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The driven Dicke model, with interesting quantum phases induced by parametrized driving, has been in-
tensively studied in cavities, where permutation symmetry applies due to the atoms’ equal coupling to the
field and identical interaction. As a result, the system, with proper initialization, can remain in a highly
symmetric subset of the state space, where the photon emission of each atom constructively interferes with
the other, leading to superradiance at steady state. However, because of the degeneracy of steady states for
the driven Dicke model, the steady state can be qualitatively altered by an infinitesimal perturbation. In this
work, we simulate superconducting qubits coupled to a one-dimensional waveguide as the extended system and
theoretically investigate four kinds of perturbations: local dephasing, individual driving phases, the separation
between adjacent qubits, and individual detunings. Using an angular momentum basis, we predict the dimension
of the degenerate subspace and study the transition within the subspace due to the perturbation.
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I. INTRODUCTION

Dicke superradiance [1-3], the collective radiation of N
inverted atoms, characterized by a burst of light with peak
intensity scaled by N? instead of N, arises from the sponta-
neous synchronization of the atoms during the decay, with
phase locked and photon emission rate enhanced. Such phe-
nomenon, sometimes also called “superradiant burst,” has
been observed in a variety of platforms [4—12] and analyti-
cally solved in the thermodynamic limit [13]. In recent years,
particular attention has been devoted to superradiance due
to its potential to develop lasers with ultranarrow linewidth
[14-20].

In addition to the Dicke superradiance in an initially
inverted population, driving the system introduces another
degree of freedom and the interplay between driving and
dissipation gives rise to many novel phases [21-30]. To over-
come the exponential growth of the Hilbert space dimension,
the conventional Dicke model [1-3] or driven Dicke model
[31-33] assumes that the atoms are confined in a small spatial
volume or specifically placed so that the atoms are considered
indistinguishable with identical interaction between them. As
a result, the system remains in a highly symmetric subspace
|S = N/2, M) if initialized in it, whose dimension is linear in
the atom number N, so that the accurate numerical simulation
of the system is feasible, even for large N.

In recent years, the development of ordered atomic arrays,
featuring almost arbitrary manipulation of atoms’ locations
[34-43], opens a new possibility to unveil intriguing but
complicated many-body physics beyond the Dicke limit
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[16,26,32,44,45]. Extended systems, with atomic separation
greater than the wavelength of the emitted light, have been
investigated for Dicke superradiance in Refs. [46-49]. In
addition, artificial atoms realized as superconducting qubits,
with convenience to address each qubit [50,51], also exhibit
Dicke superradiance [52,53]. Especially, when coupled to a
one-dimensional (1D) waveguide, where the field propagates
with negligible damping, the superconducting qubits feature
long-range interaction [54,55] and can be a good candidate
for the extended system under investigation in this work.

Recent experiments report the transition to Dicke superra-
diance using a cloud of atoms driven by an external light field
in free space [56,57], followed by the theoretical explanation
in Ref. [58]. The driven Dicke superradiance in extended
systems emerges as an interesting topic and motivates the
discussion of how the geometry of the system [59] or initial
states [60] alters the steady state. There are also discussions
of other factors like dephasing [61-63], individual driving
phase [64-66], and detuning [67-71]. However, their effects
on the steady states of driven-dissipative systems are not fully
explored.

We focus on transmons [72], a kind of superconducting
qubit with less sensitivity to charge noise, and investigate the
effect of four kinds of perturbations (dephasing, changing the
separation, varying the driving phases, and inhomogeneous
detunings) on the steady state of a transmon lattice coupled
to a 1D waveguide. Simulations show that even an infinites-
imal perturbation can significantly change the steady state.
Diagonalization of the Liouvillian matrix reveals a degenerate
subspace of possible steady states when the perturbation is
exactly 0. Although the degeneracy and perturbation theory
of Liouvillian has been discussed in Refs. [73-79], as far
as we know, the perturbation theory on the degenerate state
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space and its application to explain the imperfect driven Dicke
model has not yet been explored. In addition, we use an
angular momentum basis to count the number of degenerate
states. This basis can be used to reproduce parts of the eigen-
values using first-order perturbation theory in the degenerate
subspace.

This work is organized as follows: Section II describes the
basic equations of motion and the expressions of perturbation.
Section III exhibits the time evolution of the correlated pho-
ton emission rate and total photon emission rate, illustrating
the significant change in steady states for an infinitesimal
perturbation. In Sec. IV we explain the phenomena using
the diagonalization of the Liouvillian matrix and develop an
angular momentum scheme to explain the degeneracy and the
eigenvalues.

II. THEORY

A. Equations of motion, perfect driven Dicke model

To investigate the effect of perturbations on the perfect
driven Dicke model, it is necessary to study the dynamics of
the unperturbed system. In this work, we use transmons cou-
pled to a 1D waveguide to build up the extended system and
model the light by classical continuous wave driving. Because
the energy gap between the lowest two levels and the anhar-
monicity are much greater than the linewidth, the transmons
are approximated by two-level systems [80]. Throughout the
paper, we use |0), |1) to represent the ground state and first
excited state of a transmon. The operators involved in this
work are defined as below:

6, =110, 8, =100u(11n, 65 = [1){11,—10),(01,. (1)

n

We also make the Markovian approximation and trace out
the photon degrees of freedom, assuming that the time scale
of photon propagation is much smaller than the interaction
[81-90]. By the Green’s function formalism, the equation of
motion follows the form [91-93]

dp

dt
where we set i = 1. The Hamiltonian, after the rotating wave
approximation, includes two parts:

—i[H, p]+ L[], 2)

H == H[ + ngv (3)
where H; describes the coherent driving:

Q. QA
H,=Z<7o,f+7n—7,f), @)

n

where €2, is the Rabi frequency of the nth transmon and
carries the phase ¢,:

Q, = Qe ®)

and A, is the detuning of the nth transmon.
H,, refers to the transmon-transmon exchange interaction
through the waveguide, with the strength denoted by €2,,,:

Hyg =" Qun6,16, . (6)

Meanwhile, the dissipation is described by the
Linbladian L[p]:
FVLI’I’[ A A — A an;\/\ A —
L[p] = ; (— 5 656, p— 5 pé.r6;
FV!WL + FITLVI A— A A
+ ) ,;*). )

When n = m, the Linbladian refers to the spontaneous decay,
and when n # m, it describes the correlated decay due to
the interaction through the waveguide. Equations (6) and (7)
together describe the waveguide quantum electrodynamics of
the system. By Refs. [55,91-93], the exchange interaction
strength €2,,,, and the coefficient I',,,/2 in the Linbladian are
the real part and imaginary part of the Green’s function ma-
trix element from the transmon-transmon interaction through
the waveguide. In a bidirectional 1D waveguide, the matrix
element reads

Com — _izeik\z,,—zml, (8)
2 2

where |z, — z,,| denotes the separation between transmon n

and m, I" is the decay rate of the individual transmons, while

k is the wave number of the waveguide mode.

By Refs. [1,94], if all the qubits are indistinguishable,
the permutation symmetry determines the symmetry of
the wave function and, in turn, facilitates the reduction of the
state space. In our case, permutation symmetry applies when
all the transmons are homogeneously coupled to the driving
field and equally interact with each other. In the Hamiltonian,
we can give all the transmons the same Rabi frequency and
detuning:

Qum — 1

Q,=2, A,=A. )

In the Linbladian, we can let all the transmons be separated
by an integer number of wavelengths, where €2,, =0 and
Lo =T

LIP) =) (=646, b — p6, 6, +26,p5,0).  (10)
n,m

One can check that the interchange of indices m and n gives
the same dynamics. When initialized in the ground state, the
system will stay in the fully symmetric subspace with total
spin S = N/2. Since every excited qubit in this subspace has
the same phase, their photon emissions can constructively
interfere with each other, leading to superradiance. We say
this system obeys the perfect (or pure) driven Dicke model.
Since the transmons are indistinguishable in this case, we can
introduce the collective spin operator

N N N 1
_ A+ _ — _ A
S+_Xn:an, S,—;an, SZ_EXn:a;, (11)
so that the Hamiltonian and Linbladian in Eq. (2) become
Q. A A
H= (8 +5)- s, (12)

r . A A A A A
LIp] = 7 (25-284 = 545-p — pSi5-), (13)
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where H,,; = 0. Because Egs. (12) and (13) only involve total
spin operators, they conserve the total spin of the system. In
other words, density operators with the same total spin share
the same dynamics and will reach the same steady state. This
is elaborated on in Sec. IV and Appendix A.

B. Perturbing the driven Dicke model

Given the dynamics of the perfect driven Dicke model,
we want to investigate the perturbed dynamics of the system
and compare with the unperturbed one. In general, there are
three ways to perturb the driven Dicke model. One way is to
introduce a dissipative (or A L-type) perturbation:

Ap = AL. (14)

This type of perturbation leads to a purely real contribution
to the Louivillian superoperator which, in lowest order, con-
tributes to the decay behavior. In this work, we investigate one
example of this type of perturbation, the local dephasing with
homogeneous dephasing rate for each transmon [94]:

r
A/:[ﬁ]zzfd’(”“,f—f)), (15)

n

where I'y is the dephasing rate. We note that this perturba-

tion, only with the same dephasing rate for each transmon,

preserves the permutation symmetry of the transmons.
Another type of perturbation is in the Hamiltonian

Ap = —i[AH, p]. (16)

This type of perturbation leads to a purely imaginary con-
tribution to the Louivillian superoperator which, in lowest
order, contributes to oscillation and contributes to decay rate
in second order. We investigate two examples of this type of
perturbation: introducing individual driving phases

AH=Y" %[(el’% - 18, + (e -1)5,], A7

and introducing individual detunings

A, — A
AH =" 0 (18)

Lastly, we will discuss the perturbation from changing the
separation of transmons, which is a combination of the AL-
type and AH -type perturbation:

AH =Y AQuub, 6, (19)
n,m
. Alwn oy ATl oy
AL[PI=)" (— —5 " On 0, P = = po, 6,
n,m

Arnm + AF"’WL A — A A
o T s ,:>, (20)

2

where A, and AT,,,/2 are the real part and imaginary part
of the perturbation in the Green’s function matrix element due
to the perturbation in the separation, which reads

AT I

_ — i (kDlza—zn] _
ARy — I > 12(e 1). 21

For an equally spaced 1D lattice of transmons, with lattice
constant perturbed by Ad, the Taylor expansion of Eq. (21) to
the second order shows that AQ,,, x Ad and AT, x Ad>.

III. RESULTS

In this section, to show the effect of different perturba-
tions, we first illustrate the driven Dicke superradiance in a
1D lattice, using homogeneous Rabi frequencies €2, = €2, de-
tunings A, = A = 0, and equal separation between adjacent
transmons d = 1A in Sec. IIT A. In each later subsection, we
keep everything the same except for one type of perturbation
to compare the result with the unperturbed system. To guar-
antee the system is in the superradiant phase, according to
Refs. [56,57], we keep the ratio between the drive and the
collective decay to be a constant [ = 2Q2/(NT") = 4, that is,
Q = 2NT7] for all the plots. We simulate for at most eight
transmons and take the case for N = 4 as an example in sev-
eral figures. For all four types of perturbations, superradiance
is nearly unchanged at early times, but it gradually transi-
tions to a distinct value asymptotically. The duration of the
superradiant behavior increases as the size of the perturbation
decreases, with the scaling of this duration depending on the
type of perturbation. It is worth mentioning that the phenom-
ena observed in the N = 4 case also extend to systems with
more transmons, up to the maximum number of transmons in
our calculation, N = 8.

For all the plots of time evolution, unless otherwise stated,
we scale the time ¢ to the decay rate I' and define the scaled
time T as

r =Tt (22)

For the observation, by Refs. [3,95], the photon emission
rate consists of two parts:

y () = yo(t) + ysr(?), (23)

where the first term

yo(t) =Y (&) () (24)

refers to the individual spontaneous emission and the second
term

ysr(t) =Y Ton(6,56,7)(t) (25)
n#m

corresponds to the correlated photon emission. In this work,
we focus on the correlated photon emission. When ysg > 0,
the total photon emission rate is greater than the individual
spontaneous photon emission rate and we consider the system
to be superradiant, while ysg < O indicates the subradiance
of the system. The case ysg = 0, where the system has only
individual spontaneous emission, is considered as a boundary
between superradiance and subradiance.

A. Perfect driven Dicke model: Superradiance in a 1D array

To illustrate the driven Dicke superradiance, we calculate
the time evolution of an N-qubit system, where N ranges
from 2 to 8 using the full density matrix equations. We start
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FIG. 1. Time evolution of the normalized correlated photon
emission rates ysg/(NT') in Eq. (25), with different qubit numbers
N = 2-8. The scaled time t = I't.

every transmon in the ground state. The time evolution of the
correlated photon emission rate is shown in Fig. 1.

Here, we normalize the correlated photon emission rate
by the decay rate I' and the number of transmons N. All
the curves have fast oscillation at early times from the col-
lective Rabi oscillation, and reach steady states after about
t = 10/T. Note that the steady-state normalized correlated
photon emission rate ysr/(NT") is proportional to the qubit
number N. Such linear relation implies the quadratic relation
between the total correlated photon emission rate ysg and N,
which is a signature of the driven Dicke superradiance. For the
simulation with greater N, ranging from 5 to 30, this relation
still holds.

B. Perturbation: Local dephasing

To investigate the effect of small local dephasing, we
compare the time evolution of the perturbed system with the
perfect driven Dicke model for both early-time and long-term
behavior. The local dephasing does not conserve total spin S,
leading to evolution out of the S = N/2 subspace. For a 1D
lattice consisting of four transmons, the early-time behavior
of the correlated photon emission rates is shown in Fig. 2 for
different dephasing rates in Eq. (15).

At early times, the curves with different dephasing rates
overlap because the chosen dephasing rates are much smaller
than I" and Q2. They gradually split from each other later. This
strength of dephasing can be considered as a perturbation at
early times because the size of the change in the signal is
proportional to the strength of the perturbation. Similarly, the
perturbations discussed below (driving phase, separation, and
detuning) hardly affect the early-time superradiant behavior
of the correlated photon emission rate when their strength is
small.

For the long-term behavior of the system, we plot the time
evolution of each transmon’s normalized correlated photon
emission rate under different dephasing rates I'y in Fig. 3.
We use the log scale for the y axis. In addition, for each
curve we scale the time ¢ by the dephasing rate Iy, to obtain

o
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FIG. 2. Early-time behavior of ysg/(NI') with dephasing rates
I'y =0,1"/1000, T"/500, I /200, and I"/100. The scaled time T = I't

the scaled time 7’ in Fig. 3. The straight lines in the plot
imply that the dephasing causes exponential decay of the
correlated photon emission rate for this time scale. In other
words, while the positive correlated photon emission rate can
persist for a limited time, even a small dephasing rate (I'y =
0.001T") will eventually undermine the superradiance. With
greater perturbation, the correlated photon emission rate de-
cays faster. By scaling the time linearly to the dephasing rate,
the curves overlap with each other. This implies that the mag-
nitude of the perturbation does not significantly change the
steady state; instead, it modulates the rate to reach the steady
state.

For more transmons, the phenomenon above also holds:
the correlated photon emission rates exhibit exponential decay
and, with the same scaled time as Fig. 3, the curves with dif-
ferent perturbation strengths collapse, which means the decay
rate of ysg/(NT") is proportional to the perturbation strength.
We also fixed the dephasing rate I'y; = 0.01I", calculated the
time evolution of ysg /(NT') for N = 3 ~ 8, and evaluated the
population living in the S = N/2 subspace. The starting point
of each curve’s exponential decay is proportional to N, but the
slope does not significantly depend on N and the asymptotic

1 T

\t\'\\%( ' =0 ——
T L,=T/ 1000 ———-
0.1 ¢ %e'\'\}( 1"¢ =T/500 E
S I, =T/200
o - r,=T/100
Z I
= o001} ~. 9
= Ny
0.001 N
0.0001 ‘ ‘ ‘ '
2000 4000 6000 8000 10000

T

FIG. 3. Evolution of ysgr/(NT') with different dephasing rates.
We define 7’ = 1000T "z, except for 'y = 0, where v’ = T'z.
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FIG. 4. Same as Fig. 3 except with different slopes of the driving
phase. Except for the unperturbed (k, = 0) case, where " = I't, we
define T/ = (400k,)*T't.

value of ysr/(NT) is approximately zero, regardless of N. The
population in the § = N/2 subspace decreases with N, which
means local dephasing opens a path going out of the § = N/2
subspace, and this effect becomes more significant when N
increases.

C. Perturbation: Driving phase

Introducing a driving phase that depends on the transmon
renders the system driven out of the S = N/2 subspace. Here,
we investigate the effect of a linear driving phase perturbation:

¢n = 2mwkyn, (26)

where n is the index of the transmon, ¢, is the phase intro-
duced to the nth transmon, and k is the slope of the driving
phase and is considered a measure of the perturbation. The
time evolution of the correlated photon emission rate is shown
in Fig. 4. For each curve, we scale the original scaled time I't
by the square of the perturbation, as shown in the caption of
the figure. The result shows that even a tiny perturbation in
driving phases changes the steady-state superradiance consid-
erably, and a larger perturbation results in faster decay. With
quadratically scaled time, the curves are on top of each other.
This suggests that the perturbation in k; does not affect the
steady state itself. Instead, it modulates the speed to reach the
steady state quadratically.

For the same calculation as Fig. 4 but with more transmons,
the curves with smaller perturbation strengths overlap very
well, but gradually deviate from each other when the pertur-
bation strength grows. This effect becomes more significant
when the number of transmon increases. One reason lies in
the linear driving phase we introduce: this phase deviation
accumulates with the number of transmons and will become
too large to be considered as a perturbation when N increases.
When the perturbation strength is fixed at k; = 0.02 but N
grows from 3 to 8, the starting point of ysg /(NT") rises, as im-
plied by Fig. 1, but the initial slope of the decay increases with
N and the asymptotic value scales approximately as ~1/N.
Meanwhile, the population in the S = N/2 declines with N,
that is, the driving phase perturbation drives the system out

Ad=0 ——

i Ad=)/400 ———-
’ Ad =L /200 ------- ]
Ad =N/ 100 weeeeeeen
Ad =)/50
f: %
pd .
= 01} i
x
)
—
0.01 : ‘ ‘ : .
0 10000 20000 SOQOO 40000 50000 60000
T

FIG. 5. Same as Fig. 3 except with different lattice constants.
Except for the unperturbed (Ad = 0) case, where 7’ = I't, we define
7/ = (400Ad /A)*Tt.

of the S = N/2 subspace, and this is increasingly significant
with larger N.

D. Perturbation: Separation

An imperfect separation also opens a path to drive the
system out of the S = N/2 subspace. To investigate the effect
of the perturbation due to the separation, we compare the long-
term behavior of the correlated photon emission rate of the
perturbed system with the perfect one. For this perturbation,
the transmons are equally separated with lattice constant d
but the separation is slightly different from a wavelength. The
perfect driven Dicke case has d = 1A while the perturbed lat-
tice constants will be d = 1A + Ad, where Ad, the deviation
from the integer multiple of the wavelength, is a measure of
the perturbation. Note that the perturbation is a combination
of AL- and AH-type perturbation, as discussed in Sec. II B.
By the Taylor expansion of Eq. (21) to second order, AS2,,,,
related to the AH-type perturbation, is linear in Ad; while
AT, associated with the AL-type perturbation, is quadratic
in Ad.

Figure 5 shows the time evolution of the correlated pho-
ton emission rate with perturbation in lattice constant Ad =
0, A/400, A/200, A/100, 1/50. For each curve, we further
scale its scaled time I't by a factor proportional to the square
of the perturbation, as shown in the caption of the figure.

Again, the perturbation in the lattice constant deterio-
rates the Dicke superradiance significantly and the greater
perturbation leads to faster decay. In addition, scaling the
time quadratically according to the perturbation brings all the
curves to overlap. Like the previous two examples, the magni-
tude of the perturbation seems to not significantly change the
steady-state value of the ysg/(NT") but modulates the rate to
reach the steady state quadratically.

Similar to the driving phase case, for the same calculation
as Fig. 5 except for more transmons, the curves corresponding
to minor perturbation collapse but those with stronger per-
turbation gradually deviate. This effect becomes increasingly
significant with larger N because the maximum change in
separation accumulates with the number of transmons and will
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FIG. 6. Similar to Fig. 3 except with different slopes of the
detuning and showing the scaled total photon emission rate. The
inset shows the early-time behavior of y /(NT"). Except for the unper-
turbed (ky = 0) case, where v/ = I't, we define t’ = (k,/0.05)*I'z.

become too large to be considered as a perturbation. When
the perturbation strength is fixed at Ad = 0.02A and N varies
from 3 to 8, ysg/(NT) starts declining at a value proportional
to N but with a steeper slope and settles at a lower value,
which scales as approximately ~1/N. At the same time, the
population in the S = N/2 also goes down with higher N.
This means the perturbation in separation couples the system
outside of the S = N/2 subspace, and this effect is enhanced
with more transmons.

E. An exceptional case: Symmetric,
and equally spaced detuning

Inhomogeneous detuning also leads to coupling outside
of the S = N/2 subspace. When the detuning has symmetric
changes, the perturbation is shown to be an exceptional case
due to the special configuration of detuning profiles. Here, we
will show the effect of linear detuning:

An = ka(n—N/2+1/2)T, 27)

where n =0, 1,2, ..., N — 1. The slope k, is considered as
a measure of the perturbation. In contrast to the above three
perturbations, the long-term behavior of the correlated photon
emission rate is negative, implying that the system becomes
subradiant. To explicitly show the evolution of the extent of
subradiance, we plot the total photon emission rate y /(NT")
instead of the correlated photon emission rate in Fig. 6. The
system is subradiant when this scaled total photon emission
rate is less than ~ 1/2. For each curve, the original scaled
time I't is further scaled by a factor to the square of the
corresponding slope kn .

Each curve shows a relative faster decay at early times, fol-
lowed by an extremely slow tail. For the early-time behavior,
each curve, with time scaled quadratically to the perturbation
measured by the slope kx, overlaps with each other but splits
later. For the asymptotic behavior, the total photon emission
rate shows exponential decay. Note that even if the time is
scaled quadratically to ks, the late-time exponential decay
still grows with increasing ka. So this decay rate depends
on the perturbation strength beyond the second order. Despite
the extremely slow decay, we claim that the system becomes

totally subradiant at steady state—the total photon emission
rate y is approximately 0. This can be verified by evaluating
the steady-state density operator using the null eigenvectors
of the Liouvillian matrix and Eq. (30) discussed in Sec. IV A.
The zero total photon emission rate has been explained by the
theory in Refs. [68—70]—because we introduce a symmetric
profile of detunings so that for any transmon with detuning
A, there will be a corresponding transmon n" with the detun-
ing A,; = —A,. These two transmons can pair up to compose
a so-called dimer [68—70], which exhibits no coupling to the
light field when they reach the steady state. Also, the exper-
iment in Ref. [71] reports the so-called collectively induced
transparency (CIT), where for enough many inhomogeneous
emitters in a cavity driven by an external field, the contribu-
tion of each emitter with a certain detuning A, to the cavity
field scales as oc A;! and can pair with the emitter with the
same amplitude but opposite detuning so as to cancel each
other. As a result, the negative correlated photon emission
rate cancels the spontaneous emission rate so that the total
photon emission in Eq. (23) is zero. As for the steady-state
correlated photon emission rates, we claim that they are dif-
ferent, unlike the perturbations in the previous sections. The
reason lies in different detuning profiles induced by different
ka, rendering different average excitations. By Eq. (24), the
average spontaneous photon emission rates y,/(NT") are equal
to the average excitation and therefore are different. Because
the total photon emission, which is the sum of the spontaneous
photon emission rate and correlated photon emission rate, is
zero, different spontaneous photon emission rate implies the
different correlated photon emission rate.

With greater N, the decreasing of ysg/(NI') starts at a
higher value but with a sharper slope. The asymptotic behav-
ior depends on whether N is even or odd: when the transmon
number is even, the tail becomes increasingly slow with larger
N and eventually becomes fully subradiant. In contrast, if the
transmon number is odd, the system is not fully subradiant—
the asymptotic total photon emission rate is not zero and
decreases with N. The reason lies in the dangling transmon—
the rest N — 1 transmons pair up to generate dimers and are
effectively decoupled from the field, leaving one transmon
that can still emit photons. When N increases, due to our
specific perturbation profile, the dangling transmon is increas-
ingly detuned from the driving, rendering less excitation and
photon emission. We also fixed kx = 0.2 and estimated the
steady-state population in the S = N/2 subspace for N = 2 ~
6. In contrast to the previous three kinds of perturbations,
the population is at least one order of magnitude smaller and
shows alternative behavior—the population for the even N
case is not only lower but also decreases faster than the odd N
case. This coincides with the alternative asymptotic behavior
of the total photon emission rate. However, whether N is even
or not, the population declines, which means the symmetric,
linear detuning perturbation paves the way to leak out of the
S = N/2 subspace and the effect is increasingly significant
with more transmons.

IV. EXPLANATION OF THE TRENDS IN RESULTS

In this section, we will give an explanation for the be-
havior noted in Sec. III. We first diagonalize the Liouvillian
matrix and capture the features of the eigenvalues, revealing a
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degenerate subspace of steady states. Then, we investigate the
degenerate subspace using an angular momentum basis.

A. Diagonalization of the Liouvillian

Considering that the Linbladian in the master equation is a
superoperator, it is convenient to investigate the dynamics of
the system if the equation of motion can be mathematically
represented by a matrix-vector product form. This is partic-
ularly useful for time-independent Lindbladians like those
studied here.

In addition to the master equation in Eq. (2), a general form
of the dynamics can be described by the Liouvillian

dp .

i ZIpl, (28)
where .Z[-] is the Liouvillian superoperator. Thanks to the
mathematical tool called Fock-Liouville space [75,96], we can
reshape the density matrix p into a vector p and construct the
22N % 22N Liouvillian matrix £ according to Eq. (2) so that
Eq. (28) becomes

b _ 5
= Zp, (29)

In general, the Liouvillian matrix is not Hermitian and has
complex eigenvalues associated to left eigenvectors and right
eigenvectors satisfying biorthogonality. For the following dis-
cussion, we refer to right eigenvectors by “eigenvectors”
unless otherwise stated. For a constant matrix .% (the cases we
treat), the eigenvalues u, and the corresponding eigenvectors
pn imply the dynamics of the system:

ORIy (30)

where c, is the projection of the initial vector £(0) on the nth
eigenvector p,. For each eigenvalue u,, = k,, + iv, with «,,, v,
real, the nonpositive real part indicates the decay while the
imaginary part accounts for the oscillation behavior. Here, we
only plot the real parts that control the decay rate, which is
closely related to the long-term behavior of the system.

For a constant Liouvillian matrix .# , there must be at least
one eigenvalue w, = 0 with the corresponding null eigen-
vector. By Eq. (30), when t — oo, all the eigenvectors with
negative real parts decay to zero. So the linear combination of
the null eigenvectors g, yields the steady-state density opera-
tor. When there is more than one null eigenvector, the overlaps
together with null eigenvectors determine the steady state.
However, if there is only one null eigenvector, the steady state
is solely determined by the null eigenvector, which is the only
eigenvector with nonzero trace. Specifically, if the system is
prepared so that its density operator can be reshaped into a
null eigenvector, the system will stay in this state forever. The
steady-state spontaneous photon emission rate and correlated
photon emission rate can be evaluated by Egs. (24) and (25),
which will indicate whether the steady state is superradiant
or subradiant. There are a large number of eigenstates with
Wy, = 0 for the perfect driven Dicke model, indicating a large
subspace of possible steady states. Thus, the steady state for
the perfect driven Dicke model depends on the initial state,
which we have taken to be the state with all transmons in their
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FIG. 7. The cluster of 14 eigenvalues of the Liouvillian with the
least negative real parts for the dephasing perturbation.

ground state. It is the degenerate, steady-state subspace that is
the key to understanding the behavior noted in Sec. III because
the steady state depends on degenerate perturbation theory
within the superoperator. For the systems in Secs. III B-III D,
a nonzero perturbation leads to a single null eigenvector so
that the steady state is independent of the initial conditions.

For perturbations of the driven Dicke model, it is the
perturbation theory within the degenerate null subspace
that determines the long-time behavior. As is discussed in
Sec. II B, there are two types of perturbations: dissipative
(or AL-type) perturbation and AH-type perturbation, each
contributing to purely real [by Eq. (14)] and purely imag-
inary perturbations [by Eq. (16)], respectively. For purely
real perturbations, the eigenvalues will have a real part
proportional to the perturbation strength. For purely imagi-
nary perturbations, the eigenvalues will have an imaginary
part proportional to the perturbation strength and real part
quadratic in the strength because the real part arises from
second order in the perturbation.

For a four-transmon system, out of (2*)?> =256 eigen-
values, we only plot the cluster of 14 eigenvalues with
the smallest real parts. We chose to plot these because the
perfect driven Dicke model with N =4 has 14 eigenvalues

0.001 . . .
0 [ =
-0.001 |- iy [ ———
.\'u e
-0.002 S, . ]
—_~ ..\“ .
=, -0.003 |- ~.. 8
T i u T
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-0.006 |- M4 M4 ., .
HS —— - “12 \.~
-0.007 | HG ———— “13 —— e —— \‘.\7
_0008 1 1 1 1 | | | | | )

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
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FIG. 8. Same as Fig. 7 except for the driving phase perturbation.
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0.005 - - TABLE I. Relation between transmon number N and the degen-
eracy of the eigenvalues of the Liouvillian N.
0
N Nis
-0.005
2 2
3 -0.01 3 5
o) 4 14
X -0.015 5 42
6 132
002 7 429
-0.025
N
-0.03 | | L I L L L L L i3
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Ad /A

FIG. 9. Same as Fig. 7 except for the separation perturbation.

with u, = 0. The other eigenvalues, with more negative real
parts, decay quickly and are not closely related to the long-
term behavior. The eigenvalues are illustrated in Figs. 7-9 for
the perturbation of dephasing, driving phase, and separation,
respectively. For dephasing, the 14 eigenvalues corresponding
to the states represented in Fig. 7 are pure real, with imaginary
parts in the numerical diagonalization of the order of ~10713.
In addition, the eigenvalues are clustered into four values
(from the top to bottom) in Fig. 7, with the degeneracy of 1, 6,
4, and 3. In Figs. 8 and 9, there is less degeneracy in the real
part. For the driving phase perturbation, there are three pairs
of eigenvalues with the same real parts: Re(us) = Re(ug) #
Re(t7) = Re(ug) # Re(ug1) = Re(u12). However, each pair
of these eigenvalues is mutually conjugate, with opposite sign
imaginary parts. The other eight eigenvalues are different and
pure real. For the separation perturbation, there are four pairs
of conjugate eigenvalues with different real parts: p3 and
Ua, e and w7, ng and w9, and o and ;. The other six
eigenvalues are pure real and nondegenerate. So the imaginary
parts in the driving phase and separation cases eliminate the
degeneracy in real parts.

There are two main features in the plots. First, there is a
qualitative difference between Fig. 7 and Figs. 8 and 9. The
real parts of eigenvalues are linear in the perturbation for the
dephasing case. By Eq. (30), the negative real parts indicate
the decay rate for the corresponding eigenvector and, in turn,
the dynamics of the density operator. The linear dependence
of the real parts on the perturbation strength means the decay
rates contributing to the dynamics of the density operator
are also linear to the perturbation strength. This accounts for
the linear dependence of the decay rate of ysr/(NT) on the
dephasing rate I'y in Fig. 3. Similarly, the quadratic depen-
dence of real parts of eigenvalues on the perturbation for the
driven phase and separation cases, Figs. 8 and 9, accounts for
the quadratic relation between the decay rate of ysg/(NI')
and the perturbation in the two cases (Ad and kg4). Second,
there is only one eigenvalue u,, = 0 for nonzero perturbation,
and when the perturbation approaches zero, all 14 eigenval-
ues become degenerate po=pu; =---= ;3 = 0. Since a
zero eigenvalue means the corresponding eigenvector does
not evolve under the equation of motion in Egs. (28) and
(30), the degeneracy of the eigenvalues with p, = 0, Ny in-

dicates the possible number of steady-state density operators
when there is no perturbation. To investigate the dependence
of the degeneracy on the transmon number, we diagonalize
the Liouvillian for N ranging from 2 to 7, and Table I il-
lustrates the degeneracy Ny, as a function of the transmon
number N.

In the next section, we use an angular momentum coupling
basis to count the dimension of the subspace Ny and evalu-
ate the matrix elements of the perturbation-induced coupling
matrix C, in Egs. (BS), (B6), (B10), and (B11), within the
subspace using the degenerate perturbation theory. Like usual
degenerate perturbation theory, when the perturbation is small
and not zero, the eigenvectors of C (steady states in the de-
generate subspace) do not depend on the perturbation strength
while the eigenvalues are proportional to the perturbation to
the lowest order because the matrix C is proportional to the
perturbation. For three of the perturbations considered, only
one eigenvalue remains zero while the others have negative
real parts, implying only one steady state with the others de-
caying away. This is fundamentally different from the perfect
driven Dicke model, where the N eigenvalues are all zero,
and explains why an infinitesimal perturbation qualitatively
changes the steady state from that of the perfect driven Dicke
model.

The symmetric and equally spaced detuning case is the
exception. The steady-state density operator, indicated by the
unique null eigenvector, is a pure state where the transmons
form dimers. Because dimers do not couple to the waveg-
uide mode, the total photon emission rate in Eq. (23) is
approximately 0. In Fig. 10, despite the uniqueness of the
null eigenvalue, there are three pure real eigenvalues (w1, 1o,
and p3) very close to it—they are almost degenerate to the
null eigenvalue until around kn > 0.13. We find that these
three eigenvalues are proportional to k%, indicating that the
long-term decay in Fig. 6 arises from fourth order in per-
turbation theory. This explains the extremely slow tails for
ka = 0.05 and kx = 0.1 compared to the relatively fast de-
cay for ko = 0.2 in Fig. 6. Different detuning profiles lead
to different average excitations and account for the different
steady-state correlated photon emission rates, as discussed
below Fig. 6. Note that there are four pairs of eigenvalues with
the same real parts: p, and 3, e and w7, pg and po, and
1o and ;. Except for puy and w3, which are real and de-
generate, all the other three pairs of eigenvalues are mutually
conjugate.
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FIG. 10. Same as Fig. 7 except for the detuning perturbation.
This range of k, is beyond where lowest-order perturbation is ac-
curate to show the splitting of the four smallest eigenvalues.

B. An angular momentum coupling scheme

To investigate the dimension of the degenerate subspace,
we start from the degeneracy of the dynamics of the perfect
driven Dicke model represented by the total spin operators
in Eq. (Al). The angular momentum coupling basis is very
useful when it comes to the dynamics described by total
spin operators. For the dependence of the degeneracy on the
transmon number, we use the eigenstates of the operators
(82,82, 513, oos Sty S}, where §3, = (§1 + 8 + - + 8%
Given S, = 5 and S;y = S, the eigenstates can be written as

la, S, M) = |(((3- 3): S12. 3). S13. ),...,S,M>, (31)

where S and M refer to the total spin and its projection on the
z axis. The index a is used to distinguish between different an-
gular momentum couplings with the same § and M. In Table 11
we give an example of how the angular momentum couplings
are labeled for N = 4. The angular momentum couplings are
orthogonal to each other, implying the definition of a basis of
density operator using their outer product:

Tr(la, S, M)(a',S'M')) =d',S',M'|a, S, M)
= SaaSs5 Smm

N-1
= ( I1 351,,51,,)555’5MM" (32)

v=2

TABLE II. State table using index a to distinguish between the
degenerate states with the same total spin S.

S,a S Si2 Si3 S M
§=0,a=0 : 0 : 0 0
§=0,a=1 : 1 : 0 0
S=1,a=0 : 0 i 1 —-1,0,1
S=1la=1 3 1 3 1 -1,0,1
S=1l,a=2 3 1 2 1 —-1,0,1
§=2,a=0 : 1 2 2 -2,-1,0,1,2

Given the total spin S and the angular momentum cou-
pling indices a and b, the steady-state density operator for the
unperturbed driven Dicke model pg’ b can be written as

pet =" pyarla. S. M)(b. S. M|,

MM’

(33)

where the coefficients ,oM v are not labeled with index a and
b because of the degeneracy of the pure driven Dicke model
(see Appendix A): The equations of motion in Eq. (A1) only
change M and conserve the total spin S. Therefore, the density
operators with the same S share the same equations of motion
and must have the same coefficients pj; . The number of

possible choices of pg % indicates the degeneracy of density
operators given a total spin S. It is worth mentioning that the
angular momentum coupling a and b are not necessarily the
same and Eq. (32) implies the trace of ,E)g’b :

Tr(p5") = Sap- (34)

So, in addition to what we call “diagonal” operators with
a =>b and trace Tr(”zb ) = 1, there is another type called
“off-diagonal” operators with a # b and trace being 0. Due
to the non-Hermiticity and zero trace, off-diagonal operators
themselves cannot be physical density operators, but together
with the diagonal operators, they can constitute the steady-
state density operator of the pure driven Dicke model.
If a or b can take Dgs values, or the degeneracy for the state
S, m) is Ds, there should be D possible steady-state density
operators associated with the total spin S. By Refs. [1,63,94],
the expression of Dg for N transmons with total spin S reads:

N!
F+s+1)(5-s)r

So the total degeneracy (or the possible number of steady
states) N is

Dg=2S+1) (35)

Z D2 — (2N)!
NN+ D

Due to the factorial in Eq. (35), the degeneracy increases
rapidly with N. Using Eqgs. (36) and (35), we calculate
the degeneracy and compare it to the results from the di-
agonalization of the Liouvillian in Fig. 11. The numerical
diagonalization of the Liouvillian shows perfect agreement
with the theoretical prediction using the angular momentum
basis, and both grow somewhat faster than exponentially. This
justifies our choice of the angular momentum coupling basis
to represent the degenerate subspace. In the following discus-
sion, we will use the angular momentum basis to describe the
effect of perturbed dynamics in the degenerate subspace.

To simplify the notation, we attach an index 7 to the com-
bined indices {S, a, b} so that density operators ,?)g“b can be
written as p,.

Given the degenerate subspace of steady states spanned
by the N density operators {p,}, we investigate the effect
of the perturbation on the subspace: With the definition of
the left operator in Eq. (B2) and the orthogonality relation in
Eq. (B3), we project the superoperator .Z[-] into the degen-
erate subspace, represented by an Ny X Ny matrix C, whose
matrix elements C,,, denote the coupling from p,, to the time

(36)
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FIG. 11. Comparison between the degeneracy from the diagonal-
ization of the Liouvillian and the theoretical prediction by the angular
momentum method, Eqgs (35) and (36).

derivative p,. The details of evaluating the matrix elements
are elaborated on in Appendix B.

For the dephasing case, a pure dissipative perturbation, we
diagonalize the matrix C, and the comparison with the real
parts of the eigenvalues from the diagonalization of the Liou-
villian shows good agreement. So, the dephasing perturbation
causes a mixing between the degenerate steady states so that
the eigenvalues, except for one with ug = 0, have negative
real parts linearly dependent on the dephasing rate. As a result,
there only remains one steady state and others decay away.
The rate of decay can be retrieved from the real parts of the
coupling matrix C. As for the imaginary parts, they are all
zero in the eigenvalues of the coupling matrix C. So, pure dis-
sipative perturbation like dephasing introduces the first-order
correction to the real parts of the eigenvalues. By Eq. (15),
the dephasing perturbation AL is linearly proportional to the
dephasing rate I'4. This accounts for the linear dependence of
the decay rate of ysg on the dephasing rate.

For the pure Hamiltonian-type perturbation, we diagonal-
ize the matrix C for the driving phase case. This time all
the real parts are zero while the imaginary parts agree well
with the full diagonalization results. So, the pure Hamiltonian-
type perturbation introduces the first-order perturbation to the
imaginary parts of the Liouvillian eigenvalues. It also leads
to a second-order correction to the real parts. This accounts
for the quadratic dependence of the decay rate of ysg on the
perturbation k.

The perturbation of separation, by Eqgs. (19)—(21), is a
combination of AH- and A L-type perturbation. As mentioned
above, AH-type perturbation leads to a first-order change
in the imaginary parts of the Liouvillian eigenvalues and
a second-order correction in the real parts. Since the cor-
responding coefficients €2, « Ad, the contribution to the
imaginary parts is proportional to Ad and the contribution to
the real parts is proportional to Ad”. Meanwhile, the A L-type
perturbation yields a first-order perturbation in the real parts
and a second-order perturbation in the imaginary parts. But
because the coefficients I',,, &< Ad?, the first-order perturba-
tion in real parts is proportional to Ad?, which is the same
power of Ad from the perturbation in imaginary parts. So,

both AL-type and AH-type perturbations contribute to the
perturbation in the real parts oc Ad”. This accounts for the
quadratic dependence of the decay rate of ysg on the pertur-
bation Ad.

V. SUMMARY

We investigated the effect of perturbations on driven Dicke
superradiance in a 1D transmon lattice coupled to a 1D waveg-
uide. With perfect homogeneous driving and separation of
exactly an integer multiple of the wavelength, the 1D lattice of
transmons can exhibit driven Dicke superradiance. However,
even an infinitesimal perturbation can lead to a significantly
different steady state.

To study the dynamics of the perturbed driven Dicke
model, we diagonalized the Liouvillian for different sizes of
perturbation, which reveals a degenerate subspace of steady
states for the unperturbed system. Using an angular momen-
tum coupling basis and first-order perturbation theory on the
degenerate subspace, we obtained the expression of the de-
generacy and construct the coupling matrix C, the projection
of the Liouvillian matrix .% in an angular momentum basis. In
degenerate perturbation theory, the eigenstates (steady states
in the degenerate subspace) do not depend on the perturbation
strength but are mixed by the perturbation, leading to the mod-
ulation of the eigenvalues proportional to the perturbation to
lowest order. The diagonalization of C shows the details of the
modulation for the dephasing, driving phase, and separation
perturbation.

A pure dissipative perturbation, like dephasing, introduces
a first-order correction to the real parts of the full Liouvil-
lian’s eigenvalues. This explains the linear dependence of
the decay rate of ysg on the dephasing rate. In contrast, a
pure Hamiltonian-type perturbation, like the driving phase,
contributes a first-order correction to the imaginary parts and
a second-order correction to the real parts. This accounts for
the quadratic dependence of the decay rate of ysg on the
driving phase perturbation k4. The separation perturbation is a
combination of pure dissipative and Hamiltonian-type pertur-
bation. Its Hamiltonian-type perturbation, the strength of the
perturbed exchange interaction AS2,,, is linearly proportional
to the change in lattice constant Ad. Its first-order correction
contributes to the imaginary parts «« Ad while the second-
order correction leads to real parts «x Ad?. The dissipative
perturbation due to the change of separation, evaluated by
[ 1s quadratic to Ad. Its first-order correction contributes
to the real parts oc Ad?. So, both the Hamiltonian-type per-
turbation and dissipative perturbation contribute to the real
parts o< Ad’>—this accounts for the quadratic dependence of
the decay rate of ysg on Ad. For all three perturbations,
there is one unique steady state and the others decay away.
As with the more familiar degenerate perturbation theory
for Hermitian operators, the degenerate subspace of steady
states explains why even an infinitesimal perturbation leads
to complete mixing within the subspace. The exception is the
detuning perturbation with equally spaced detunings. For this
case, the perturbation does not fully lift the degeneracy of the
steady states which leads to a dependence of the steady state
on the size of the perturbation.
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For future research, several avenues remain open for
exploration in the context of the driven Dicke model.
One promising direction is the application of higher-order
perturbation theory to better understand the dynamics of the
imperfect driven Dicke model. Additionally, the study of
novel phase transitions resulting from the interplay between
parametrized driving and dissipation could reveal new and
interesting phenomena [21-30]. Another area worth investi-
gating is the impact of additional factors on driven Dicke
superradiance. For instance, incorporating exchange interac-
tions into the model might provide valuable insights [97—100].
Beyond continuous wave driving, exploring the driven Dicke
model with quantized photons presents another intriguing
research opportunity. Finally, introducing disorder into the
system could lead to novel physical behaviors and is a topic
of active investigation [64—66,71].

Data plotted in the figures is available at [101].
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APPENDIX A: DEGENERACY OF THE LIOUVILLIAN’S
EIGENVALUES, COUNTING THE NUMBER OF POSSIBLE
STEADY STATES

To discuss the degeneracy of Liouvillian’s eigenvalues, we
need to study the degeneracy of the dynamics of the perfect

J

.S _
Py = —

| |—|

+

where

M=vVSS+1)—MM+1). (AS)

Solving Eq. (A4) yields the steady-state solution 5. In this
work, we are mainly interested in the steady-state solution,
so for the later discussion the matrix element of p5 will be
denoted by p,fdy - Taking the angular momentum coupling
into account, for a given index a for ket and b for bra, the
steady-state density operators can be written as

Pt =" pyawla, S, M) (b, S, M'|.
MM’

(A6)

Because the equation of motion for the perfect driven Dicke
model in Eqgs. (A1) and (A4) does not depend on the angular
momentum coupling, any choice of a and b will share the
same coefficients ,oM - Which is the origin of the degener-
acy of the possible steady-state density operators. Given total
spin S and transmon number N, the degeneracy of the angu-

s 2 S 2 s
(AMAM Oyt a1 —Abi—1 Pyt — A —1 Pgr)

driven Dicke model [56,94]:

. Q . A A
p —i[3(5++5)—ASz,i)]

r . .a A A A A
+ 5(25-;5& — 345D — pS4S-). (AL)

Since all the operators in Eq. (A1) are total spin operators,
they commute with the spin square operators. We consider the
eigenstates of the operators {$7, $7,, 8%, ..., §3y, 8.1

0 5.) = [(((33): s, ). ) oS M). - (A2)

where the left-hand side is the in-short representation of the
eigenstates using the index a to distinguish between different
angular momentum couplings. In Table II, we give an example
of the state list for the transmon number N = 4. Note that the
equation of motion only changes M and conserves the total
spin S, so the density operators with the same total spin S
share the same equations of motion. If we only consider the
S and M degrees of freedom and denote the density operator
with total spin S by

= Y 1S, M)(S. M |pyy pr» (A3)

MM’

the dynamics of the matrix element p}; ,,, can be written as

(AM 103y LM +AMPM+1 v AM’flpszMH — A Pyparsr) — A(M_M,)plf/[,M’:|

(A4)

(

lar momentum coupling degrees of freedom Dgs is shown in
Eq. (35).

Because both a and b have Dy degeneracy, the degeneracy
of the density operator p b should be D?. Summing over S
gives the degeneracy of the eigenvalues of the Liouvillian in
Eq. (36). For example, for N = 4, the degeneracy Ny, = 2% +
3% + 12 = 14, which matches the value in Table 1.

APPENDIX B: PERTURBATION THEORY
IN THE DEGENERATE SUBSPACE, EVALUATION
OF THE COUPLING MATRIX ELEMENTS

Using the density operators in Eq. (33) as a basis, the
steady-state density operator for the perfect driven Dicke case
can be written as a linear combination of the density operators
in Eq. (33):

A ~a,b
Pss = ZRS,a,bIOS =

S,a,b

> Ry, (B1)
n
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where we use a single index 1 to denote the three indices
{S, a, b} for simplicity. As an analogy to the left and right
eigenvectors for a non-Hermitian matrix, we define the left
operator:

py=p5"" =) duwlb. S, M) (a,S. M|, (B2)
MM

so that the inner product of the left and right operators can be
defined as the trace of their matrix product:

Tr(f)g,f)n/) = Tr|:(28,mr|b, S, u'){a, S, ,u|>

N
X < Z p[f/[’M’|a/a S/’ M) (b/r S/3 M/|):|
MM
= 8y Z Paivt = Sny (B3)
M

The essence of the perturbation theory is to evaluate the tran-
sition among the basis operators 0, due to the perturbation.

For dephasing, a kind of pure dissipative perturbation, the
perturbed dynamics can be written as

Ap =7 L(6:8; — b). (B4)
n

For first-order perturbation theory, we substitute the
steady-state density operator in Eq. (B1) into the perturbed
dynamics in Eq. (B4) and take the projection on p, by acting
the left operator f),f on Eq. (B4) and taking the trace:

R,

Il
&
=
—
>
=T~
>
S N
>
§\
>
S o
|
>
=T~
>
i\
SN

r
- TKP Z[Onn’ Ny 1Ry = Zcrm’Rn” (BS)
n n
or in vector form:
> F¢ N AL > A >
R=—(O —NIR =CR, (B6)

where O is an Nss X Ngg matrix, with matrix element
defined as

O =Y Pyarta S M|651d, S', M)

n MM

x (b, S, M'|6%|b, S, M'). (B7)

The matrix elements of 6; in the angular momentum basis
|a, S, M) can be evaluated using standard angular momentum
techniques (for example, see Ref. [102]).

For a pure AH-type perturbation, the perturbed dynamics
read

p=—i[AHp — pAH]. (B8)

Similar to the dephasing case, using the first-order pertur-
bation theory, we substitute the steady-state density operator
in Eq. (B1) into Eq. (B8) and project to p, by acting the left
operator ,b,f on Eq. (B8) and taking the trace:

Ry =—i Y Tr(pkAHpy — plpy AH)Ry. (B9)
=

Substituting the definition of p} in Eq. (B2) and p, in
Eq. (A6) into Eq. (B9) leads to

Ry=D_CorRy. (B10)
"

where the matrix element of the coupling matrix is

Cor = —i' Y iyuebss Gy (a, S, M| AH |a', §'. M)
MM

— 840 (b, S, M'|AH|b, S, M)). (B11)

The matrix elements in Eq. (B11) can be evaluated using
the standard angular momentum techniques in Ref. [102].
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