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Action-dependent wave functions: Definition
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This paper contains the formalism for a new object: an “action-dependent wave function.” The peaks and
valleys of this function move through space as the action is varied. For some simple action-dependent wave
packets, this motion mimics the trajectories of a classical particle. Unlike time-dependent wave packets, the
action-dependent wave packets do not disperse when the classical motion is separable. | will present the results
for three simple cases. For one-dimensional systems and separable multidimensional systems, a large number
of states can be superposed to give a sharply peaked function, which exactly tracks the classical motion.

DOI: 10.1103/PhysRevA.63.012110 PACS nuntber03.65.Sq, 32.66i

[. INTRODUCTION possible that the wave equation will be the source of new
approximations for handling complicated quantum systems.
Time-dependent wave functions evolve in time so thatlt is these possibilities that have led to the initial studies
peaks and valleys of the function move through space. Thipresented in this paper. | have used the action-dependent
movement is reminiscent of classical motion for some simplevave function to study a few simple systems; these results
types of time-dependent wave functions. Dispersion of theare presented in this paper. Atomic units will be used unless
wave packets is almost always present because a packetéasplicitly specified otherwise.
composed of several eigenstates and the energy spacing be-
tween successive eigenstates is usually energy dependent. II. TIME-DEPENDENT RECURRENCE
The classical distribution in phase space also disperses be- o ) _ _
cause the “periods” of motion depend on the energy. Un- _Before_descrl_blng the action-dependent wave functions, it
fortunately, the quantum dispersion can greatly hinder théS instructive to first present some features of time-dependent
simple interpretation of the wave packets since the interferwave functions. As a specific example, | will focus on the
ence between initially separated parts of the packet can Jéme-dependent recurrence of a wave packet that is defined
the source of complicated features. asR(t) =(W(0)|¥(t)). The time-dependent recurrence of a
In this paper, | present one possible definition for a theoWave function can be directly measured in a Ramsey-type
retical object, which | call an 4ction-dependent wave func- Procedurg 2] or can be obtained from the Fourier transform
tion.” This function has many points of similarity with the Of the photoabsorption spectrum. For bound states, this can
more usual ime-dependent wave functions. The time- P& Shown in a few steps. _
dependent wave function is the solution of a linear, partial The dependence of the photon absorption spectrum as a
differential equation(Schralinger’s equation[1] that gov- function of_ the final energye, can be written as a sum of
erns the dependence of the function of space coordinates &l¢lta functions
the scalar parametdr (time). The action-dependent wave
f_unction is the solution of a linear, partial diﬁere_ntial equa- P(E)=E ID,|28(E-E,), (1)
tion that governs the dependence of the function of space n

coordinates on the scalar parameﬁa(actiorﬁ. Unlike the . . o
ywhere E, is an eigenenergy of the Hamiltoniai | )

time-dependent wave function, the action-dependent wave L
function does not disperse for the cases examined to daté | ¥n)En. and the strength of each term is given by the

This is because the action-dependent wave packets evolve ffuared magnitude of the dipole matrix eleme,

action like a classical distribution of particles-all withe = (¥n|D|#;) between thenth final state and the initial state

same energy i) . . .
The action-dependent wave packet appears to be an arti- The Fourier transform of the absorption spectrum is inter-

. . . . . . . . 2

ficial construct to a large extent. There does not appear to b@sting if it is multiplied by a window functioW*(E). Ge-

a simple method to transform an action-dependent to a timeerically, thg window function is smooth and is S|zeal_:)le only

dependent wave function. Despite the artificiality, one aspec?Ver a relatively small range of energy. Tv;/o possible ex-

of action-dependent wave functions has been observed-tfnples ofW are W(E)zexp{—_(E—Ea\,) IAE?] or W(E)

action dependence of an autocorrelation function. Also, the= €Xd —(E—E,)"/AE"]. The window function is used to

Fourier transform of the action-dependent wave functiorPick out @ small range of energy so the types of motion and

with respect to action gives the correct quantum eigenstatgeriods of the system do not wildly change over the window.

of the Hamiltonian. It can be shown that if the time-dependent wave function is
Perhaps, the main usefulness of these functions will arisgiven by

from the aid in interpreting quantum phenomena. Perhaps,

also,_the _properti_es of_ a new wave equation th_at generates ‘P(r,t)zE (1D W(E,)exp(—iE 1) )

classical-like motion will be interesting in itself. Finally, it is n
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_ 08 B FIG. 2. The time-dependent radial probability corresponding to
JAY i 7 the conditions of Fig. 17 is the classical period of an electron at
% 0.6~ m the central energy of Fig. 1. Note that over the first period the
> r . probability moves like a classical electron but that dispersion gives
3 04 most of the probability at= 37 at the outer turning point instead of
v L - the inner turning point.
0.2 —
L i peak in the recurrence. The longer time behavior of this
ooV . Wy packet is hard to interpret due to the large amount of disper-
0 1 2 3 sion for the parameters that were chosen. As an example,
t/T after three periods the radial distribution is mostly at the

outer turning point instead of at small

FIG. 1. (8) Solid line—the absorption of light by an H atomin  There is an interesting point of physics to which | will
its ground state as a function of the final energy. Dashed line—etyrn in a later section. Notice that the wave packet at
weight function used to emphasize a small energy region of energy— g extends over a much larger rangerchan that for the
(p) The ab.solute valug of the recurrence Tun(.:tion ysing the absorqhitim 1s state. The & state covers a range of onlyl a.u.
tion qnd wm(_jow function ofa). The time is given in units o_f the whereas the wave packet &0 covers several hundred
classical periodr, at the central energy of the window function. atomic units. This difference can be directly traced to the

. L presence of the window functioW(E). As the energy range

then the time-dependent recurrence is given by covered byW(E) increases, the radial width of thte=0
packet decreases; in the limit of infinite range, the0
packet has exactly the same radial fornr égr). TheW(E)
plays exactly the same role as a bandpass filter: a pulsed
optical signal is stretched in time when the range of fre-
To show this result, the orthonormality properties of the enquency components is reduced.
ergy eigenstateéy,, | y,)= &, have been used. From the  The case that was shown in Figs. 1 and 2 was deliberately
properties of the eigenstates, one can also showdtffait)  chosen to have a large amount of dispersion. By reducing the
is a solution of the time-dependent Sdtiirger equation. number of states in the packet or keeping the number of

In Fig. 1, I show a typical and moderately simple case forstates fixed and going to highex, the dispersion can be
a one-dimensional system. The solid line in Figa)lgives  reduced. However, it must be remembered that dispersion is
the absorption spectrum fdf excited from the $ ground always present unless the packet only consists of two states
state using 1 photon; the states shown mre20—32. The or the system has equally spaced energy levels.
dashed line in Fig. (B) is a window function that was used to
make a time-dependent recurrence. The absolute value of the Il ACTION-DEPENDENT RECURRENCE

recurrence is shown in Fig(ld), where the time is plotted in
units of the classical period at the central energy. In Fig. 2, | The study of atomic Rydberg states in static fields has

have plotted the radial density at a few specific times. Therdeen greatly aided by ideas arising from scaled energy spec-
are some features that can be interpreted easily. For exampltepscopy[3,4]. One of the more important ideas is that the
the rapid drop of the recurrence at short time is due to th@bsorption spectrum is obtained by simultaneously varying
electron moving away from small to the outer turning the energy and the field strength so the classical scaled en-
point. The wave packet first reaches the outer turning point a¢rgy remains fixed. As two examples, consider the classical
time equal to 1/2 the classical period. The electron returns télamiltonian for an H atom in a static electric field or the
small r after one classical period at which point there is adiamagnetic H atom. If the classical variables are scaled as

R(t)=<‘1'(0)|‘l’(t)>=fdEVVZ(E)p(E)efiEt- ©)
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| w\? - 3 tial only for a small region near the nucleus and a semiclas-
f=f(ﬂ) , —t(z) ) sical approximation of the Green’s function is simply
3exp(27S) = = exp(S'w), wherej is an index that num-
2.\ 2 ) bers the classical orbits that begin and end at the nucleus
E=s<?) , S= S(E) (4) [3,5]. A very interesting feature is that dispersion is greatly
suppressed because all trajectories are at the same scaled
with F=(27/w)* for the H atom in static electric field and €nergy; thus peaks in the action-dependent recurrence func-
B=(2/w)® for the diamagnetic H atom, then the motion is tion do not get broader as the action increases. This should
only determined by the scaled energyand the initial posi- € contrasted with the situation of the previous section.
tion and momenta of the classical particle. In all that follows, ~The comparison between the time-dependent and the ac-
scaled variablegexcept the scaled energy and functions tion dependent recurrence functions, E(®.and (8), sug-
of scaled variables will have a tilde. The reason that theéd€sSts that the action-dependent recurrence can be written as
classical scaled dynamics is interesting is that the absorptiod autocorrelation for an action-dependent wave function.
can be represented by the imaginary part of the expectatiohhe straightforward translation, R(S)=(¥(0)|¥(S))
value of a Green’s function and a semiclassical approximawith the action-dependent function defined gs(rfs)
tipn to thg Green's funcFion is simply exgesS); to be con- =3 (1) D W(w,)exp(—iwd will not work because the
sistent with the conventions used in §(ialed energy spectrog; are solutions oflifferent Hamiltonians and thus they do
copy, the action is defined &=(2m) “[pvdt. Thus the ot have simple orthonormality properties when using the
Fourier transform of the absorption spectrum with respect {Qptia| coordinate. Fortunately, this difficulty can be over-
the scaling parametep is expected to have peaks at the ;ome if one extra idea from classical scaling is incorporated.
classical values of the scaled actiSn
The scaled energy absorption spectrum can be obtained
from the imaginary part of the expectation value of the
Green’s function as The difficulty in defining an action-dependent wave func-
a1 tion lies in the lack of orthonormality properties of the ei-
p(@)=Im{(4;|D[E(w)~H(w)—=i5]"'D[¢)}, (5 genstates at scaled energy. This can be overcome if the func-
where5—07. In the bound-state region, the eigenstates ané'pns are _defm_ed using the _scaled d|stance._ Thus, _the
eigenfunctions in scaled coordinates and the eigenscalings

elgens_call.ngs can be used to obtain an expression for theare determined by
absorption:

IV. ACTION-DEPENDENT WAVE FUNCTION

2 e o 1o - -~
p(w)=2 [Dy|?8(w—wy), (6) (;—W) [s—V(r)]¢n(r)=—§V2wn(r),

where w, is an “eigenscaling” that determines the eigen- g~ L
stateH (w,,) ¥/, =E(w,) #,; compare this equation with Eq. f d°r g (NLe = V() ]¢n(r) = Sy, C)
(1). The orthonormality properties of the eigenstates will be

discussed below. The strength of thth delta function is a

generalization of the dipole matrix element: wheree is the scaled energy from E¢4) andV(r) equals

—1/f+7 for the H atom in static electric field anet 1/
Dn={n|D| ) NI{ha N(wp) | )], (7 +(x?+Yy?/8 for the diamagnetic H aton{ln Ref.[6], the
techniques of scaled energy spectroscopy are extended to
where the “normalization” operator N(w)=d[E(w)  systems without classical scaling in order to interpret com-
—H(w)]/dow accounts for the rate of change of the-H  plicated spectra. The definition can be extended to con-
denominator in the Green’s function. As an examPéw)  tinuum states by replacing the Kronecker delta function by a
=—-2[E(w)+2F(w)z]/w for the hydrogen atom in a static Dirac delta function.
electric field. The simple orthonormality properties of E(@) removes
The action-dependent recurrence function is defined to bghe only difficulty in defining an action-dependent wave

the Fourier transform with respect to the scaliagof the  function. If the action-dependent wave function is defined as
windowed absorption spectrum:

R = f JoW2 (@) p(w)e1"5, @® W(F8)=2 Yn(NDW(wn)exp—iw),  (10)

which should be compared to tiie—t transform in Eq(3).  then the action-dependent recurrence is exactly equal to a
The action-dependent recurrence function tends to haveeneralized autocorrelation function:

peaks wheneve§ equals a classical scaled action for a
closed trajectory that starts near the nucleus and returns to = Tk ~ ~ ~
the nucleus. This can be understood becduggis substan- R(S)_J d ¥ (r.Ole V(N ]¥(r.S). (12)
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These two equations should be compared to Ef)jsand(3)  tion behaves in a very simple and intuitive manner for one-
for the time-dependent situation. The reasons why | think thelimensional problems. In fact, it is possible to show that the
definition of an action-dependent wave function, given in Eq.action-dependent wave function has very little dispersion,
(10), should be preferred, will be given in the next section. has peaks that move like a classical particle, and has a semi-
The action-dependent wave function has been definedlassical approximation that gives extremely narrow peaks in
through a superposition of eigenstates, but it is natural tgpace.
require it to also be the solution of a wave equation. Using The basic idea of this section is to use a WKB type of
the eigenstate and orthonormality properties of &jy.and  approximation in order to obtain approximations to the ei-

the definition of Eq(10), it is possible to show that genscalingw, and eigenstates,. To get repeating motion,
| assume that the classical motion is bounded within a finite
i[s—T/(?)]a—z\P(? Y= qu,(? 3) (12) region with an inner turning point a and an outer turning
472 P 2 ’ point atx;. The eigenvalue equation in E(@) reduces to

is the simplest wave equation for the present definition of an wq 2~2 ~ o~ . -

action-dependent wave functidi¥]. The definition of the o) PE()+ ﬁl/’n(x)zoa (13
action-dependent wave function, EL0), and its corre-

sponding wave equation, E¢12), are the most important \here the square of the scaled momentum as a function of

results of this paper. . o~ ~ o~
‘ ! L scaled distance ip“(x)=2[¢—V(x)]. From the assump-
While the action-dependent wave equation is perfectlytions about repeating motion, the scaled kinetic energy is

well defined, it does not seem likely that it can be used to . ~ - ;
numerically solve for the action-dependent wave function©nly PoSitive over the range,<x<x;. The WKB approxi-

The problem is that the operatiar— V(r)], which multiplies mation[1] to this equation is

the second derivative with respect to action, is not positive 1

definite for most problems of interest. The partial differential P (X)= sin @, S4(X) + 6

equation is of a mixed, elliptic-hyperbolic character. A fa- ¥ ,/5(';() oS |

mous equation of this type is the Tricomi equationy;,

+Yy,=0. This means that while there are oscillating solu- o 1

tions like Eq.(10) there are also solutions that exponentially wpSy(Xs)=| n+ 5| (19

diverge with increasing action. The exponentially diverging

solutions are never part of the initial conditions; unfortu-\\here the classical position dependent scaled action

nately, numerical round off and other inaccuracies will mix ’

the diverging solutions into the numerical propagatieven o 1 (%e - -

small admixture of a diverging term will quickly dominate Se(¥)=5— | p(x)dx’ (15
. : P X0

the solution. It may be possible to prevent admixture of

Eié\]/erglng solutions by using special numerical technlquesls defined so that it is zero at the inner turning poipt

There still may be use for the wave equation even if its The_W}fB approximation can be thought of as a power
series inf; in the eigenscaling equationsm2w,, plays the

direct numerical solution is impossible. It is possible that le of 7. Th h imat luti hould ai
new semiclassical approximations can be derived from thé0'€ Of 7. Thus, the approximate solutions should give a

wave equation instead of through the indirect procedure o _OOd q_ualitative_approximation to th? exgct _solutions. The
Fourier transforming the Green’s function. It is also possible/'St POINt to notice about the approximation is that g

that the action-dependent wave functions will themselves ba'e exactlygqually spaced. Th_|s equal spacing means t_here
the source of insight into the origins and problems WithW|II be no dispersion of the action-dependent wave functions

; ; P at this level of approximation. This property is independent
semiclassical approximations. of the type of potential!l Thus, the action-dependent wave
function should never show a large amount of dispersion

V. APPLICATION when it is constructed from states with largeUnlike the
In this section, | will give results for the action-dependenttime-dependent wave packets, the action-dependent wave
wave function for three different cases. The section on the HPackets can be constructed from a very large number of
atom in a static electric field addresses the recent myster§tates without dispersion causing any problems. The physical

about peaks in the recurrence spectrum without correspond€ason for this is that every eigenstate is at the same scaled
ing closed orbitg9]. energy, thus the main cause of dispersion in the time-

dependent wave functiorigariation of periods with energy
is removed.
The WKB approximation can also be used to show that a
It is relatively easy to define objects like action-dependenpeak in the action-dependent wave function will move in
wave functions; however, it is not necessary that the resultspace so that it accurately follows the classical result. To see
ing construct behaves in the desired manner. The purpose tiis, the WKB wave functions can be used to obtain the
this section is to show that the action-dependent wave funcapproximate action-dependent wave function:

A. One-dimensional semiclassical
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. 1 L o L.of "~ T T T ]
V(X,9)=—= >, Ae '“Ssif 0,5,(X)+ 8], (16)
~ n 0.8 I~ ]
Vp(x) N j
064§ 2 1 -
where A, are coefficients. At this level of approximation, Fr B 7
U (%,3) =W (x,5+25,X;]), which shows the lack of dis- 0.4r .
persion after one cycle. If th&, is a real, smooth function of i 1
n that is nonzero for a large number of then the action- 0.2 q [\ /\ I
dependent wave function is a single peak centered at 0.0 ! !
=S,(X) for 0<5<S,(X;) and S=25,(x;)—Sy(x) for
2 Sub) for 9=5=50x) w00~ S 00 01 02 03
Sa(Xs) <S=2S;(x¢). This is exactly the classical result. ~
The exact return of the wave function to its original form r (a~1l~)
after one cycle with the behavior of the wave function during ) . .
the first cycle(exactly tracking the classical resuthows FIG. 3. For an H atom in zero field, the radial part of the renor-

that the action-dependent wave function at this level of apmalized scaled density=|s+1/r|4W(r,S)|* at 5 values of the
proximation will exactly follow the classical result to any scaled action: 0, 1/4, 2/4, 3/4, and 4/4 gf the classical action to
size of action. This shows that the action-dependent wavéeach the outer turning point. Note tifafor S=0 is indistinguish-
function behaves in many respects like a classical particleable from the vertical axis at=0. The scaled energy is4, which
Thus, the definition of action-dependent wave function ingives the outer turning point at= 1/4. States froorn=1— 200 are
Eq. (10) gives a reasonable behavior for a one-dimensionapart of the packet. The functidf at action of 5/4, 6/4, 7/4, and 8/4
system. of the classical action to reach the outer turning point is identical to
the function at 3/4, 2/4, 1/4, and O, respectively. For an H atom in

B. Hydrogen atom—no field zero fieldF(r,S)=F(r,S+2Sy[r¢]).

To my knowledge, this is the first study of an action- —
dependent wave function so it makes sense to apply it to a@éen multiplied by the function/[e+1/r| as suggested by
effective one-dimensional case. In this section, | will presenthe semiclassical derivation of the previous section in order
results for the case of an H atom in zero field. This is a goodo keep the height roughly constant.
trial system since the eigenscalings and wave functions may There are a number of features of Fig. 3 that can be un-
be obtained analytically. derstood at a qualitative level. First, the height of the func-

The wave function can be obtained using a separation dfon does not change because thgds V behavior has been
variables in spherical coordinateg;m=Rn(r)Yim(#,¢).  removed. Second, the spatial width of the packet increases as
The eigenscaling can be obtained from E3).directly when o packet moves to larger this arises becausedi, /dr,

V()= fl/?i wp=2mn\—2¢. Note that the eigenscaling is which plays the role of speed of the packet, increases as the

propc_;rtlona_ll ton; this means that the actlor_l-dependent WavV€suter turning point is approachédthe S=0 function is not

function will exactly repeat after an action increment ofd_ inquishable f h ical axis 3=0). Third. th

1/ —2e. Unlike the result from the previous section the rep-. istinguishable from the vertical axis at=( )- hird, the
interference pattern at the outer turning point arises from the

etition W(r,S)="W(r,S+1/y—2¢) is an exact result. MoSt o rference between the part of the packet that has already
standard quantum textbooks give the eigenstates for the ached the outer turning point and the part that has not

atom. These eigenstates simply need_ to be_ multlp_lled by feached it; the form of this interference pattern could prob-

constant and the distances rescaledfiiin(r) is an eigen- gy he analytically calculated by using a uniform WKB ap-

state of the unscaled Hamiltonian and is spaceNnoerahzed tBroximation at the outer turning point. Fourth, the peak po-

1, then the eigenstate in Eq(9) is ¢nn(r)=  sition of the packet is at the position of a corresponding

—2e2n%y,m(—T2en?). Finally, the normalization opera- classical particle to a very good approximation.

tor is —2E(w)/w, which gives the dipole matrix elements as

Do { | D] 4i)n®?2, which is proportional to a constant as C. Hydrogen atom—electric field

n—oo, . .
The squared absolute value of the radial part of the action; | have used the action-dependent wave function to study

o the recurrence for an H atom in a static electric field. For this
dependent wave function is shown at 5 values of the scale e IO ) o
case, the scaled potential\’'s=s — 1/r +z. There is a cylindri-

action in Fig. 3:5=0, and 1/4, 2/4, 3/4, and 4/4 of th? cal symmetry for this problem, which means it can be re-

) ~ ) ) Yuced to an effective two-dimensional system. There is an-
point atr = — 1/e (the function for the snlallest action cannot gtper symmetry in the problem, which allows the separation
be distinguished from the vertical axis et 0). The scaled of the Hamiltonian in parabolic coordinates; this separability
energy was chosen to be4. For this figure, states from  affects the dynamics but has not been used in the calculation
=1-200 were superposed with coefficients given Wy  that was performed in spherical coordinates. The classical
«exd —16(n—100)?/100°]. The squared absolute value has motion for this system is regular.
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3 only trajectories exactly on theaxis that can return to the
region near the nucleus after one radial oscillation; the elec-
tric field gives a nonzero torque to any trajectory not on the
z axis. In Ref[9], it was found that performing the calcula-

FIG. 4. (a) The scaled energy absorption spectrum from the 1
state of an H atom in a static electric field for= —4 and a laser
polarized perpendicular to the field direction. The dashed line is th?. ifL.—0 and th llowing traiectori h .
window function,W(w), used to obtain the action-dependent recur- lon as 1L,=Y an us allowing trajectories on the z axis
rence of(b). The states shown are from= 20— 30. (b) The action- ~ 92V€ qualltatlye _a_gre_ement V_V'th the quantum Calcglatlon;
dependent recurrence for the system (@. The metric Q=g however, the justification of this procedure was not given. It

—\7(?) is needed for orthonormality properties of the eigenstates,\!,vas suggested in Ref10] that the peaks at the small action

The inset shows a magnified view of the small action region. TheS=0.35 arise from ghostlike orbits; the difficulty with this
smallest action peak that corresponds to a classical trajectory th&tiggestion as discussed in REf1] is that these orbits do
returns to the nucleus is marked with an arrow. All pe@ksept at  not reach the region of the ground state. Thus, the origin of
$=0) before the arrow are not present in the usual implementatioth® peaks without closed orbits appears to still be an open
of closed orbit theory. question.
The results from a calculation of the action-dependent

In Fig. 4, | show the absorption spectrum and the actionwave function suggests a different explanation for the early
dependent recurrence from a recent pdpgrin this paper, peaks in the action-dependent recurrence. In Figs. 5, 6, and
e=—4 and the H atom is excited from thes round state 7, | show the squared magnitude of the action-dependent
with one photon that is polarized perpendicular to the fieldyave function aiS=0, 0.35, and 0.70, respectively. The
direction. The action-dependent recurrence has the usual se-0 shows the packet localized to small distances but with

quence of peaks at the classical actions of orbits that returg,ost of the probability along the plare=0 because the

to the nucleus. o . . ~
However, there is one interesting feature of this systenPOIar'zat'on is perpendicular to the axis. The 5=0.35

that was noted in Refl9]. There are peaks in the action- shows the first return of the packet to the region near the
dependent recurrence before the smallest classical action fQPC:eUS; fthe tok;qllJe O?hthi glecltron catas:les Itto a;)pproatt;]h the
a trajectory that returns to the nucleus; this smallest action jgucieus from below the=1u plane and leave above this
marked with an arrow in Fig.(#). Especially note that there Plane. TheS=0.70 shows the effect of the torque more
is a substantial recurrence peak at the action of the radigtrongly; the electron packet clearly misses the nucleus.

motion in zero field= 1/~ 25 =0.35. These peaks are not An examination of the action-dependent wave functions
present in the usual implementation of semiclassical methat S=0.0 and 0.35 suggests an origin for the short action
ods. The classical reason why there should not be peaks bBeaks that is different from that in previous papp9sl0).
fore the arrow is that the electron has nonzérg), which ~ The key idea is that th8=0.0 wave function extends out to

means that trajectories are not allowed on the z axis and it idistances much larger than for the initial state; one a.u. of
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FIG. 6. Same as Fig. 5 butét=’8.35 for the system of Fig. 4. FIG. 7. Same as Fig. 5 but78t=d(.)70 for the system of Fig. 4.

real distance corresponds tx20™* a.u. in scaled distance, 2 semiclqssical a_\pproximati_on of a one-di_mensi_onal system;
which is roughly the thickness of a line in Fig. 5. The reasonthe most interesting aspect is the lack of d|spers_|0n shown by
~ . . . the function. The action-dependent wave function does not
the S=0.0 wave function extends out to larger distances igyisperse at all for an H atom in zero field and does not appear
the same as d|sc_ussed n Sec. II; the weight func,W_)acts to disperse for an H atom in a static electric fiéhis has not
as a filter in scaling, which causes the wave function to b%een proveh
spread in space. Since ti%e=0.0 function extends to much  There are a number of possibly useful directions to extend
larger distances, even trajectories that do not return to withifhis paper. One possibility is to use the action-dependent
the distance of the ground state can overlap3k®.0 func-  wave function to interpret quantum-mechanical calculations.
tion. Several joint studies comparing action-dependent wave func-
If this idea is correct, then it implies that there may be antions and semiclassical approximations could aid in under-
idea missing in the usual implementation of closed orbitstanding the limitations of semiclassical methods. In particu-
theory. The action-dependent recurrence is constructed Hur, the inclusion of scattering by a non-Coulombic potential
using a window function that effectively spreads the initialis only a partially solved problem; the current formulation of
state. However, the recurrence spectrum is calculated by talscattering appears to work well only for very higland very
ing orbits all of the way to the nucleus. Perhaps for mostfew scatterings. Also, the recurrence to states strongly local-
situations the corrections that arise are a small fraction of th&zed in angle does not appear to be correctly handled. Last,
peaks of the recurrence spectrum. It is only in cases wherthe direct solution of the action-dependent wave equation
the orbit cannot reach the nucleus that the effect from the&oes not appear to be possible for most systems because (
window function becomes clear. —V) is not positive everywhere. But the action-dependent
_ | have calculated the wave function for several values ofyave equation may not have exponential divergence for two
S and the peak of the wave function follows the classicaloutward moving electrons fog=0 if they are started on
trajectory without dispersing up to the largest action at-opposite sides of the nucleus. If the direct solution is stable,
tempted 6=20). Note, that this is an action correspondingit may be possible to calculate fully quantum motion out to
to roughly 55 radial oscillations in zero field. very large distances and obtain further insight into this very
difficult problem.

VI. FUTURE DIRECTIONS
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