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Action-dependent wave functions: Definition

F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36849

~Received 9 June 2000; published 12 December 2000!

This paper contains the formalism for a new object: an ‘‘action-dependent wave function.’’ The peaks and
valleys of this function move through space as the action is varied. For some simple action-dependent wave
packets, this motion mimics the trajectories of a classical particle. Unlike time-dependent wave packets, the
action-dependent wave packets do not disperse when the classical motion is separable. I will present the results
for three simple cases. For one-dimensional systems and separable multidimensional systems, a large number
of states can be superposed to give a sharply peaked function, which exactly tracks the classical motion.
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I. INTRODUCTION

Time-dependent wave functions evolve in time so t
peaks and valleys of the function move through space. T
movement is reminiscent of classical motion for some sim
types of time-dependent wave functions. Dispersion of
wave packets is almost always present because a pack
composed of several eigenstates and the energy spacin
tween successive eigenstates is usually energy depen
The classical distribution in phase space also disperses
cause the ‘‘periods’’ of motion depend on the energy. U
fortunately, the quantum dispersion can greatly hinder
simple interpretation of the wave packets since the inter
ence between initially separated parts of the packet can
the source of complicated features.

In this paper, I present one possible definition for a th
retical object, which I call an ‘‘action-dependent wave func
tion.’’ This function has many points of similarity with th
more usual time-dependent wave functions. The tim
dependent wave function is the solution of a linear, par
differential equation~Schrödinger’s equation! @1# that gov-
erns the dependence of the function of space coordinate
the scalar parametert ~time!. The action-dependent wav
function is the solution of a linear, partial differential equ
tion that governs the dependence of the function of sp
coordinates on the scalar parameterS̃ ~action!. Unlike the
time-dependent wave function, the action-dependent w
function does not disperse for the cases examined to d
This is because the action-dependent wave packets evol
action like a classical distribution of particles-all withthe
same energy.

The action-dependent wave packet appears to be an
ficial construct to a large extent. There does not appear t
a simple method to transform an action-dependent to a ti
dependent wave function. Despite the artificiality, one asp
of action-dependent wave functions has been observed
action dependence of an autocorrelation function. Also,
Fourier transform of the action-dependent wave funct
with respect to action gives the correct quantum eigenst
of the Hamiltonian.

Perhaps, the main usefulness of these functions will a
from the aid in interpreting quantum phenomena. Perha
also, the properties of a new wave equation that gener
classical-like motion will be interesting in itself. Finally, it i
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possible that the wave equation will be the source of n
approximations for handling complicated quantum syste
It is these possibilities that have led to the initial stud
presented in this paper. I have used the action-depen
wave function to study a few simple systems; these res
are presented in this paper. Atomic units will be used unl
explicitly specified otherwise.

II. TIME-DEPENDENT RECURRENCE

Before describing the action-dependent wave functions
is instructive to first present some features of time-depend
wave functions. As a specific example, I will focus on t
time-dependent recurrence of a wave packet that is defi
asR(t)5^C(0)uC(t)&. The time-dependent recurrence of
wave function can be directly measured in a Ramsey-t
procedure@2# or can be obtained from the Fourier transfor
of the photoabsorption spectrum. For bound states, this
be shown in a few steps.

The dependence of the photon absorption spectrum
function of the final energyE, can be written as a sum o
delta functions

r~E!5(
n

uDnu2d~E2En!, ~1!

where En is an eigenenergy of the Hamiltonian,Hucn&
5ucn&En , and the strength of each term is given by t
squared magnitude of the dipole matrix elementDn
5^cnuDuc i& between thenth final state and the initial stat
uc i&.

The Fourier transform of the absorption spectrum is int
esting if it is multiplied by a window functionW2(E). Ge-
nerically, the window function is smooth and is sizeable on
over a relatively small range of energy. Two possible e
amples ofW are W(E)5exp@2(E2Eav)

2/DE2# or W(E)
5exp@2(E2Eav)

4/DE4#. The window function is used to
pick out a small range of energy so the types of motion a
periods of the system do not wildly change over the windo
It can be shown that if the time-dependent wave function
given by

C~r ,t !5(
n

cn~r !DnW~En!exp~2 iEnt ! ~2!
©2000 The American Physical Society10-1
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F. ROBICHEAUX PHYSICAL REVIEW A 63 012110
then the time-dependent recurrence is given by

R~ t !5^C~0!uC~ t !&5E dEW2~E!r~E!e2 iEt. ~3!

To show this result, the orthonormality properties of the e
ergy eigenstateŝcn8ucn&5dn8n have been used. From th
properties of the eigenstates, one can also show thatC(r ,t)
is a solution of the time-dependent Schro¨dinger equation.

In Fig. 1, I show a typical and moderately simple case
a one-dimensional system. The solid line in Fig. 1~a! gives
the absorption spectrum forH excited from the 1s ground
state using 1 photon; the states shown aren520232. The
dashed line in Fig. 1~a! is a window function that was used t
make a time-dependent recurrence. The absolute value o
recurrence is shown in Fig. 1~b!, where the time is plotted in
units of the classical period at the central energy. In Fig.
have plotted the radial density at a few specific times. Th
are some features that can be interpreted easily. For exam
the rapid drop of the recurrence at short time is due to
electron moving away from smallr to the outer turning
point. The wave packet first reaches the outer turning poin
time equal to 1/2 the classical period. The electron return
small r after one classical period at which point there is

FIG. 1. ~a! Solid line—the absorption of light by an H atom i
its ground state as a function of the final energy. Dashed lin
weight function used to emphasize a small energy region of ene
~b! The absolute value of the recurrence function using the abs
tion and window function of~a!. The time is given in units of the
classical periodt, at the central energy of the window function.
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peak in the recurrence. The longer time behavior of t
packet is hard to interpret due to the large amount of disp
sion for the parameters that were chosen. As an exam
after three periods the radial distribution is mostly at t
outer turning point instead of at smallr.

There is an interesting point of physics to which I w
return in a later section. Notice that the wave packet at
50 extends over a much larger range ofr than that for the
initial 1s state. The 1s state covers a range of only;1 a.u.
whereas the wave packet att50 covers several hundre
atomic units. This difference can be directly traced to t
presence of the window functionW(E). As the energy range
covered byW(E) increases, the radial width of thet50
packet decreases; in the limit of infinite range, thet50
packet has exactly the same radial form asrc i(r ). TheW(E)
plays exactly the same role as a bandpass filter: a pu
optical signal is stretched in time when the range of f
quency components is reduced.

The case that was shown in Figs. 1 and 2 was delibera
chosen to have a large amount of dispersion. By reducing
number of states in the packet or keeping the number
states fixed and going to highern, the dispersion can be
reduced. However, it must be remembered that dispersio
always present unless the packet only consists of two st
or the system has equally spaced energy levels.

III. ACTION-DEPENDENT RECURRENCE

The study of atomic Rydberg states in static fields h
been greatly aided by ideas arising from scaled energy s
troscopy@3,4#. One of the more important ideas is that th
absorption spectrum is obtained by simultaneously vary
the energy and the field strength so the classical scaled
ergy remains fixed. As two examples, consider the class
Hamiltonian for an H atom in a static electric field or th
diamagnetic H atom. If the classical variables are scaled

y.
p-

FIG. 2. The time-dependent radial probability corresponding
the conditions of Fig. 1.t is the classical period of an electron
the central energy of Fig. 1. Note that over the first period
probability moves like a classical electron but that dispersion gi
most of the probability att53t at the outer turning point instead o
the inner turning point.
0-2
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ACTION-DEPENDENT WAVE FUNCTIONS: DEFINITION PHYSICAL REVIEW A63 012110
r5 r̃ S v

2p D 2

, t5 t̃ S v

2p D 3

,

E5«S 2p

v D 2

, S5S̃S v

2p D , ~4!

with F5(2p/v)4 for the H atom in static electric field an
B5(2p/v)6 for the diamagnetic H atom, then the motion
only determined by the scaled energy«, and the initial posi-
tion and momenta of the classical particle. In all that follow
scaled variables~except the scaled energy«) and functions
of scaled variables will have a tilde. The reason that
classical scaled dynamics is interesting is that the absorp
can be represented by the imaginary part of the expecta
value of a Green’s function and a semiclassical approxim
tion to the Green’s function is simply exp(i2pS); to be con-
sistent with the conventions used in scaled energy spec
copy, the action is defined asS5(2p)21*pv dt. Thus the
Fourier transform of the absorption spectrum with respec
the scaling parameterv is expected to have peaks at th
classical values of the scaled actionS̃.

The scaled energy absorption spectrum can be obta
from the imaginary part of the expectation value of t
Green’s function as

r~v!5Im$^c i uD@E~v!2H~v!2 id#21Duc i&%, ~5!

whered→01. In the bound-state region, the eigenstates
‘‘eigenscalings’’ can be used to obtain an expression for
absorption:

r~v!5(
n

uDnu2d~v2vn!, ~6!

where vn is an ‘‘eigenscaling’’ that determines the eige
stateH(vn)cn5E(vn)cn ; compare this equation with Eq
~1!. The orthonormality properties of the eigenstates will
discussed below. The strength of thenth delta function is a
generalization of the dipole matrix element:

Dn5^cnuDuc i&/Au^cnuN~vn!ucn&u, ~7!

where the ‘‘normalization’’ operator N(v)5]@E(v)
2H(v)#/]v accounts for the rate of change of theE2H
denominator in the Green’s function. As an example,N(v)
522@E(v)12F(v)z#/v for the hydrogen atom in a stati
electric field.

The action-dependent recurrence function is defined to
the Fourier transform with respect to the scalingv of the
windowed absorption spectrum:

R~S̃![E dvW2~v!r~v!e2 ivS̃, ~8!

which should be compared to theE→t transform in Eq.~3!.
The action-dependent recurrence function tends to h
peaks wheneverS̃ equals a classical scaled action for
closed trajectory that starts near the nucleus and return
the nucleus. This can be understood becauseDc i is substan-
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tial only for a small region near the nucleus and a semic
sical approximation of the Green’s function is simp
( jexp(i2pSj

cl)5( jexp(iS̃j
clv), wherej is an index that num-

bers the classical orbits that begin and end at the nuc
@3,5#. A very interesting feature is that dispersion is grea
suppressed because all trajectories are at the same s
energy; thus peaks in the action-dependent recurrence f
tion do not get broader as the action increases. This sh
be contrasted with the situation of the previous section.

The comparison between the time-dependent and the
tion dependent recurrence functions, Eqs.~3! and ~8!, sug-
gests that the action-dependent recurrence can be writte
an autocorrelation for an action-dependent wave functi
The straightforward translation, R(S̃)5^C(0)uC(S̃)&
with the action-dependent function defined asC(r ,S̃)
5(ncn(r )DnW(vn)exp(2ivnS̃) will not work because the
cn are solutions ofdifferentHamiltonians and thus they d
not have simple orthonormality properties when using
spatial coordinater . Fortunately, this difficulty can be over
come if one extra idea from classical scaling is incorporat

IV. ACTION-DEPENDENT WAVE FUNCTION

The difficulty in defining an action-dependent wave fun
tion lies in the lack of orthonormality properties of the e
genstates at scaled energy. This can be overcome if the f
tions are defined using the scaled distance. Thus,
eigenfunctions in scaled coordinates and the eigenscal
are determined by

S vn

2p D 2

@«2Ṽ~ r̃ !#c̃n~ r̃ !52
1

2
¹̃2c̃n~ r̃ !,

E d3r̃ c̃n8
* ~ r̃ !@«2Ṽ~ r̃ !#c̃n~ r̃ !5dn8n , ~9!

where« is the scaled energy from Eq.~4! and Ṽ( r̃ ) equals
21/r̃ 1 z̃ for the H atom in static electric field and21/r̃
1( x̃21 ỹ2)/8 for the diamagnetic H atom.~In Ref. @6#, the
techniques of scaled energy spectroscopy are extende
systems without classical scaling in order to interpret co
plicated spectra.! The definition can be extended to co
tinuum states by replacing the Kronecker delta function b
Dirac delta function.

The simple orthonormality properties of Eq.~9! removes
the only difficulty in defining an action-dependent wa
function. If the action-dependent wave function is defined

C~ r̃ ,S̃!5(
n

c̃n~ r̃ !DnW~vn!exp~2 ivnS̃!, ~10!

then the action-dependent recurrence is exactly equal
generalized autocorrelation function:

R~S̃!5E d3r̃C* ~ r̃ ,0!@«2Ṽ~ r̃ !#C~ r̃ ,S̃!. ~11!
0-3
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F. ROBICHEAUX PHYSICAL REVIEW A 63 012110
These two equations should be compared to Eqs.~2! and~3!
for the time-dependent situation. The reasons why I think
definition of an action-dependent wave function, given in E
~10!, should be preferred, will be given in the next sectio

The action-dependent wave function has been defi
through a superposition of eigenstates, but it is natura
require it to also be the solution of a wave equation. Us
the eigenstate and orthonormality properties of Eq.~9! and
the definition of Eq.~10!, it is possible to show that

1

4p2
@«2Ṽ~ r̃ !#

]2

]S̃2
C~ r̃ ,S̃!52

1

2
¹̃2C~ r̃ ,S̃! ~12!

is the simplest wave equation for the present definition of
action-dependent wave function@7#. The definition of the
action-dependent wave function, Eq.~10!, and its corre-
sponding wave equation, Eq.~12!, are the most importan
results of this paper.

While the action-dependent wave equation is perfec
well defined, it does not seem likely that it can be used
numerically solve for the action-dependent wave functi
The problem is that the operator@«2Ṽ( r̃ )#, which multiplies
the second derivative with respect to action, is not posit
definite for most problems of interest. The partial different
equation is of a mixed, elliptic-hyperbolic character. A f
mous equation of this type is the Tricomi equation,x ytt
1yxx50. This means that while there are oscillating so
tions like Eq.~10! there are also solutions that exponentia
diverge with increasing action. The exponentially divergi
solutions are never part of the initial conditions; unfort
nately, numerical round off and other inaccuracies will m
the diverging solutions into the numerical propagation~even
small admixture of a diverging term will quickly dominat
the solution!. It may be possible to prevent admixture
diverging solutions by using special numerical techniqu
@8#.

There still may be use for the wave equation even if
direct numerical solution is impossible. It is possible th
new semiclassical approximations can be derived from
wave equation instead of through the indirect procedure
Fourier transforming the Green’s function. It is also possi
that the action-dependent wave functions will themselves
the source of insight into the origins and problems w
semiclassical approximations.

V. APPLICATION

In this section, I will give results for the action-depende
wave function for three different cases. The section on th
atom in a static electric field addresses the recent mys
about peaks in the recurrence spectrum without corresp
ing closed orbits@9#.

A. One-dimensional semiclassical

It is relatively easy to define objects like action-depend
wave functions; however, it is not necessary that the res
ing construct behaves in the desired manner. The purpos
this section is to show that the action-dependent wave fu
01211
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tion behaves in a very simple and intuitive manner for on
dimensional problems. In fact, it is possible to show that
action-dependent wave function has very little dispersi
has peaks that move like a classical particle, and has a s
classical approximation that gives extremely narrow peak
space.

The basic idea of this section is to use a WKB type
approximation in order to obtain approximations to the
genscaling,vn and eigenstates,c̃n . To get repeating motion
I assume that the classical motion is bounded within a fin
region with an inner turning point atx̃0 and an outer turning
point at x̃f . The eigenvalue equation in Eq.~9! reduces to

S vn

2p D 2

p̃2~ x̃!c̃n~ x̃!1
]2

] x̃2
c̃n~ x̃!50, ~13!

where the square of the scaled momentum as a functio
scaled distance isp̃2( x̃)52@«2Ṽ( x̃)#. From the assump-
tions about repeating motion, the scaled kinetic energy
only positive over the rangex̃0, x̃, x̃f . The WKB approxi-
mation @1# to this equation is

c̃n~ x̃!.
1

Ap̃~ x̃!
sin@vnS̃cl~ x̃!1d#,

vnS̃cl~ x̃f !.S n1
1

2Dp, ~14!

where the classical, position dependent scaled action

S̃cl~ x̃!5
1

2pEx̃0

x̃
p̃~ x̃8!dx̃8 ~15!

is defined so that it is zero at the inner turning pointx̃0.
The WKB approximation can be thought of as a pow

series in\; in the eigenscaling equations 2p/vn plays the
role of \. Thus, the approximate solutions should give
good qualitative approximation to the exact solutions. T
first point to notice about the approximation is that thevn
are exactlyequally spaced. This equal spacing means th
will be no dispersion of the action-dependent wave functio
at this level of approximation. This property is independe
of the type of potential! Thus, the action-dependent wa
function should never show a large amount of dispers
when it is constructed from states with largen. Unlike the
time-dependent wave packets, the action-dependent w
packets can be constructed from a very large numbe
states without dispersion causing any problems. The phys
reason for this is that every eigenstate is at the same sc
energy, thus the main cause of dispersion in the tim
dependent wave functions~variation of periods with energy!
is removed.

The WKB approximation can also be used to show tha
peak in the action-dependent wave function will move
space so that it accurately follows the classical result. To
this, the WKB wave functions can be used to obtain t
approximate action-dependent wave function:
0-4
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ACTION-DEPENDENT WAVE FUNCTIONS: DEFINITION PHYSICAL REVIEW A63 012110
C~ x̃,S̃!.
1

Ap̃~ x̃!
(

n
Ane2 ivnS̃sin@vnS̃cl~ x̃!1d#, ~16!

where An are coefficients. At this level of approximation
C( x̃,S̃)5C( x̃,S̃12S̃cl@ x̃f #), which shows the lack of dis
persion after one cycle. If theAn is a real, smooth function o
n that is nonzero for a large number ofn, then the action-
dependent wave function is a single peak centered aS̃

5S̃cl( x̃) for 0<S̃<S̃cl( x̃f) and S̃52S̃cl( x̃f)2S̃cl( x̃) for
S̃cl( x̃f)<S̃<2S̃cl( x̃f). This is exactly the classical result.

The exact return of the wave function to its original for
after one cycle with the behavior of the wave function duri
the first cycle~exactly tracking the classical result! shows
that the action-dependent wave function at this level of
proximation will exactly follow the classical result to an
size of action. This shows that the action-dependent w
function behaves in many respects like a classical parti
Thus, the definition of action-dependent wave function
Eq. ~10! gives a reasonable behavior for a one-dimensio
system.

B. Hydrogen atom—no field

To my knowledge, this is the first study of an actio
dependent wave function so it makes sense to apply it to
effective one-dimensional case. In this section, I will pres
results for the case of an H atom in zero field. This is a go
trial system since the eigenscalings and wave functions
be obtained analytically.

The wave function can be obtained using a separatio
variables in spherical coordinates:c̃nlm5Rnl( r̃ )Ylm(u,f).
The eigenscaling can be obtained from Eq.~9! directly when
Ṽ( r̃ )521/r̃ : vn52pnA22«. Note that the eigenscaling i
proportional ton; this means that the action-dependent wa
function will exactly repeat after an action increment
1/A22«. Unlike the result from the previous section the re
etition C( r̃ ,S̃)5C( r̃ ,S̃11/A22«) is an exact result. Mos
standard quantum textbooks give the eigenstates for th
atom. These eigenstates simply need to be multiplied b
constant and the distances rescaled; ifcnlm(r ) is an eigen-
state of the unscaled Hamiltonian and is space normalize
1, then the eigenstate in Eq.~9! is c̃nlm( r̃ )5

22«A2n3cnlm(2 r̃2«n2). Finally, the normalization opera
tor is 22E(v)/v, which gives the dipole matrix elements a
Dn}^cnuDuc i&n

3/2, which is proportional to a constant a
n→`.

The squared absolute value of the radial part of the act
dependent wave function is shown at 5 values of the sc
action in Fig. 3: S̃50, and 1/4, 2/4, 3/4, and 4/4 of th
classical action for an electron to reach the outer turn
point at r̃ 521/« ~the function for the smallest action cann
be distinguished from the vertical axis atr̃ 50). The scaled
energy was chosen to be24. For this figure, states fromn
512200 were superposed with coefficients given byW
}exp@216(n2100)2/1002#. The squared absolute value h
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been multiplied by the functionAu«11/r̃ u as suggested by
the semiclassical derivation of the previous section in or
to keep the height roughly constant.

There are a number of features of Fig. 3 that can be
derstood at a qualitative level. First, the height of the fun

tion does not change because the 1/A«2Ṽ behavior has been
removed. Second, the spatial width of the packet increase

the packet moves to largerr̃ ; this arises because 1/dS̃cl /dr,
which plays the role of speed of the packet, increases as

outer turning point is approached~the S̃50 function is not
distinguishable from the vertical axis atr̃ 50). Third, the
interference pattern at the outer turning point arises from
interference between the part of the packet that has alre
reached the outer turning point and the part that has
reached it; the form of this interference pattern could pro
ably be analytically calculated by using a uniform WKB a
proximation at the outer turning point. Fourth, the peak p
sition of the packet is at the position of a correspond
classical particle to a very good approximation.

C. Hydrogen atom—electric field

I have used the action-dependent wave function to st
the recurrence for an H atom in a static electric field. For t
case, the scaled potential isṼ521/r̃ 1 z̃. There is a cylindri-
cal symmetry for this problem, which means it can be
duced to an effective two-dimensional system. There is
other symmetry in the problem, which allows the separat
of the Hamiltonian in parabolic coordinates; this separabi
affects the dynamics but has not been used in the calcula
that was performed in spherical coordinates. The class
motion for this system is regular.

FIG. 3. For an H atom in zero field, the radial part of the ren

malized scaled densityF5u«11/r̃ u1/2uC̃( r̃ ,S̃)u2 at 5 values of the
scaled action: 0, 1/4, 2/4, 3/4, and 4/4 of the classical action

reach the outer turning point. Note thatF for S̃50 is indistinguish-

able from the vertical axis atr̃ 50. The scaled energy is24, which

gives the outer turning point atr̃ 51/4. States fromn512200 are
part of the packet. The functionF at action of 5/4, 6/4, 7/4, and 8/4
of the classical action to reach the outer turning point is identica
the function at 3/4, 2/4, 1/4, and 0, respectively. For an H atom

zero fieldF( r̃ ,S̃)5F( r̃ ,S̃12S̃cl@ r̃ f #).
0-5
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F. ROBICHEAUX PHYSICAL REVIEW A 63 012110
In Fig. 4, I show the absorption spectrum and the acti
dependent recurrence from a recent paper@9#. In this paper,
«524 and the H atom is excited from the 1s ground state
with one photon that is polarized perpendicular to the fi
direction. The action-dependent recurrence has the usua
quence of peaks at the classical actions of orbits that re
to the nucleus.

However, there is one interesting feature of this syst
that was noted in Ref.@9#. There are peaks in the action
dependent recurrence before the smallest classical actio
a trajectory that returns to the nucleus; this smallest actio
marked with an arrow in Fig. 4~b!. Especially note that there
is a substantial recurrence peak at the action of the ra
motion in zero field,S̃51/A22«.0.35. These peaks are n
present in the usual implementation of semiclassical m
ods. The classical reason why there should not be peaks
fore the arrow is that the electron has nonzero^Lz&, which
means that trajectories are not allowed on the z axis and

FIG. 4. ~a! The scaled energy absorption spectrum from thes
state of an H atom in a static electric field for«524 and a laser
polarized perpendicular to the field direction. The dashed line is
window function,W(v), used to obtain the action-dependent rec
rence of~b!. The states shown are fromn520230. ~b! The action-
dependent recurrence for the system in~a!. The metric V5«

2Ṽ( r̃ ) is needed for orthonormality properties of the eigensta
The inset shows a magnified view of the small action region. T
smallest action peak that corresponds to a classical trajectory
returns to the nucleus is marked with an arrow. All peaks~except at

S̃50) before the arrow are not present in the usual implementa
of closed orbit theory.
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only trajectories exactly on thez axis that can return to the
region near the nucleus after one radial oscillation; the e
tric field gives a nonzero torque to any trajectory not on
z axis. In Ref.@9#, it was found that performing the calcula
tion as if Lz50 and thus allowing trajectories on the z ax
gave qualitative agreement with the quantum calculati
however, the justification of this procedure was not given
was suggested in Ref.@10# that the peaks at the small actio
S̃.0.35 arise from ghostlike orbits; the difficulty with thi
suggestion as discussed in Ref.@11# is that these orbits do
not reach the region of the ground state. Thus, the origin
the peaks without closed orbits appears to still be an o
question.

The results from a calculation of the action-depend
wave function suggests a different explanation for the ea
peaks in the action-dependent recurrence. In Figs. 5, 6,
7, I show the squared magnitude of the action-depend
wave function atS̃50, 0.35, and 0.70, respectively. TheS̃
50 shows the packet localized to small distances but w
most of the probability along the planez̃50 because the
polarization is perpendicular to thez axis. The S̃50.35
shows the first return of the packet to the region near
nucleus; the torque on the electron causes it to approach
nucleus from below thez50 plane and leave above th
plane. TheS̃50.70 shows the effect of the torque mo
strongly; the electron packet clearly misses the nucleus.

An examination of the action-dependent wave functio
at S̃50.0 and 0.35 suggests an origin for the short act
peaks that is different from that in previous papers@9,10#.
The key idea is that theS̃50.0 wave function extends out t
distances much larger than for the initial state; one a.u
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e
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n

FIG. 5. A contour plot of the squared magnitude of the actio

dependent wave function~timesr̃) at S̃50 for the system of Fig. 4.
Note this wave function extends to much larger distances than
initial 1s state~1 a.u. in real space corresponds to;231024 a.u. in
scaled distance!. Each contour is a factor of 2.
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real distance corresponds to 231024 a.u. in scaled distance
which is roughly the thickness of a line in Fig. 5. The reas
the S̃50.0 wave function extends out to larger distances
the same as discussed in Sec. II; the weight functionW acts
as a filter in scaling, which causes the wave function to
spread in space. Since theS̃50.0 function extends to much
larger distances, even trajectories that do not return to wi
the distance of the ground state can overlap theS̃50.0 func-
tion.

If this idea is correct, then it implies that there may be
idea missing in the usual implementation of closed or
theory. The action-dependent recurrence is constructed
using a window function that effectively spreads the init
state. However, the recurrence spectrum is calculated by
ing orbits all of the way to the nucleus. Perhaps for m
situations the corrections that arise are a small fraction of
peaks of the recurrence spectrum. It is only in cases wh
the orbit cannot reach the nucleus that the effect from
window function becomes clear.

I have calculated the wave function for several values
S̃ and the peak of the wave function follows the classi
trajectory without dispersing up to the largest action
tempted (S̃520). Note, that this is an action correspondi
to roughly 55 radial oscillations in zero field.

VI. FUTURE DIRECTIONS

The results from this paper show that it is possible
define an action-dependent wave function in a reason
way. The action-dependent wave function was shown
have a very interesting correspondence to classical motio

FIG. 6. Same as Fig. 5 but atS̃50.35 for the system of Fig. 4
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a semiclassical approximation of a one-dimensional syst
the most interesting aspect is the lack of dispersion shown
the function. The action-dependent wave function does
disperse at all for an H atom in zero field and does not app
to disperse for an H atom in a static electric field~this has not
been proven!.

There are a number of possibly useful directions to exte
this paper. One possibility is to use the action-depend
wave function to interpret quantum-mechanical calculatio
Several joint studies comparing action-dependent wave fu
tions and semiclassical approximations could aid in und
standing the limitations of semiclassical methods. In parti
lar, the inclusion of scattering by a non-Coulombic potent
is only a partially solved problem; the current formulation
scattering appears to work well only for very highn and very
few scatterings. Also, the recurrence to states strongly lo
ized in angle does not appear to be correctly handled. L
the direct solution of the action-dependent wave equa
does not appear to be possible for most systems becaus«

2Ṽ) is not positive everywhere. But the action-depend
wave equation may not have exponential divergence for
outward moving electrons for«>0 if they are started on
opposite sides of the nucleus. If the direct solution is sta
it may be possible to calculate fully quantum motion out
very large distances and obtain further insight into this v
difficult problem.
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FIG. 7. Same as Fig. 5 but atS̃50.70 for the system of Fig. 4
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