 to 49211 cm−1.

Using this technique, we record about 550 EIT reso-
nances and assign their total energy, see Appendix D for a
full list. After the determination of the ionization thresholds
(see details in Sec. IV A) we can assign effective quantum
numbers to each level. Figure 2(c) shows the energy of all
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FIG. 2. EIT spectroscopy and survey of Rydberg states. (a) Ex-
emplary EIT resonance around 49147.967 cm−1. Here, the coupling
beam is kept fixed while �p is scanned, showing the typical EIT sig-
nal of reduced absorption when on two-photon resonances. (b) EIT
spectroscopy over a broad range of energies covering about 100
individual Rydberg states. �p is fixed to zero while the coupling
laser frequency is scanned. The shaded area indicates the noise floor
as a guide to the eye. (c) Energy of all observed Rydberg states ex-
tracted from the data as a function of the assigned effective principle
quantum number. Ry states that are either above the first ionization
threshold or comparatively broad are assigned to the second-lowest
Jc = 11/2 ionization threshold and are plotted against their corre-
sponding principle quantum number (grey). Solid lines show the
expected Rydberg energies using the simple Rydberg formula with
the derived Eion, j .

observed Rydberg states as a function of their effective quan-
tum numbers. We observe the typical 1/n2 scaling of Rydberg
states. We also found several very strong EIT features, at least
ten times stronger than any surrounding resonances. Together
with a few states located above the first ionization threshold,
we assign them to be part of the Rydberg series attached to
the second-lowest Jc = 11/2 ionization threshold. Also, here
we observe a similar 1/n2 scaling which, together with their
positions agreeing with the expected locations of states from
this threshold, further strengthens our assignment.

A. Determination of lowest ionization threshold
and assignment of series

As an important parameter for the assignment of quantum
numbers and the understanding of the Rydberg series, we
first determine the lowest ionization threshold by plotting
the effective quantum numbers ν j = √

Rμ/(Eion, j − Ei ) and
effective quantum defects μ j = −ν j(mod 1). Here, ν j is the
effective quantum number with respect to the ion core state
with angular momentum j, Eion, j the corresponding ionization
threshold, and Ei the energy of the Rydberg states. We also
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FIG. 3. Rydberg series: (a) Lu-Fano-style plot, showing the cal-
culated μ13/2 of all observed states below the lowest ionization
threshold as a function of the effective quantum number ν11/2 of the
second-lowest ionization threshold. (b) Zoom into the EIT spectrum
around 49148 cm−1, showing the states marked as red data points in
(a). This bundle of resonances is identified as the 31d Ry state where
the fine structure splitting leads to six features with J = 6, 7, or 8,
see Sec. IV B for the assignment.

use neff = floor(νj ) as the integer part for the assignment. We
use a Lu-Fano analysis of our data to extract a new value for
the ionization threshold: For an unperturbed Rydberg series,
the quantum defect is nearly constant for intermediate prin-
ciple quantum numbers. For Rydberg states with very high
principle quantum numbers close to the ionization thresh-
old, external influences like electric fields can disturb the
states, and uncertainties in absolute frequencies have a larger
influence on the effective quantum defect, while at lower
energies the quantum defect shows a stronger state depen-
dence. By plotting the calculated effective quantum defect
μ13/2 versus ν11/2, we obtain a manifold of flat series around
μ13/2 = 0.8. We vary the value for the ionization threshold
and fit a straight line to all states with 0.7 < μ13/2 < 0.9
above 49250 cm−1 and find Eion,13/2 = 49260.7442(23) cm−1

as a value for the lowest ionization threshold to minimize
the overall slope. This value is within the error margin of
the literature value of 49262(8) cm−1 [41] and of the pre-
liminary value 49260.73(9) cm−1 derived in Ref. [32], but
improves in precision by almost four, or two, respectively,
orders of magnitude. For the first excited ionization thresh-
old, the same analysis suffers from the low number of states
and missing states at high ν11/2. Therefore, we use the
value reported in Refs. [42,43] for the splitting of the two
states with 440.433(10) cm−1 and calculate the Eion,11/2 =
49701.177(10) cm−1.

Figure 3(a) shows the resulting effective quantum number
and quantum defect for all states below the first ioniza-
tion threshold. Two main series are visible, the first one
around μ13/2 = 0.35 which consists of single separated states,
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expected for the ns series. At the second series around μ13/2 =
0.75, we observe a bundle of five to six lines in relatively
close proximity to each other. This is consistent with the
expected nd series. Figure 3(b) shows an exemplary scan over
one of those bundles and already gives the assignment of the
individual J values, as we will detail below.

B. Determination of total angular momentum J and g factors

While the ns states are clearly separated and are expected
to be nearly exclusively J = 6 (see Sec. V for a more de-
tailed discussion), there is a large number of possible nd
states. A full assignment of the nd states requires a determi-
nation of their total angular momentum, J , which we extract
by performing a Zeeman spectroscopy for each state of the
fine structure manifold for principal quantum numbers neff =
23, 27, 31, 37: We apply a magnetic field along z, and use
horizontal polarization for all laser beams (propagating along
y, polarization parallel to x), which provides σ+ and σ− light
in the reference frame of the atoms. We first calibrate our mag-
netic field with a Zeeman spectroscopy of the transition to the
intermediate state without probe light by scanning the 401 nm
laser and fitting Gaussian curves to the absorption signal. With
the known g factors for both ground and intermediate states,
we determine our magnetic field strength to be 10.7(5) G.

Now we lock the probe beam frequency again on the zero-
field resonance, scan the couple laser frequency over a range
of about 100 MHz, and observe a splitting of the EIT lines,
which results in distinctly different signal patterns, see exem-
plary the patterns of the 27d fine-structure manifold shown
in Fig. 4. We can sort the patterns into three groups: (A) One
weak central peak and two strong peaks shifted symmetrically
by about 40 MHz, (B) one central peak which may split into
two peaks separated by less than 30 MHz, and (C) a strong
central peak with two or four weaker side peaks. Note that the
asymmetry in the spectra is an artifact from the measurement
procedure which we were not able to remove completely.

These three distinct behaviors can be explained as the result
of the combination of the specific J in the ground (Jgs), excited
(Jex), and Rydberg states and the polarization of the probe

and coupling beam. In general, the resonance frequency of a
specific two-photon transition |Jgs, mgs〉 → |J, mJ〉 shifts from
its zero-field energy as �E = (gJmJ − ggsmgs)μBB. Here, mgs

(mJ ) denotes the projection of Jgs (J) of the ground-state (Ry-
dberg) atom along the quantization axis and �m = mJ − mgs

the total difference between them. As transitions are limited to
|�m| � 2 due to selection rules and assuming that gJ is close
to ggs, we can identify five main features with energies:

�E±2 = ±2ggsμBB, (�m = ±2),

�E±1 = ±1ggsμBB, (�m = ±1),

�E0 = 0, (�mJ = 0).

Taking into account the additional difference in g factors,
each of these main resonances splits again into a series of
closely spaced resonances with additional energy shifts �E =
�gJmJμBB, with �gJ = gJ − ggs.

Given our applied polarization of probe and coupling
beam (σ±) and partial optical pumping toward the stretched
states Jgs = ±6 during the spectroscopy due to the different
Clebsch-Gordan coefficients of the first transition, we expect
mainly resonances at �E±2 and �E0, see Appendix B for
further details and corresponding calculations. Based on these
modeled spectral patterns, for J = 8 we expect the strongest
signals at �E±2 and a weaker central peak at �E0. Instead,
for J = 6, the strongest resonance will be �E0, which might
split for large �gJ , while �E±2 transitions will be very weak.
Finally, J = 7 will have its strongest component at �E0 to-
gether with slightly weaker �E±2 transitions and some very
weak �E±1 components. With these considerations, we assign
group (A) to J = 8, group (B) to J = 6, and group (C) to
J = 7.

Using this assignment technique for all investigated prin-
cipal quantum numbers neff = 23, 27, 31, 37 [44], we observe
the same fine-structure pattern with increasing energy, which
goes as J = 8, 6, 7, 8, 6, 7, see Fig. 3(b). Additionally, we
find that the J = 6 EIT resonances within one scan are sig-
nificantly weaker compared to J = 7, 8. The same pattern
in relative signal strength can be found for five other neff =
32 − 36, allowing us to assign the total J of each state via
comparison of the order and relative height of the resonances
of the EIT spectra without the need of a full Zeeman mapping
for every neff.

We are also able to experimentally determine the gJ value
for most of the investigated states. For this, we fit our modeled
spectral pattern (see Appendix B) to the experimental data,
with gJ as the main fitting parameter. We also allow some vari-
ation of the polarization and the optical pumping effect to be
able to account for differences in the experimental conditions
like probe and coupling laser intensities and beam alignment.
Our results are summarized in Table IV.

V. MQDT, ASSIGNMENT OF LINES, ASSIGNMENT
OF QUANTUM DEFECTS

Most of the experimentally measured energies for 20 <

ν13/2 < 60 seem to be grouped into two sets that are weakly
interacting. The group with quantum defects 0.3 � μ13/2 �
0.4 appear to come from a two channel series with one chan-
nel attached to the 13/2 threshold and the other attached to
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TABLE II. The MQDT parameters for the ns J = 6 series.

τ τ0 τ2

μ1 0.30136 −15.78
μ2 0.42673 −1.718
α 0.72378 −0.594

the 11/2 threshold. From the discussion in Appendix A, this
suggests that these are J = 6 states with ns Rydberg character.
The other main group are states with quantum defects between
∼0.75 and ∼0.8 which, due to their number, must be states
with nd Rydberg character. There are several states with small
quantum defects which might have ng character. Finally, there
are several states that are not part of either group but might be
identified by fitting the MQDT parameters.

A. ns series

In the limit that coupling between ns and nd states can be
ignored, the ns series with J = 6 results from a two-channel
system with one channel attached to the Jc = 13/2 threshold
and one attached to Jc = 11/2. Since the K matrix is sym-
metric there are only three independent parameters in the K
matrix. We chose the parameters to be the two eigenquantum
defects and the mixing angle of the eigenvector. Taking chan-
nel 1 to be Jc = 13/2 and 2 to be Jc = 11/2, the K matrix is
written as

Ki j =
∑

a

UiaUja tan(πμa), (1)

where U11 = U22 = cos(α) and U21 = −U12 = sin(α). The
frame transformation approximation in Appendix A 3 implies
α = cos−1(

√
7/13) = 0.7469.

We fit the identified states using these three parameters.
The fit minimized the χ2 calculated from the sum of differ-
ences between the calculated and measured energies. When
we take these parameters to be independent of energy, we
find μ1 = 0.27458, μ2 = 0.42223, and α = 0.72885. Note
the closeness of α to the value expected from the frame
transformation approximation which further supports this ap-
proximation for the ns series. The residuals of the μ13/2 are
shown in Fig. 5(b) and for most of the states they are smaller
than ∼0.01. This level of agreement is roughly what should
be expected for states over such a large range of energy. For a
more realistic fit, we included a linear energy dependence in
all of the parameters. Historical precedence gives a subscript
2 to the linear energy dependence [because the linear energy
dependence was originally written as 1/(n − μ)2]. For a pa-
rameter τ , the energy dependence is written as

τ (E ) = τ0 + η(E ) τ2, (2)

where η(E ) = (E13/2 − E )/R166 and R166 is the Rydberg con-
stant defined in Appendix A. The fit values are given in
Table II. Note that the value for α is only ∼3% different from
the frame transformation value. The comparison between the
MQDT fit and measured bound state energies is shown in
Fig. 5. Note that the residuals for all states are now much less
than 0.01. The fit was useful in identifying states not obvi-
ously part of the series with quantum defects between ∼0.3
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FIG. 5. Lu-Fano plot of the s series states. (a) All experimentally
observed states assigned to the J = 6 (blue circles) and J = 7 (green
diamonds) s series attached to the lowest 13/2 ionization threshold.
The lines show the result of the MQDT calculations with energy
dependence for the ns series; the black bar indicates the ionization
threshold. The dashed line indicates a broad and strong EIT feature,
assigned to the ns series of the 11/2 threshold. The open orange
circles indicate theoretically predicted J = 6 states found experimen-
tally in an additional survey. (b) Absolute values of the difference
between the measured data and the MQDT model, with (grey circles)
and without (red squares) energy dependence (see Sec. V A for
details on the model).

to ∼0.4; these are the three states with quantum defects ∼0.9.
The fit also predicted two states not in the original data set
that were subsequently identified: 26s at 49105.45(7) cm−1

(μ13/2 � 0.42) and 39s at 49188.91(7) cm−1 (μ13/2 ∼ 0.92).
We observed only two states with quantum defects of

μ = 0.358 that do not appear to be members of the J = 6
series. We have assigned these to the J = 7 series. This small
number of observed states compared to J = 6 might be ex-
plained by the different coupling of the two series. At short
range, the ns J = 7 must have the coupling (6sns) 3S1. Since
the intermediate state has (6snp) 1P1 character, transitions to
the J = 7 would be dipole suppressed. But since both the
intermediate state and the Rydberg state have finite admix-
tures of triplet and singlet character, respectively, excitations
are allowed, where the excitation strength strongly depends
on the singlet admixture of the specific Rydberg state. The
large difference of this quantum defect from the μ2 for J = 6
suggests limitations to the frame transformation because these
values should both be the 3S1 quantum defect, Appendix A 3.

B. nd series

The nd series is more difficult to model because of the
larger number of channels and the limited number of ex-
perimentally identified states being perturbed, see Sec. IV B
above. In total, the experimental data allowed to identify
12 states with J = 6, 18 states with J = 7, and 19 states
with J = 8 character. These states were used in the fit of
the parameters. Because the J = 6 and 7 have four channels
and the J = 8 has three channels, there are ten free param-
eters for J = 6 and 7 and six free parameters for J = 8.
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TABLE III. The MQDT parameters for the nd series for different J .

J μ(1D2) μ(3D1) μ(3D2) μ(3D3)

6 0.782 0.729 0.744 0.791
7 0.752 0.724 0.747 0.794
8 0.750 0.763 0.808

Symmetries in the bound-state conditions mean that the ener-
gies only determine eight parameters for J = 6 and 7 and five
parameters for J = 8 (whenever two channels are attached to
a threshold, the energies only determine the eigenquantum
defects and cannot determine their mixing angle). The main
difficulty in directly determining the full K matrix is that the
Jc = 13/2 nd states experimentally identified to a particular J
are not strongly perturbed by states attached to the Jc = 11/2
threshold. This means that the eigenquantum defects attached
to the Jc = 13/2 threshold are well defined but most of the
K-matrix elements are relatively unconstrained. As a contrast,
see Fig. 5 where the perturbations of the ns states clearly
lead to variations greater than 0.1 for μ13/2. This means the
energies are giving information about two parameters for
each J .

These considerations suggest using the frame transforma-
tion approximation or interaction approximation, discussed in
Appendices A 3 and A 4, respectively, to reduce the number of
fit parameters. These approximations lead to nearly the same
χ2 fit to the data points even though they have very different
physical motivation. This is because they are mainly fitting
to the eigenquantum defects of the channels attached to the
Jc = 13/2 threshold. For these fits, we did not include energy
dependence in the MQDT parameters because the resulting
fits did not substantially improve the agreement with experi-
mental results.

In addition to the measured energies, we were able to ex-
perimentally determine the g factor of several of the nd states.
Appendix A 2 describes an approximate method for calcu-
lating g factors given the MQDT parameters. If the MQDT
parameters were exact, this approximation would lead to er-
rors less than 1%. Unfortunately, we did not find an effective
way of using the measured g factors in the fitting procedure.
The difference between the measured and simulated g factors
described below results from the limitations of the frame
transformation and interaction approximations used in the nd
fits.

Figure 6 shows the experimental states where J has been
identified, together with the calculated nd series using the
frame transformation approximation. This plot emphasizes
that the fit gives a fairly accurate representation of the exper-
imentally detected states. Table III shows the fit parameters
for the frame transformation approximation. The fact that the
quantum defects mostly do not vary strongly with J (only the
1D2 varies by more than 0.02) suggests that this approxima-
tion captures much of the physics of these series. However,
this approximation is not accurate enough to predict the states
that are perturbed or are attached to the Jc = 11/2 threshold,
see Fig. 6. Also, the calculated g factors substantially differ
from the measured values, see Table IV. Both difficulties
suggest that the frame transformation does not capture the
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Theo. J=7
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FIG. 6. MQDT assignment of nd Rydberg series. The lines show
the results of the frame transformation approximation fitting. Small
symbols show all experimental data, colored filled symbols show
all states where we assigned J experimentally. Large grey circles
(plotted with their respective μ11/2) represent states which we assign
to the Jc = 11/2 threshold. Four of these are above the first threshold,
while states for four different n are identified as perturbers of the d
series attached to the Jc = 13/2 threshold.

full physics. The channel character is approximately 40:60
(or 60:40) of nd3/2 and nd5/2 for the frame transformation
approximation. Thus, this approximation suggests the chan-
nels are strongly mixed. The fit to the interaction parameters,
Appendix A 4, gives Cq = 0.7533, μ3/2 = −0.0777, μ6 =
0.7840, μ7 = 0.7690, and μ8 = 0.7979. Since the experimen-
tal states are constraining six K-matrix parameters and there
are five parameters in the fit, the fact that this model accurately
reproduces the experimental values argues for the physics
contained in the method. However, this approximation is also
not accurate enough to predict the states that are perturbed or
are attached to the Jc = 11/2 threshold, see Fig. 6. It does a
better job of predicting the g factor but still has substantial
inaccuracies, see Table IV. The channel character is nearly
pure for this approximation. However, the state designation
is reversed from that used to experimentally determine the g
factor in Table IV. This contradicts the frame transformation
characterization of the channel mixing which points to the
uncertainty in the modeling of the nd series.

Note that while the two-threshold MQDT analysis appears
to predict much of the general pattern of the Rydberg levels
and perturbations at least qualitatively correctly, the energy
range just below the Jc = 13/2 threshold looks irregular and
even rather chaotic. To account for this apparent irregularity,
it should be remembered that there are higher energy levels of
Er+ that are guaranteed to support their own infinite Rydberg
series of levels as well. It is expected that some of the lower-
lying members of those Rydberg series can also occur in the
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TABLE IV. List of fine-structure states with Zeeman mapping
and measured g factor, determined by energy splitting in a vertical
magnetic field. For some states, the signal-to-noise ratio was too low
to reliably fit the g factor (–). The calculated g factors are from the
(frame transformation approximation, interaction fit). Note that the
calculations only show a single state around 49056.9.

neff E (cm−1) J gJ , meas gJ , diag gJ , calc(FT, QP)

23 49056.886(5) 8 – – (–,–)
23 49056.904(5) 8 1.21(2) 1.1493 (1.2205,1.2256)
23 49057.075(5) 6 1.34(3) 1.2454 (1.1597,1.2259)
23 49057.347(5) 7 1.17(4) 1.1877 (1.1491,1.2262)
23 49057.764(5) 8 – 1.2234 (1.1520,1.1471)
23 49057.997(5) 6 1.23(5) 1.2293 (1.3148,1.2488)
23 49058.102(5) 7 1.33(9) 1.2258 (1.2640,1.1873)
27 49112.369(5) 8 1.10(2) 1.1493 (1.2206,1.2256)
27 49112.531(5) 6 1.32(2) 1.2454 (1.1597,1.2259)
27 49112.794(5) 7 1.13(6) 1.1877 (1.1492,1.2262)
27 49112.949(5) 8 1.23(7) 1.2234 (1.1520,1.1471)
27 49113.035(5) 6 1.17(8) 1.2293 (1.3149,1.2488)
27 49113.115(5) 7 1.24(10) 1.2258 (1.2642,1.1873)
31 49147.967(5) 8 1.18(5) 1.1493 (1.2206,1.2256)
31 49148.098(5) 6 1.33(2) 1.2454 (1.1597,1.2259)
31 49148.258(5) 7 1.22(4) 1.1877 (1.1491,1.2262)
31 49148.359(5) 8 1.30(3) 1.2234 (1.1520,1.1471)
31 49148.435(5) 6 1.17(5) 1.2293 (1.3149,1.2488)
31 49148.470(5) 7 1.25(3) 1.2258 (1.2641,1.1873)
37 49181.406(5) 8 1.13(8) 1.1493 (1.2207,1.2256)
37 49181.480(5) 6 – 1.2454 (1.1597,1.2259)
37 49181.578(5) 7 1.12(10) 1.1877 (1.1492,1.2262)
37 49181.604(5) 8 1.23(2) 1.2234 (1.1520,1.1471)
37 49181.668(5) 6 – 1.2293 (1.3149,1.2488)
37 49181.701(5) 7 1.22(3) 1.2258 (1.2642,1.1873)

spectral region studied here, and those are expected to cause
significant distortions of the experimental energy level pattern
and associated deviations from the present MQDT models.

One ionic threshold, in particular, appears to lie at an
energy poised to produce such a perturbation just below the
even-parity ground state of the ion. We refer to the odd-parity
level of Er+ with the spectroscopic label 4 f 116s2 4Io

15/2, which
lies 6824.774 cm−1 above the Jc = 13/2 ionic ground state. A
5 f Rydberg electron attached to that core, with an expected
quantum defect of μ f ≈ 1, should produce many Rydberg
states of erbium lying approximately 34 cm−1 below the Jc =
13/2 ionization threshold, in the ν13/2 ≈ 50 − 60 range, and
ν11/2 ≈ 15.2. Specifically, a 5 f5/2 electron produces levels
with all values of J from 5 to 10, and a 5 f7/2 electron produces
J from 4 to 11, so there are six perturbing levels expected near
that region of the spectrum with angular momenta in the range
J = 6 − 8 that would be observable in the present experiment.
Some of those levels might be present in Fig. 6, as that region
near ν11/2 ≈ 15.2 shows numerous levels that deviate from
our simplified two-threshold MQDT models.

C. Coupling to low-lying ng states

Due to the angular momentum coupling to the ionic core, a
two-photon excitation of a Rydberg state with � = 4 (ng state)
is possible as both angular momentum selection rules and
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FIG. 7. EIT spectrum of the possible 13g state at
49052.771 cm−1. A fine-structure splitting of four resonances
is visible, the inset shows a second measurement run confirming the
fourth resonance feature.

change of parity are fulfilled. Nonzero matrix elements can
arise among others from f -wave admixture in the intermediate
state or any d-wave admixture in the ng Rydberg state. Below
the first ionization threshold, the highest neff, 11/2 = 15. Due
to its large angular momentum, the corresponding quantum
defect is expected to be close to zero. We identified several
candidates with very small μ11/2 and further eliminated lines
too close to other ns or nd resonances, especially when close
to already identified perturbers. One candidate meets all re-
quirements and additionally shows a distinct fine structure
pattern different from the previous investigated series, see
Fig. 7. Its energy of 49052.771 cm−1 would be compatible to
a 13g state connected to the second ionization threshold.

D. States above first ionization threshold

We observed several states above the first ionization thresh-
old, which we assigned to the second ionization threshold.
With an effective quantum defect μ11/2 ≈ 0.78, we would
identify them as belonging to the nd series of the J = 11/2
state. We assign effective principal quantum numbers neff, 11/2

and measure their width as the FWHM value, as shown in
Table V. Interestingly, their widths vary by more then two
orders of magnitude, presumably caused by drastically differ-
ent lifetimes. A more systematic survey of these states could
improve the MQDT modeling by constraining the parameters,
as discussed in Sec. V.

E. Isotope shift

To demonstrate the flexibility of our method and to exploit
the large number of isotopes with high abundance in erbium,

TABLE V. States above the first ionization threshold, with their
measured full width at half maximum. Only the first two states
have significantly increased widths, while the other states show a
linewidth comparable to the states below the threshold.

neff, 11/2 δeff, 11/2 Emeas (cm−1) FWHM (MHz)

17d 0.77 49284.43(1) 350
18d 0.80 49330.22(1) 30
18d 0.76 49332.16(1) 2
19d 0.80 49369.82(1) 4
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TABLE VI. Total energy of the lowest state of the 27d multiplets
for different isotopes, with the energy difference between the Ryd-
berg state and the intermediate (Ei,Ry) and the ground state (Etot).

isotope Ei,Ry (cm−1) Etot (cm−1)

164 24169.102(5) 49112.429(5)
166 24169.106(5) 49112.404(5)
168 24169.105(5) 49112.375(5)
170 24169.108(5) 49112.350(5)
167(17/2,19/2) 24169.031(5) 49112.313(5)
167(9/2,11/2) 24169.178(5) 49112.465(5)

we record the isotope shift of the n = 27d multiplets for four
bosonic isotopes, 164Er, 166Er, 168Er, 170Er, as well as for two
hyperfine states of the fermionic 167Er isotope, see Table VI.
This shows the versatility of our approach, and our ability to
switch easily between the addressed isotopes and hyperfine
states. For the energy of the first photon, we take the value
from Ref. [45] to calculate the total energy.

VI. SUMMARY AND OUTLOOK

We observe about 550 Rydberg states in erbium with un-
precedented precision and with principal quantum numbers as
high as n = 140. By controlling the light polarization and ap-
plying a magnetic field, we can resolve the splitting between
Zeeman sublevels and are able to assign the total angular
momentum J to the observed Rydberg series and measure
their gJ factors.

The number and precision of states allowed for an accurate
determination of the MQDT parameters for the ns-Rydberg
series. We were not able to unambiguously determine the
MQDT parameters for the more complicated nd-Rydberg
series. Two restricted models of the series were able to re-
produce many of the features of the nd series. However,
the g factors for several of the states and the details of the
perturbations were not accurately reproduced. Future techni-
cal improvements will allow a higher absolute accuracy of
the measured Rydberg energies as well as enabling a more
systematic survey of the states between the two ionization
thresholds, thus providing an improved basis for understand-
ing and modeling of the nd-Rydberg series.

Our spectroscopic study marks a step in creating a toolbox
for Rydberg physics. While our first survey concentrated on an
excitation scheme using a 6s electron, our vision is to employ
schemes using inner-shell 4 f electrons. Additionally, to the
possibilities offered by two-electron atoms like strontium or
ytterbium, we expect dramatically new physics to be present
and that the active submerged shell will affect fundamental
properties of these systems.
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APPENDIX A: MULTICHANNEL QUANTUM DEFECT
EQUATIONS (MQDT)

The formulas used to calculate the energies and g fac-
tors of the states are given below. They follow the notation
in Ref. [12] and are given with little discussion. For a
fuller derivation and discussion, see Ref. [46] or [12]. The
mass of 166Er+ was taken from Ref. [47] to be M166+ =
165.930 293 1u − me with u = 1.660 539 066 60 × 10−27 kg
and me = 9.109 383 701 5 × 10−31 kg taken from the CO-
DATA values. The Rydberg constant, R166, was taken to be
scaled from the CODATA R∞ value as R166 = 109 737.315
681 60 cm−1 × M166+/(M166+ + me).

1. Calculated energies

When the Rydberg electron is outside of the ionic core, the
unphysical wave functions can be written as

|ψi〉 =
∑

i′
|
i′ 〉[ fi′ (r)δi′,i − gi′ (r)Ki′,i], (A1)

where the f (g) are the energy normalized, radial Coulomb
functions which are regular (irregular) at the origin and K is
the real, symmetric K matrix. See Ref. [46] for the properties
of these functions that depend on the radial position of the Ry-
dberg electron. The core states |
i′ 〉 contain all other degrees
of freedom. For the Rydberg states described above, the core
states can be written as

|
i〉 = |(Jc,i(s�i) ji )JiMi〉, (A2)

where Jc,i is the total angular momentum of the core, s
is the spin of the Rydberg electron, �i is the orbital an-
gular momentum of the Rydberg electron, ji is the total
angular momentum of the Rydberg electron, Ji is the total
angular momentum, and Mi is the related azimuthal quantum
number. The order of parenthesis is meant to indicate the order
that the angular momenta are coupled together.

The |ψi〉 function is unphysical because the fi′ , gi′ func-
tions diverge at large r for closed channels defined by E <

Ec,i′ . At bound-state energies, the |ψi〉 can be superposed to
give a physical eigenfunction which converges to 0 at large
r. For the bound state at energy Eb, the superposition can be
written as

|ψb〉 =
∑

i

|ψi〉cos(βi )

ν
3/2
i

Ai,b (A3)

and the condition that determines the bound states is [46]
∑

i

[tan(βi′ )δi′,i + Ki′,i]
cos(βi )

ν
3/2
i

Ai,b = 0, (A4)
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where βi = π (νi − �i ) and the effective quantum number is
defined as E = Ec,i − R166/(2ν2

i ) in terms of the total energy,
E , and the energy of the ith core state, Ec,i with both ener-
gies in cm−1. The Rydberg constant is given in Appendix A
above. This condition only holds when the term in [ ] has a
determinant equal to 0. The normalization condition when the
K matrix is slowly varying with energy is

∑
i

A2
i,b = 1, (A5)

which, with Eq. (A4), defines the Ai,b within an irrelevant,
overall sign.

2. Calculated g factor

The g factor for individual states can be approximately
calculated from the MQDT parameters by assuming the con-
tribution is negligible when the Rydberg electron is within the
ionic core region. This situation is covered by Eq. (4.1.2) of
Ref. [46] (or, similarly, Eqs. (15) and (16) of Ref. [12]):

gb =
∑
i,i′

Ai,b〈
i|ĝ|
i′ 〉Oib,i′bAi′b, (A6)

where the overlap matrix is

Oib,i′b = 2
√

νibνi′b

νib + νi′b

sin(βib − βi′b)

(βib − βi′b)
, (A7)

with Oib,ib = 1. The g-operator matrix element is complicated
but only uses Eqs. (3.7.9), (5.4.1), (5.4.3), (7.1.7), and (7.1.8)
of Ref. [48]. The matrix element is

〈
i|ĝ|
i′ 〉 = 1

Mi
〈
i|gc,iJc,z + �z + gssz|
i′ 〉

= 〈
i||gc,iJ (1)
c + �(1) + gss(1)||
i′ 〉

�(Ji )
, (A8)

where gc = 1.230 for the Jc = 13/2 state and 1.101 for the
Jc = 11/2 state [49,50] and gs = 2.002319.... The �(x) ≡√

(2x + 1)(x + 1)x. The reduced matrix elements when � is
the same for i and i′ are

〈
i||�(1)||
i′ 〉 = δJc,iJc,i′G1G2�(�),

〈
i||s(1)||
i′ 〉 = δJc,iJc,i′G1G3�(s),

〈
i||J (1)
c ||
i′ 〉 = δ ji ji′ δJc,iJc,i′G4�(Jc,i ), (A9)

where we have made the approximation that the core angular
momentum operator does not mix core states with different Jc

and

G1 = (−1)Jc,i+ ji′ +J+1(2J + 1)

{
ji J Jc,i

J ji′ 1

}
,

G2 = (−1)s+�+ ji+1[ ji, ji′ ]

{
� ji s
ji′ � 1

}
,

G3 = (−1)s+�+ ji′ +1[ ji, ji′ ]

{
s ji �

ji′ s 1

}
,

G4 = (−1)Jc,i+ ji+J+1(2J + 1)

{
Jc,i J ji
J Jc,i′ 1

}
. (A10)

3. Frame transformation approximation

The energy-dependent K matrix exactly determines the
bound-state energies and approximately allows evaluation of
other state properties (e.g., the g factor). Unfortunately, the
electronic structure of Er is too complicated for an accurate,
ab initio calculation. Nevertheless, there are two possible
paths to obtain the K matrix. The first is to use the experi-
mental data, without any guidance from a model, to obtain a
fit of the K matrix. This is described in Sec. V A. The other
is to utilize an approximation to restrict the possible values
of the K matrix before using the experimental energies to
fit the elements of the K matrix. This section describes this
second method where the approximation is based on a frame
transformation. The following section will use a different
physical idea to reduce the number of parameters defining the
K matrix.

The frame transformation approximation assumes there is
a channel coupling that diagonalizes the K matrix when the
electron is in the core region. The Rydberg states are attached
to fine structure split core states of Er+: 4 f 12(3H6)6s1/2Jc with
Jc = 13/2 and 11/2 being the ground and first excited states,
respectively. The idea is to call the angular momentum of the
4 f 12 inner electrons Jf = 6 and the angular momentum of
the valence 6s electron Js = 1/2. In terms of the notation of
Appendix A 1, the channel states when the electron is outside
of the core, Eq. (A2), is expanded to

|
i〉 = |((Jf Js)Jc,i(s�i) ji )JiMi〉. (A11)

We assume that the coupling that leads to a diagonal K matrix
is given by

|
in
i′ 〉 = |(Jf ((Jss)So,i′�i′ )Jo,i′ )Ji′Mi′ 〉, (A12)

where the order of coupling is the spin of the 6s and Rydberg
electron coupled to give total outer spin, So,i, then the total
outer spin is coupled to the orbital angular momentum of
the Rydberg electron, �i, to give the total outer angular mo-
mentum, Jo,i, then the angular momentum of the inner 4 f 12,
Jf = 6 is coupled to the total outer angular momentum to
give the total angular momentum. The overlap matrix between
these couplings are only nonzero if Ji = Ji′ , Mi = Mi′ , and
�i = �i′ . For Er, the s = 1/2 and is automatically the same.

With the help of the intermediate coupling
|(Jf (Js(s�) j)Jo)JM〉, the projection of the two coupling
schemes is derived from Eq. (6.1.5) of Ref. [48] to give

〈
i|
in
i′ 〉 = [ ji, So,i′ , Jc,i, Jo,i′ ](−1)Jf +2Js+ ji+J+s+�+Jo,i′

×
{

Jf Js Jc,i

ji J Jo,i′

}{
Js s So,i′

� Jo,i′ ji

}
, (A13)

with [ j1, j2...] = √
(2 j1 + 1)(2 j2 + 1)....

For the case where the Rydberg electron has s char-
acter, there are two channels for J = 6 and one chan-
nel for J = 7. Thus, the frame transformation is only
useful for J = 6. The two |
〉 states can be de-
fined as |Jc〉 ≡ ((3H6 6s1/2)Jcns1/2)J = 6, with Jc = 13/2
and 11/2 while the two |
in〉 can be defined as
|Jo〉 ≡ (3H6(6s1/2ns1/2)2So+1SSo )J = 6 with So = 0 and 1. In
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this simplified notation, 〈13/2|0〉 = 〈11/2|1〉 = √
7/13 and

〈13/2|1〉 = −〈11/2|0〉 = √
6/13.

For the case where the Rydberg electron has d char-
acter, there are 4 channels for J = 6 and 7 and three
channels for J = 8. The |
〉 can be defined as |Jc, j〉 ≡
((3H6 6s1/2)Jcnd j )J . Both J = 6 and 7 have the four couplings
|13/2, 3/2〉, |13/2, 5/2〉, |11/2, 3/2〉, and |11/2, 5/2〉 while
J = 8 only has |13/2, 3/2〉, |13/2, 5/2〉, and |11/2, 5/2〉. The
|
in〉 can be defined as |So, Jo〉 ≡ (3H6(6s1/2nd1/2)2So+1DJo )J .
Both J = 6 and 7 have four couplings, |0, 2〉, |1, 1〉, |1, 2〉,
and |1, 3〉 while J = 8 only has |0, 2〉, |1, 2〉, and |1, 3〉. If we
let the quantum defects vary with J , then there are 11 free
parameters for all K matrices.

4. Interaction-inspired K-matrix approximation

A completely different method for parametrizing the K
matrix for the nd channels is to identify interactions that
lead to coupling between channels or shifts in channels. This
section discusses some of the important interactions.

There are two shifts that are expected. The first is the
average K matrix will depend on J . The second is the shift
due to the spin-orbit interaction. These lead to terms of the
form:

K (d )
ii′ = δi,i′ [tan(πμJ ) + δ ji,3/2 tan(πμ3/2)], (A14)

where we have put all of the spin-orbit shift into the nd3/2

channels.
Another important interaction arises from a second rank

coupling of the core state interacting with the nd electron.
This type of interaction can arise through a quadrupole mo-
ment of the ionic core or from an anisotropic polarizability
of the core [51]. Other long-range interaction terms between
the Rydberg electron and the anisotropic ionic core could be
introduced, such as the vector hyperpolarizabity term, but the
present level of theory has not yet taken such interactions into
account [52,53]. The angular part of the matrix element arises
from

Qii′ = 〈
i|P2(r̂c · r̂)|
i′ 〉, (A15)

where |
i〉 are from Eq. (A2) and the P2(r̂c · r̂) is the Legendre
polynomial of the Rydberg electron dotted into core electrons.
To evaluate this, we use the fact that the 4 f 12 electrons are
coupled as S f = 1, L f = 5, and Jf = 6 before coupling to the
6s electron to give Jc. Using Eqs. (5.4.6), (7.1.6), (7.1.7), and
(7.1.8) of Ref. [48], we find Qii′ = C qii′ ,

qii′ = (−1)2Jc,i′+2 ji+J [ ji, ji′ , Jc,i, Jc,i′ ]

[J]

{
� ji s
ji′ � 2

}

×
{

J ji Jc,i

2 Jc,i′ ji′

}{
Jf Jc,i Js

Jc,i′ Jf 2

}
, (A16)

when making the approximation �i = �i′ . Since the size of the
second rank coupling is unknown, we add this to the K matrix
with a fitting parameter to obtain the total:

Kii′ = K (d )
ii′ + Cqqii′ . (A17)
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FIG. 8. Absolute values of the transition matrix elements for the
first transition (a) |Jgs = 6, mgs〉 → |Jex = 7, mex〉 as well as for the
three possibilities of the second transition, (b) |Jex = 7, mex〉 → |J =
6, mJ〉, (c) |Jex = 7, mex〉 → |J = 7, mJ〉, and (d) |Jex = 7, mex〉 →
|J = 8, mJ〉. Circles (squares) encode σ− (σ+) transitions, diamonds
display π transitions.

If we stop at this level, there are five free parameters in the
K matrix.

APPENDIX B: ESTIMATION OF THE SPECTRAL
PATTERN OF DIFFERENT J STATES OF

THE nd MANIFOLD

For a simple estimation of the relative EIT resonance
strength, we create a list of all dipole-allowed transitions
from the ground state |Jgs = 6, mgs〉 over the intermediate
state |Jex = 7, mex〉 to the Rydberg states |J = 6, 7, 8, mJ〉. We
calculate the transition matrix elements for each single photon
transition using the Wigner 3 j symbol, leading to

Cmgs,mex = (−1)Jgs−1+mex
√

2Jgs + 1

(
Jgs 1 Jex

mgs �m −mex

)

for the first transition and

Cmex,mJ = (−1)Jex−1+mJ
√

2Jex + 1

(
Jex 1 J
mex �m −mJ

)

for the transition from the intermediate to the Rydberg state.
Figure 8 shows the calculated values as a function of the mJ

state for all possible J values.
For each possible combination, we can calculate the rel-

ative two-photon strength |Cmgs,mex × Cmex,mJ | and multiply it
with our estimated amplitudes of our light polarizations (here
we assume 5% π -light) and the corresponding amplitude of
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FIG. 9. Estimation of the spectral pattern given the relative two-
photon transition strength for (a) |J = 6, mJ〉, (b) |J = 7, mJ〉, and
(c) |J = 8, mJ〉. Different colors and symbols encode the transition
type (see legend). The inset shows the assumed relative distribution
of populations among the ground-state manifold.

the population of the Zeeman level of the ground state. Here,
the population amplitudes account for the effects of optical
pumping during the spectroscopy. Now we can plot it as a
function of the two-photon detuning for a given magnetic
field, in our case 10.7 G, see Fig. 9. Here we exemplary
assume a g factor gJ = 1.22 for the Rydberg state. The solid
line gives a total sum of all transitions, taking a Gaussian
line shape with a width of 2 MHz and the corresponding
two-photon strength as amplitude for each transition.

Each J has its own characteristic spectral pattern: For
J = 6, a strong central peak originating from �mJ = 0 transi-
tions (split for large gJ ) with two weaker side peaks (�mJ =
±2 transitions) is expected, while for J = 8 the central
peak should be much weaker and the side peaks should be
strongest. For J = 7, the central peak as well as the side peaks
have roughly the same strength, and only here the �mJ = ±1
transitions also have a significant strength and might be visi-
ble.

APPENDIX C: ESTIMATION OF THE EXPERIMENTAL
UNCERTAINTIES AND FREQUENCY INACCURACIES

The used wave meter has an absolute frequency accuracy
of ±60 MHz, given as 3σ interval [54]. This error is partially
systematic, depending on various environmental conditions.
Long-time measurements on a laser locked to an atomic tran-

sition in our laboratory shows frequency deviations of typical
20 MHz within one hour. We therefore assume a fundamen-
tal 1σ error of ±20 MHz for single measurements and an
additional 1σ systematic uncertainty of ±10 MHz when com-
bining multiple measurement sets.

To be able to give the absolute energy of the measured
states, we have to add the first transition, whose energy we
also measure with the same wave meter. We always mea-
sure the fundamental frequency of both probe and coupling
beam before frequency doubling. We estimate our wave-
meter-limited accuracy for single state energies therefore to
about ±69 MHz, i.e., ±0.0023 cm−1. The final error in the
determination of the ionization threshold includes the error
of the fit itself and the combined systematic uncertainty of
probe- and coupling frequency (±0.0013 cm−1), resulting in
an estimated accuracy of ±0.0023 cm−1.

An additional uncertainty in our resonance position ener-
gies results from our wavelength monitoring. While scanning
the coupling frequency using an analog voltage ramp, we
continuously read out the measured frequencies from the wave
meter. Due to the limited and variable read-out speed (de-
pending on the light intensity coupled to the wave meter),
which is not synchronized to the analog ramp, we record
frequency traces during several scans and take the maximum
and minimum measured wavelength to calibrate the frequency
axis of the scans.

For most of the wide scans used in our survey, we esti-
mate the absolute uncertainty of the resonance positions with
0.07 cm−1, mainly limited by nonlinearities within each fre-
quency scan. For the nd states investigated for the g factor,
the smaller scan ranges minimize those nonlinearities and
allows us to reduce the absolute uncertainty to 0.005 cm−1,
now primarily limited by the absolute accuracy of the wave
meter.

The main uncertainty in the fitting of the g factor is the
determination of the proper frequency axis scale. For these
very narrow scan ranges, the finite read-out speed of the wave
meter results in significant variations of the frequency axis
scale of up to 20% when comparing different experimental
runs where the scan range should have been identical. We
account for this by scaling all frequency axes of one set to the
maximum range, as the described frequency axis calibration
will always lead to an underestimation of the scan range. The
given error of the g factor takes into account the fit error itself,
the uncertainty of the B-field calibration and the rescaling
factor.

APPENDIX D: LIST OF ALL OBSERVED STATES

All Rydberg features observed in this work using the EIT
technique are summarized in Table VII. We provide the ener-
gies, as determined with the wavemeter, with an upper bound
of the error of 0.07 cm−1. Some features have been measured
with higher precision, see main text. The states are sorted
by effective quantum number, as assigned to the lower (J =
13/2) and upper (J = 11/2) ionization threshold.
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TABLE VII. Table listing all observed features, listed by effective quantum number neff, and term energy. Errors in energy are 0.07 cm−1.
Some features have been measured with higher precision, see main text.

neff,13/2 E (cm−1)

15 48828.76
16 48841.30 48842.77 48842.83 48843.43 48844.77 48845.23 48863.11 48863.98
17 48888.33 48889.26 48889.80 48889.93 48891.47 48892.07 48892.73 48909.31 48909.33
18 48929.32 48929.99 48930.00 48930.01 48930.03 48930.87 48931.46 48931.71 48931.94 48945.19
19 48963.98 48964.28 48964.32 48964.92 48964.98 48965.52 48968.26 48969.00 48979.36
20 48992.82 48993.07 48993.20 48993.44 48993.70 49002.52
21 49015.08 49016.30 49016.42 49017.03 49017.42 49026.46 49028.00
22 49038.45 49038.83 49039.17 49039.37 49039.43 49047.31 49052.80 49052.81 49052.81 49052.82
23 49056.91 49056.93 49057.10 49057.37 49057.79 49058.02 49058.13 49064.84
24 49073.44 49073.97 49073.99 49074.33 49074.39 49074.79 49080.13 49081.41
25 49087.98 49088.54 49088.66 49088.68 49088.83 49093.78
26 49100.58 49100.86 49101.22 49101.51 49101.54 49101.62 49101.70 49101.72 49105.45
27 49111.45 49112.39 49112.56 49112.82 49112.98 49113.06 49113.14 49117.95
28 49122.73 49122.76 49122.86 49123.23 49123.26 49123.29 49127.35
29 49132.01 49132.16 49132.39 49132.49 49132.53 49132.63 49136.08
30 49140.44 49140.60 49140.75 49140.96 49140.98 49144.04
31 49147.99 49148.12 49148.28 49148.38 49148.46 49148.50 49151.25 49151.27
32 49154.90 49155.02 49155.17 49155.25 49155.35 49157.12 49157.74 49157.82
33 49160.85 49161.25 49161.41 49161.45 49161.52 49161.60 49163.83
34 49167.02 49167.12 49167.15 49167.22 49167.29 49169.25
35 49172.18 49172.38 49172.45 49172.51 49174.33
36 49177.01 49177.19 49177.25 49177.28 49177.31 49178.94
37 49181.43 49181.51 49181.60 49181.63 49181.69 49181.73
38 49185.54 49185.70 49185.75 49185.80 49186.73
39 49188.90 49188.91 49189.34 49189.52 49189.54 49189.55 49189.57 49191.35
40 49192.84 49192.98 49193.02 49193.04 49193.07 49194.52
41 49196.09 49196.22 49196.26 49196.28 49196.31 49197.61
42 49199.13 49199.25 49199.29 49199.33 49200.52
43 49201.95 49202.08 49202.11 49202.15
45 49207.04 49207.08 49207.14 49207.16 49207.20 49208.14
46 49209.35 49209.42 49209.45 49209.49 49210.35
47 49211.49 49211.53 49211.58 49211.61 49211.64 49211.69 49211.69 49212.43 49213.08
48 49213.51 49213.53 49213.59 49213.61 49213.62 49213.64 49214.30
50 49217.20 49217.28 49217.29 49217.32 49217.32 49218.53
51 49218.85 49218.95 49218.96 49219.01 49219.02 49219.63
52 49220.48 49220.55 49220.57 49220.59 49221.17
53 49221.99 49222.04 49222.07 49222.08 49222.64
54 49223.40 49223.45 49223.47 49223.49
55 49224.73 49224.79 49224.81 49224.82 49225.34
56 49226.00 49226.00 49226.06 49226.08 49226.73
57 49227.23 49227.27 49227.29 49227.30 49227.75
58 49228.37 49228.40 49228.42 49228.45 49228.45 49228.83 49228.86 49229.11 49229.20
59 49229.45 49229.47 49229.49 49229.51 49229.52 49229.83 49229.87
60 49230.49 49230.53 49230.54 49230.55
61 49231.29 49231.35 49231.38 49231.40 49231.89
62 49232.59 49232.64 49232.67 49232.67 49232.69
64 49234.13 49234.16 49234.17 49234.18 49234.60 49234.62 49234.62 49234.64 49234.76
65 49234.93 49234.97 49234.98 49234.99 49235.29
66 49235.72 49235.74 49235.76 49235.77 49235.78 49236.04 49236.10 49236.14 49236.17
67 49236.50
68 49237.05 49237.14 49237.17 49237.18 49237.19 49237.46
69 49237.83 49237.86 49237.87 49237.87 49237.89 49238.13
71 49239.10 49239.14 49239.15
72 49239.69 49239.70 49239.71 49239.71 49239.71 49239.72 49239.94
73 49240.26 49240.27 49240.28 49240.29
82 49244.51 49244.53 49244.54 49244.55
83 49244.90 49244.91 49244.92
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TABLE VII. (Continued.)

neff,13/2 E (cm−1)

84 49245.28 49245.28 49245.29 49245.31 49245.32
85 49245.64 49245.65 49245.66 49245.67 49245.68
86 49245.98 49245.98 49245.99 49246.00 49246.00
92 49247.86 49247.87
93 49248.11 49248.13 49248.14 49248.16
94 49248.39 49248.39 49248.41
95 49248.66 49248.67 49248.67 49248.68
96 49248.90 49248.91 49248.92 49248.93
97 49249.15 49249.15 49249.17 49249.17 49249.17 49249.19
98 49249.38 49249.39 49249.45 49249.47
99 49249.61 49249.62 49249.63 49249.65
100 49249.85 49249.85 49249.86 49249.86 49249.93 49249.95
101 49250.02 49250.03 49250.05 49250.06 49250.16 49250.18
102 49250.24 49250.25 49250.25 49250.26
103 49250.48 49250.49
104 49250.65 49250.67
105 49250.85 49250.86
106 49251.05 49251.08
107 49251.20 49251.21
108 49251.43 49251.44
109 49251.55 49251.57 49251.59
110 49251.73 49251.74 49251.76
111 49251.89 49251.90 49251.91 49251.91 49251.93 49251.93
112 49252.04 49252.05 49252.07 49252.08
113 49252.19 49252.19 49252.22 49252.23
114 49252.34 49252.35 49252.36
115 49252.45 49252.46 49252.46 49252.47
118 49252.92 49252.95 49252.96
119 49253.04 49253.08 49253.08
120 49253.16 49253.19 49253.20
121 49253.27 49253.30 49253.31
122 49253.37 49253.41 49253.42 49253.45 49253.46 49253.48
123 49253.51 49253.60
124 49253.65 49253.66
125 49253.72 49253.76 49253.77 49253.83
126 49253.87 49253.87 49253.93
127 49253.97 49253.97 49254.02 49254.04
128 49254.09 49254.09 49254.15
129 49254.19 49254.19 49254.24
130 49254.28 49254.28 49254.29 49254.31 49254.33 49254.35
131 49254.38 49254.38 49254.39 49254.40 49254.43
132 49254.44 49254.49 49254.49 49254.52 49254.54
133 49254.58 49254.62
134 49254.66 49254.70 49254.71
135 49254.73 49254.74 49254.77 49254.77 49254.78 49254.78 49254.78 49254.79
136 49254.85 49254.86 49254.89
137 49254.93 49254.97
138 49255.01 49255.05
139 49255.09 49255.13
140 49255.15 49255.17

neff,11/2 E (cm−1)
11 48830.62 48830.66
12 48970.09
14 49157.12 49189.47
15 49219.46 49228.23 49229.09 49229.11
16 49284.46
17 49330.24 49332.19
18 49369.84
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