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Effect of the orientation of Rydberg atoms on their collisional ionization cross section
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Collisional ionization between two Rydberg atoms in relative motion is examined. A classical trajectory Monte
Carlo method is used to determine the cross sections associated with Penning ionization. The dependence of the
ionization cross section on the magnitude and the direction of orbital angular momentum of the electrons and
the direction of the Laplace-Runge-Lenz vector of the electrons is studied. For a given magnitude of angular
momentum, there can exist a difference of a factor of up to ∼2.5 in the ionization cross section between the
orientations with the highest and the lowest ionization cross section. The case of exchange ionization is examined
and its dependence on the magnitude of angular momentum is studied.
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I. INTRODUCTION

The study of Rydberg atoms has seen considerable
progress in the past few decades [1]. The highly excited
state of the electrons in these Rydberg atoms gives rise to
many interesting properties such as controllable long-range
interactions [2], a strong response to electric and magnetic
fields [3,4], and classical behavior of valence electrons, all of
which have seen considerable analysis [5]. Their manipulable
interactions have enabled the study of quantum entanglement
effects across multiple atoms and by extension brought about
the pursuit for robust qubits built from neutral atoms [6].

The highly excited nature of the valence electrons in Ry-
dberg atoms makes them susceptible to ionization due to
either collisions involving Rydberg atoms or interaction with
blackbody radiation [7]. In this paper we focus exclusively
on collisions between Rydberg atoms that can lead to one of
the atoms becoming ionized through Penning ionization. In
Penning ionization, two highly excited atoms with principal
quantum number n collide to give a positive ion, a free elec-
tron, and the other atom with its valence electron having a
principal quantum number n′. If there is no energy transferred
to the electrons from the translational kinetic energy of the
atoms, it can be shown that n′ < n/

√
2 for the process to

conserve energy.
Rydberg atoms experience considerable separation when

they are prepared because of Rydberg blockade effects [8,9].
However, collisions between Rydberg atoms can still occur
because of their strong interaction. These atoms interact due
to van der Waals forces, dipole-dipole forces, or other higher
multipole moments depending on the distance of separation
and the nature of the electronic states. Even if these atoms
were initially at rest, these interactions could lead to their
eventual collisional ionization [10]. More recently, the effect
of van der Waals and dipole-dipole forces on the collisional
cross section between Rydberg atoms was examined [11]
theoretically and was shown to agree reasonably well with
experiment.

The thermal energies of Rydberg atoms can also lead to
collisional ionization. The recent work by Fields et al. [12]
not only provided an idea of the scale and the physics of
destruction of Rydberg atoms from collisional ionization but
also verified experimentally once again the results of a classi-
cal trajectory Monte Carlo approach for collision between two
Rydberg atoms. They concluded that these collisional cross
sections were significant and comparable to that of collisions
between hard spheres of size comparable to the Rydberg or-
bit. These collisions can also be a source of transition from
Rydberg atoms to ultracold plasma [13,14]. Effectively, these
collisions can lead to a significant loss of the prepared Ryd-
berg atoms and can be a cause for concern in experiments.

Inspired by the recent results by Fields et al. [12], here
we try to answer the next relevant question, i.e., the effect of
orientation of Rydberg atoms on their collisional ionization
cross section. Two quantities that should adequately char-
acterize the orientation of the colliding Rydberg atoms are
the direction of angular momentum and the direction of the
Laplace-Runge-Lenz vector. The research until this point has
been carried out either by assuming some arbitrary choice for
the direction and magnitude of angular momentum and the
direction of the Laplace-Runge-Lenz vector (see Figs. 1 and
2) or by averaging the results over them. In this paper we vary
these parameters in a systematic way for a couple of orienta-
tions to begin understand their impact on the ionization cross
section. There is a wide variety of combination of parameters
that could be explored; only a few cases are investigated to
limit the size of this study. One restriction on the calculation
was determined by the experimental arrangement in Ref. [12]:
We have the two atoms excited to the same state and inter-
acting through the difference in their thermal center-of-mass
velocities.

The ionization cross section in general is expected to have
some dependence on the magnitude of the angular momentum
as it determines the eccentricity of the orbit of the electron.
Our investigations of the effect of orientation reveal that for
a given magnitude of angular momentum, there can exist a
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FIG. 1. Schematic diagram of the two Rydberg atoms for the
Frisbee-type initial orientation. The red circle on the edge of each
ellipse represents an electron and the black circle at the focus of
each ellipse represents an ion. The angular momentum vector L,
the Laplace-Runge-Lenz vector A, and V c.m. are properties of each
atom when the separation vector R goes to infinity. To emulate
recent experiments [12], all calculations are performed with L1 = L2,
A1 = A2, and V c.m. = 10−4 a.u. Note that the orbits of the electrons
are in a plane parallel to the x-y plane and Lsep is measured along the
x axis.

difference of a factor of ∼2.5 in the ionization cross section
between the orientations with the highest and the lowest cross
sections. This can be relevant because the currently proposed
methods [12] to decrease the collisional loss of Rydberg atoms
is either to lower the temperature to increase the timescale
for collisional destruction or to create the Rydberg atoms
in a spaced-out manner, both of which could be difficult to
implement. The results in this paper can provide an additional
perspective into the physics of collisional ionization with pos-
sible insights to minimize it. However, note that our results
are not well suited for application in ultracold Rydberg gas

FIG. 2. Schematic diagram of the two Rydberg atoms for the
initial cymbal-type orientation. The notation is the same as in Fig. 1.
Note that the orbits of the electrons are in a plane parallel to the y-z
plane.

experiments such as Ref. [15] as they operate in a parameter
regime which is outside the scope of this paper.

Following this, we briefly consider the case of exchange
ionization and study its dependence on the magnitude of angu-
lar momentum. By exchange ionization we refer to a scenario
where one of the approaching Rydberg atoms loses its electron
but captures the electron from the other atom, leaving the
other atom effectively ionized. One may also be interested in
studying the cross sections for a double-ionization process in
which both the colliding atoms end up being ionized, but the
calculations reveal that in order for double ionization to be of
significance, the velocities have to be much higher and of the
same order as the orbital velocity of the electrons [16].

On the experimental side, Rydberg atoms are usually syn-
thesized with the valence electron being in a state with low
orbital angular momentum l . Over the past three decades,
there have been several theoretical proposals to obtain high-l
circular states and high-m states which have been followed up
by successful experiments [17–24]. Given the experimental
progress, we believe that the manipulations proposed in this
paper are within reach of current experimental techniques.

This paper is organized as follows. In Sec. II we describe
the approach to analyze collisional ionization. A discussion
of the numerical method used and convergence is included. In
Sec. III we apply the method described in Sec. II to different
orientations of the two Rydberg atoms and study its effect on
the ionization cross section. We summarize in Sec. IV.

Unless otherwise stated, atomic units will be used through-
out this paper.

II. METHODS AND MODELING

A classical approach is used to model the pair of Rydberg
atoms and their scattering. This can be justified in three ways.
First, this is reasonable from the classical correspondence
principle given the large principal quantum number n of the
Rydberg atoms. Second, we are interested in the ionization
cross section with little focus on the nature of the final
state of the other electron. Therefore, a classical treatment
of ionization is desirable as it yields a good approximation
of the ionization cross section with an averaging over all
possible final states (n, l , and m) of the electrons involved.
Third, the final state of each electron will be in energy states
which are well above the ones where quantum effects are im-
portant. Under these conditions, there is strong experimental
support for such a classical approach [12,25–27].

Each Rydberg atom is modeled as having a nucleus with a
unit charge and an electron in a classical Keplerian orbit [28]
around the center of mass of the atom with the interaction
being purely Coulombic. The initial state of the electron in
each atom up to an orbital phase angle is characterized by its
energy, angular momentum, and Laplace-Runge-Lenz vector.
The energy chosen corresponds to a Bohr orbit of principal
quantum number n. The particular choice of n is not important
as the classical results for the collisional cross section scale
with n4, provided the velocity of the atoms is scaled by 1/n.
For our calculations, we choose rubidium-85 with n = 60.
The orbital angular momentum l is chosen to have a value in
the range of (0, n]. The case of l = n corresponds to the spe-
cial case of Bohr orbits which are ideally circular. Decreasing
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l below n increases the eccentricity of the orbit. Therefore, the
chosen range of angular momentum covers the entire range
of eccentricities for the electron’s orbit. The direction of the
Laplace-Runge-Lenz vector is varied during the course of the
calculations to study its effect on the ionization cross section.
The initial position and velocity of the electron are determined
up to an orbital phase angle which is randomized.

The force exerted by particle j on particle i is given by

F i j = qiq j

|ri − r j |3 (ri − r j ). (1)

Here the indices i, j ∈ {1, 2, 3, 4} and i �= j. The quantity qi

refers to the charge of particle i and the quantity ri refers to
the position vector of particle i. The equations of motion can
then be obtained by solving the two equations

dvi

dt
=

∑
j F i j

mi
, (2)

dri

dt
= vi, (3)

where the terms vi, ri, and mi denote the velocity, position,
and mass of the ith particle, respectively.

The two atoms start with a separation of Lsep, measured
along the x axis (see Fig. 1). The value for Lsep is motivated by
the minimum Lsep required for convergence (refer to Sec. II B)
of the cross section. There still remain two degrees of freedom
for the position of center of mass (c.m.) of each atom. The y
and z coordinates of the center of mass of atom 1 are randomly
(uniform) placed inside a disk of radius 0.5bmax centered on
the x axis and parallel to the y-z plane (refer to Sec. II B for
bmax). The c.m. of atom 2 is positioned such that the total
center of mass of the two atoms lies at the origin.

At the initial time, the c.m. of the first atom is imparted a
net velocity in the +x direction and the c.m. of the second
atom in the −x direction. As the two Rydberg atoms drift
towards each other, one of them may ionize depending on the
initial conditions. In our calculations, we consider the electron
to be ionized if the distance to any of the electrons from the
origin of the coordinate system is greater than the initial length
of separation between the two Rydberg atoms Lsep.

We define two quantities which serve as a convenient
timescale and length scale in the problem: TRyd = 2πn3 is the
time period of a Bohr orbit for the chosen principal quantum
number n and RRyd = n2 is the radius of the same Bohr orbit.
The aim is to study the ionization cross section as a function of
the direction and magnitude of the orbital angular momentum
and the direction of the Laplace-Runge-Lenz vector of the
electron. In order to determine the cross section, we resort to a
Monte Carlo approach. We estimate the cross section by first
calculating the probability of ionization from a set of 10 000
Monte Carlo runs by randomly varying the initial orbital phase
angle of both the electrons and the impact parameter. The
randomized initial conditions form the population of a micro-
canonical statistical distribution of the phase space [29] with
an additional requirement that the orbital angular momentum
of the electrons remain fixed. The initial values for the Vc.m.

of the atoms, the energy of each electron, and the direction
and magnitude of the angular momentum of each electron all
remain the same during each set.

The orbital phase angle of the electron in the first atom is
randomized by allowing the electron to dynamically evolve
with time in the absence of the second atom for a random
duration between 0 and TRyd. To randomize the orbital phase
angle of the second electron, a small distance which randomly
varies between 0 and Vc.m.TRyd is added to the length of the
separation Lsep.

The cross section is typically calculated using the expres-
sion

∫
2πbP(b)db, where the probability of ionization as a

function of the impact parameter P(b) is integrated over all
possible impact parameters [12]. Here, using Monte Carlo
sampling described below Eq. (3), the total probability of
ionization Pion can be calculated by determining the fraction
of total runs that result in ionization and using the expression
for the cross section σ ,

σ = πb2
maxPion, (4)

where bmax is the maximum value of the impact parameter
that results in ionization. Note that it is convenient to scale the
ionization cross section by π (2RRyd)2, given that RRyd is the
radius of the Rydberg atom. We define the scaled cross section
σscal as

σscal = σ

π (2RRyd)2
. (5)

We restrict our discussion to symmetric collisions in which
the two colliding Rydberg atoms have the same n value and
both electrons have the same orbital angular momentum L
and the Laplace-Runge-Lenz vector A [12]. One may refer
to Refs. [30,31] for discussions pertaining to asymmetric col-
lisions. Here the Laplace-Runge-Lenz vector A is defined as

A = p × L − r̂, (6)

where p and L indicate the linear momentum and the angular
momentum of the electron with respect to the nucleus,
respectively. The quantity r̂ indicates the unit position vector
of the electron measured with the nucleus as the origin. The
magnitude of the Laplace-Runge-Lenz vector is proportional
to the eccentricity of the orbit. It should be noted that the
Laplace-Runge-Lenz vector of the electron is proportional to
the energy in the linear Stark shift and can be accessed by
exciting Stark states.

The minor changes required in the procedure to calculate
the cross section associated with exchange ionization are dis-
cussed in Sec. III C.

A. Numerical method

The classical equations of motion [Eqs. (2) and (3)] are
solved numerically using the sixth-order Runge-Kutta (RK6)
method with an adaptive step size [32]. The RK6 method does
not conserve the phase-space volume. Therefore, the total
energy of the system, which ideally should be conserved, will
either increase or decrease with time. For a given time step,
the larger the acceleration of the particle, the larger the error
in the velocity and position. At every instance of time, the
step size is varied based on the acceleration experienced by
the particles, so the error is below an acceptable threshold (see
Sec. II B). For every Monte Carlo run, the aim is to carry out
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these calculations until an ionization is detected or until the
Rydberg atoms pass each other.

The expression (1) being a purely Coulombic potential can
lead to singularities in acceleration during a trajectory. This
will cause the adaptive-step-size algorithm to yield a time step
which can be quite small, thus resulting in runs that may not
be feasible computationally. To handle this issue, we override
this very small time step with a threshold value and proceed
with the RK6 method directly for the next time step only. If
this process gets repeated, this may lead to a buildup of errors
in the total energy with time. If the error in the total energy
exceeds 0.1% of the initial total energy, the run is classified
as a failed run and not used in the cross-section calculations.
The number of failed runs is kept well under 3% of the total
number of Monte Carlo runs for all the scenarios discussed in
this paper, except for the case of l = 0.2n in Fig. 6, for which
the number of failed runs is closer to 6%. Note that there exists
a trade-off between using a purely Coulombic potential and
dealing with failed runs or resorting to a soft-core Coulombic
potential with no failed runs but having to accept less realistic
results.

B. Convergence

Here we briefly discuss the choice of various parameters
defined in the preceding section. We find that the probabil-
ity of ionization Pion depends on the distance of separation
between the two atoms Lsep for Lsep < 60RRyd. However, for
Lsep > 60RRyd, the probability of ionization Pion and hence
the ionization cross section does not change beyond statistical
fluctuations associated with the Monte Carlo approach. Note
that this factor of 60 is independent of n and is obtained by
numerical experimentation.

We probe the convergence of the cross section with respect
to the maximum impact parameter bmax by restricting our
atoms to be exactly on the circle of radius 0.5bmax. Then we
search for a threshold value for the radius bmax beyond which
strictly no case of ionization occurs from an entire set of runs.
Upon varying the radius bmax, we find that for bmax > 5RRyd,
no case of ionization is reported for the chosen Vc.m. (refer to
Sec. III B).

For a given successful run, either ionization occurs or it
does not. Thus, the Monte Carlo runs form the population of a
binomial distribution. For 10 000 runs, the standard deviation
in the distribution is under 5% of the mean of the distribution
for the case with the lowest cross section.

III. APPLICATIONS

A. Laplace-Runge-Lenz scalar

Before we apply the procedure developed in Sec. II to
study the ionization cross sections, we briefly discuss a quan-
tity which is an approximate constant of motion for large
atom separations. For a given set of initial conditions, let the
Laplace-Runge-Lenz (LRL) vector for each electron be A1

and A2, respectively.
The Laplace-Runge-Lenz vector is a constant of motion

for a central inverse square force [33]. Given the interaction
of other charges on a single electron and the motion of the
nucleus, the Laplace-Runge-Lenz vector will deviate from

its initial value with time. If the atoms are far apart, the
Laplace-Runge-Lenz vector precesses with the components of
the vector simply oscillating about a mean value. However,
as the atoms approach each other and the interaction strength
between the two atoms grows, the components of the Laplace-
Runge-Lenz vector will start to deviate from the initial value.

We define a quantity LRL scalar � as

� = A1 · A2 − 3(R̂ · A1)(R̂ · A2), (7)

where R̂ denotes a unit vector from the nucleus of atom
2 to the nucleus of atom 1. An underlying motivation
for this definition arises from quantum mechanics. In a
quantum-mechanical system, this quantity commutes with the
Hamiltonian within the n manifold if the interaction between
the two atoms is approximated as a dipole-dipole interaction
[34]. Also note that in quantum mechanics, the definition of
the Laplace-Runge-Lenz vector is modified to account for
the noncommutation of p and L by using the symmetric
form [(p × L) − (L × p)]/2 [35]. The LRL scalar [Eq. (7)]
is nonzero only for a pair of Rydberg atoms in elliptical orbits
since for circular orbits the Laplace-Runge-Lenz vectors of
both atoms vanish.

If two atoms which are at rest are placed relatively close
to each other (Lsep = 8RRyd), we find that the LRL scalar �,
which resembles the dipole-dipole interaction energy, oscil-
lates significantly less than the individual components of the
Laplace-Runge-Lenz vector. However, note that this quantity
does not remain constant when the atoms are close enough to
each other such that the dipole approximation breaks down.
The LRL scalar is proportional to the electric dipole-dipole
interaction energy between the two Rydberg atoms for a given
principal quantum number n as the individual Laplace-Runge-
Lenz vectors are proportional to the electric dipole moment of
each atom [34]. We examine if the initial LRL scalar of the
two atoms when they are far away can be used to effectively
characterize their ionization tendencies as they approach each
other. We do this (refer to Sec. III B 1) by analyzing the cor-
relations between � and the ionization cross section of the
Rydberg atoms.

It should be noted that � changes slightly between Monte
Carlo runs. While A1 and A2 remain constant for a given set of
runs, the position of each atom and hence R̂ changes slightly
with every run. This is because the randomization of the initial
conditions for the Monte Carlo approach involves a change in
the impact parameter (not bmax) and a small change in the Lsep

(refer to Sec. II).

B. Ionization cross section

Here we investigate how the ionization cross section de-
pends on the magnitude and the direction of the orbital
angular momentum of the electron and the direction of the
Laplace-Runge-Lenz vector. In our calculations, Vc.m. = 10−4

a.u., which corresponds to the rms speed at a temperature of
∼150 K. The chosen Vc.m. is similar to the values observed in
the experiment by Fields et al. [12]. The results of our calcula-
tion are relatively unchanged for a range of velocities between
7 × 10−5 and 2 × 10−4 a.u., which corresponds to the kinetic
energies associated with a temperature range of approximately
80–650 K. A more detailed analysis of the dependence of the
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ionization cross section on the relative velocity of the Rydberg
atoms can be found in Ref. [16].

While the trajectories of the particles including the relative
motion of the two nuclei are not assumed to be straight lines,
the calculations indicate little deviation from the straight-
line trajectory for the two nuclei. This is partly because of
their large mass. In order for the collision energy of nuclei
to become comparable to their interaction energy and their
trajectories to deviate from a straight line, the thermal veloc-
ities of the atoms should be smaller by about two orders of
magnitude from the chosen value (Vc.m. = 10−4 a.u.).

1. Varying the direction of the angular momentum

We explore the effect of varying the direction of the angular
momentum of the electrons L1 and L2 on the ionization cross
section. Here we preserve the direction of the Laplace-Runge-
Lenz vectors A1 = A2 while we change the direction of the
angular momentum vectors L1 = L2. Based on the discussion
in Sec. II, we consider two possible initial orientations, Fris-
bees (see Fig. 1) and cymbals (see Fig. 2).

For the initial Frisbee-type orientation, the direction of an-
gular momentum can be changed by rotating each atom about
their respective Laplace-Runge-Lenz vector and hence the x
axis. This ensures that A1 and A2 are invariant. Therefore, the
quantity � [Eq. (7)] remains invariant during this rotation.

For the initial cymbal-type orientation, the direction of the
angular momentum can be changed by rotation of the atoms
about the z axis. This ensures that A1 and A2 remain the same.
Again, � remains invariant during the rotation for a given
Monte Carlo run but varies slightly between runs for reasons
discussed in Sec. III A.

It should be noted that for Frisbee-type orientation, for the
entire range of the rotation angle, the initial orientation of the
two atoms remains of Frisbee type. However, for cymbal-type
orientation, during the rotation about the z axis, the orientation
changes from cymbal type to Frisbee type at an angle of 90◦.

For each orientation of the angular momentum, the ioniza-
tion cross section is calculated using the procedure developed
in Sec. II. Given the direction of the Laplace-Runge-Lenz
vector, a rotation angle range of 0–180◦ exhaustively covers
all possible relative orientations between the two atoms for
the angular momentum. These calculations are performed for
different magnitudes of the angular momentum (see Figs. 3
and 4).

For Frisbee-type orientation (Fig. 3), we find that the ion-
ization cross section is independent of the rotation angle about
the x axis for a given angular momentum magnitude l . This
is expected from the rotational symmetry as the angle be-
tween the angular momentum vector and R̂ remains the same
throughout the rotation, given the direction of the Laplace-
Runge-Lenz vector (Fig. 1). Upon increasing l , we find that
the cross section decreases. This indicates that an electron in
a circular orbit is more difficult to ionize than an electron in a
highly elliptical orbit. This becomes clear if we examine the
outer turning point radius rout for elliptical orbits, which is
given by [36]

rout

RRyd
= 1 +

√√√√1 −
(

l

n

)2

. (8)
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l = 0.2n
l = 0.6n
l = n

FIG. 3. Plot of the scaled ionization cross section as a function of
rotation angle about the x axis, for the initial Frisbee-type orientation.
Each point is a result of 10 000 Monte Carlo runs. The error bars in-
dicate the standard deviation in the cross section. Here rotation about
the x axis changes the direction of angular momentum but preserves
the direction of the Laplace-Runge-Lenz vectors. The points with the
same initial angular momentum l have been connected to serve as a
visual cue. For a given l , the ionization cross section does not change
with θx . This is expected from rotational symmetry.

So, for an orbit with l = 0.2n the outer turning point distance
from the nucleus is approximately twice as large when com-
pared to a circular orbit (l = n) of the same energy (n), thus
making it likely that the electron will venture into regions of
stronger field from the other atom.

For cymbal-type orientation (Fig. 4), for small magnitudes
of angular momentum we find that the cross section does not
appear to change with θz. As the l value increases, the cross
section peaks at a rotation angle of θz = 90◦. The physics be-
hind this can be understood in the following manner. Consider
the case of two circular (l = n) Rydberg atoms of cymbal
type (Fig. 2) approaching each other. The electrons in these

0

1
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4

5

0  30  60  90  120  150  180

σ s
ca

l

θz (deg)

l = 0.2n
l = 0.6n
l = n

FIG. 4. Plot of the scaled ionization cross section as a function of
rotation angle about the z axis, for the initial cymbal-type orientation.
Each point is a result of 10 000 Monte Carlo runs. The error bars in-
dicate the standard deviation in the cross section. Here rotation about
the z axis changes the direction of angular momentum but preserves
the direction of the Laplace-Runge-Lenz vectors. The points with the
same initial angular momentum l have been connected to serve as a
visual cue.
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FIG. 5. Plot of the z component of the Laplace-Runge-Lenz vec-
tor of each electron as a function of time for a typical nonionizing
run, for the initial cymbal-type orientation (θz = 0◦ in Fig. 4). The
bottom pair of curves is for the case of l = 0.6n, with the blue
solid and orange dotted lines representing electron 1 and electron 2,
respectively. The top pair of curves is for the case of l = n (circular
orbits) with the magenta line (starts at the bottom) and green line
(starts at the top) representing electron 1 and electron 2, respectively.
Note that these two lines mirror each other. The black dotted line
between the top pair and the bottom pair separates the y axis of
the two plots. From the bottom pair of curves it is evident that the
elliptical case lacks the stabilizing oscillations seen in the circular
case.

atoms tend to push each other to the opposite extremes of
their orbits. This results in the atoms becoming more ellip-
tical as they approach each other; in other terms, A1 and A2

start building up from zero in opposite directions. This can
help in minimizing the interaction energy, thus lowering the
ionization cross section effectively. This is evident from the
calculations for a single collisional run (Fig. 5) that does not
result in an ionization. These calculations show that as the two
circular Rydberg atoms of cymbal type approach each other
their respective Laplace-Runge-Lenz vectors start building up
in opposite directions and exhibit oscillatory behavior.

This effect is less likely to occur as you make the orbits
elliptical (decrease l). The reason is that if the Laplace-Runge-
Lenz vectors were already nonzero and equal to each other in
the beginning, as they approach each other it becomes more
difficult to get them to orient in opposite directions given
the symmetric nature of the two atoms. This is also evident
from the calculations for a single collisional run (Fig. 5),
which shows the difficulty in achieving similar stable oscil-
latory behavior found in the circular case. The z component
of the Laplace-Runge-Lenz vector has been chosen to illus-
trate how the nonzero value in the elliptical case hinders this
oscillatory behavior. Note that the other components of the
Laplace-Runge-Lenz vector exhibit similar behavior for the
circular case. In the elliptical case, there is a lack of this
type of oscillatory behavior in all three components of the
Laplace-Runge-Lenz vector.

For the case of Frisbee-type orientation (Fig. 1), this ef-
fect will not manifest. The nature of the orientation offers
significantly less time for A1 and A2 to gradually build up
in opposite directions. Single collisional run calculations for
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l = 0.2n
l = 0.6n
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FIG. 6. Plot of the scaled ionization cross section as a function of
rotation angle about the z axis, for the initial Frisbee-type orientation.
Each point is a result of 10 000 Monte Carlo runs. The error bars
indicate the standard deviation in the cross section. Here the rotation
about the z axis changes the direction of Laplace-Runge-Lenz vectors
but preserves the direction of angular momentum. This changes the
value of the LRL scalar �. The points with the same initial angular
momentum l have been connected to serve as a visual cue.

Rydberg collisions of Frisbee type consistently show the ab-
sence of the antiparallel oscillatory behavior of A1 and A2

found in the case of cymbal-type orientation (Fig. 5). This
effect offers some insight into why the ionization cross section
from Fig. 4 for the cymbal-type orientation is lower by a factor
of ∼2–3 than that for the Frisbee type.

Although a rotation angle of θz = 90◦ corresponds to a
Frisbee-type orientation, the results from Fig. 4 should not be
compared to Fig. 3. The reason for this is because, in Fig. 3,
the Laplace-Runge-Lenz vector is chosen to be along the x
axis but the Laplace-Runge-Lenz vector in Fig. 4 for θz = 90◦
is along the −z axis. However, for the special case of l = n,
the Laplace-Runge-Lenz vector is zero and a comparison of
the two figures at θz = 90◦ reveals good agreement. In the
next section we discuss cases where the Laplace-Runge-Lenz
vector is varied. One may then compare the results of Fig. 4
with Fig. 6 for the value of θz = 90◦ in both figures. This
comparison shows good agreement.

2. Varying the LRL scalar

We explore the dependence of the ionization cross section
on �. We vary � by changing the direction of Laplace-Runge-
Lenz vectors A1 and A2 but preserving the direction of the
angular momentums L1 and L2. We do this by rotating the
atoms about their respective angular momentum vectors. This
is equivalent to rotation about the z axis and x axis for the
initial Frisbee-type orientation (Fig. 1) and cymbal-type ori-
entation (Fig. 2), respectively. Note that this rotation only
changes the LRL scalar for Frisbee-type orientation and not
cymbal-type orientation as the angle between the Laplace-
Runge-Lenz vector of each atom and R̂ remains relatively
unchanged for the cymbal type.

We calculate the ionization cross section, average initial
�, and standard deviation in the initial � for a given angle
of rotation, from a set of Monte Carlo runs. Note that the
average � and the standard deviation in � change with rotation
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FIG. 7. Plot of calculation analogous to Fig. 6, for the case where
the direction of angular momentum has been inverted (l = −0.6n).
For comparison, the case of l = 0.6n is plotted after reflection about
90◦. In simpler terms, for the case of l = 0.6n, an angle of 30◦ in
Fig. 6 corresponds to an angle of 150◦ here. A comparison of the two
cases l = −0.6n and 180 − θz (l = 0.6n) reveals very good agree-
ment. This clearly indicates that the direction of angular momentum
plays a role in the asymmetry.

angle and l . Again, we repeat these calculations for different
angles of rotation and different magnitudes of the angular
momentums |L1| and |L2|.

Consider the initial configuration of Frisbee type (see
Fig. 6). For l = 0.2n, the average value of the LRL scalar
increases from −1.910 ± 0.005 a.u. at 0◦ to a maximum value
of 0.955 ± 0.005 a.u. at 90◦, only to revert to the value of
−1.910 ± 0.005 a.u. at 180◦. There appears to be a positive
correlation between the ionization cross section and the mod-
ulus of the LRL scalar �. The average LRL scalar exhibits
similar behavior for other l values, except that the average
LRL scalar decreases with an increase in l .

This observed positive correlation should be expected be-
cause the quantity LRL scalar � is proportional to the electric
dipole-dipole interaction energy (refer to Sec. III A). A large
absolute initial value for � implies a large interaction energy
between the two atoms when they are far apart. If � is an
adiabatic invariant until the atoms get close to each other (see
Sec. III A), then a large initial interaction energy implies a
large interaction energy when they are relatively close and
thus consequentially one might expect a large ionization cross
section.

An interesting observation from Fig. 6 is that there exists an
asymmetry about θz = 90◦ for intermediate values of angular
momentum. This is easily noticeable for l = 0.6n. Intuitively,
one might expect a symmetry because of how the relative
orientations of the Laplace-Runge-Lenz vectors between the
two atoms remain unchanged for the two rotation angles θz

and 180 − θz. A supporting argument for this expectation is
the fact that the LRL scalar � is found to be symmetric about
90◦. However, a careful analysis reveals that this symmetry
is broken by the direction of the angular momentum. A cal-
culation identical to the one in Fig. 6 for l = 0.6n but with
the direction of angular momentum reversed verifies this (see
Fig. 7). Interestingly, a similar asymmetry was found to exist
in ion–Rydberg-atom collisions [37].
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FIG. 8. Plot of the scaled ionization cross section as a function of
rotation angle about the x axis, for the initial cymbal-type orientation.
Each point is a result of 10 000 Monte Carlo runs. The error bars
indicate the standard deviation in the cross section. Here the rotation
about the x axis changes the direction of Laplace-Runge-Lenz vec-
tors but preserves the direction of angular momentum. It should be
noted that this rotation does not appreciably change the LRL scalar �

because for this configuration R̂ remains largely perpendicular to A1

and A2. The points with the same initial angular momentum l have
been connected to serve as a visual cue.

For the initial cymbal-type configuration, the rotation about
the x axis changes the direction of the Laplace-Runge-Lenz
vectors; however, it does not change the value of the LRL
scalar �. The results from the calculation (see Fig. 8) for the
ionization cross section indicate that for a given magnitude
of angular momentum l , the cross section remains a constant
with this rotation. This is expected because of symmetry as
the rotation still preserves the relative orientation of the two
atoms and is equivalent to merely observing the collision from
a different viewing angle. This result is consistent with the ear-
lier observation that the ionization cross section is positively
correlated with the modulus of the LRL scalar �.

C. Exchange ionization

Here we focus exclusively on exchange ionization, which
is distinct from simple ionization. By simple ionization we
refer to those collisions in which the atom that loses the
electron finally ends up being ionized after they pass each
other. This is different from exchange ionization where atom
1 (2) initially loses its electron but captures the electron from
atom 2 (1) and atom 2 (1) ends up being ionized. Atom 1 (2)
however departs with electron 2 (1). Note that the procedure
described in Sec. II counts all possible ionizations including
exchange ionizations.

Exchange ionizations can be exclusively counted by run-
ning every Monte Carlo run until the Rydberg atoms pass each
other and then classifying the ionization that may occur as
an exchange ionization if the distance between the nucleus of
atom 1 (2) and electron 2 (1) is within 2RRyd. This restriction
has been chosen by measuring the final distances between the
exchanged electron and the nucleus across multiple runs and
ensuring that all exchanges are included. We can calculate
the exchange ionization cross section from the corresponding
probability by using the same equation used to determine the
total ionization cross section [Eq. (4)].
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These calculations reveal the following: For the initial
Frisbee-type orientation with l = n, we get a scaled exchange
ionization cross section of 1.16 ± 0.02. For reference, the
scaled total ionization cross section for the same case is
2.23 ± 0.03. This indicates that exchange ionization con-
tributes to as much as 50% of the total ionizations. The
calculations show that the exchange ionization also increases
with a decrease in the magnitude of the orbital angular mo-
mentum of the electrons analogous to the total ionization cross
section. This can be interpreted using the same argument for
why circular orbits are more stable (see Sec. III B 1). As the
orbits become more elliptical their outer turning point dis-
tances increase and consequentially they can be more easily
captured by the other atom and also are more likely to be
the reason for the ionization of the other electron. This is
supported by the fact that single collisional run calculations
indicate that the capture and the ionization occur relatively at
the same time.

While the identical nature of electrons makes it difficult to
study exchange ionization experimentally, one way it can be
studied is by creating atom 1 with the valence electron in a
spin-up state and atom 2 with the valence electron in a spin-
down state. This way we have effectively labeled the electrons
and can in principle track their final states.

IV. CONCLUSION

We defined a quantity called the LRL scalar � and dis-
cussed how the fluctuations in this quantity were much lower
than the fluctuations in the individual Laplace-Runge-Lenz
vectors A1 and A2 of the electrons. We studied the dependence
of the ionization cross section on the direction and the magni-
tude of the orbital angular momentum of the electron and the
direction of the Laplace-Runge-Lenz vectors of the electrons.

These calculations revealed the following. First, the ion-
ization cross sections exhibited positive correlations with the
modulus of the LRL scalar [Eq. (7)]. The underlying reason
is that the electric dipole-dipole interaction energy is pro-
portional to the LRL scalar at large atom separations and
therefore the ionization cross section would increase with the
interaction. Second, the Rydberg atoms with highly elliptical
orbits (small l) had higher ionization cross sections relative
to Rydberg atoms with circular orbits (l = n), implying that
circular orbits were significantly more stable to collisional
ionization. Third, as the magnitude of the angular momentum
was increased (l → n), the initial cymbal-type configuration
for the atoms exhibited significantly lower ionization cross
sections (lower by a factor of ∼2–3 for l = n) than that of the
Frisbee type. This was interpreted in terms of the tendency of
the Laplace-Runge-Lenz vectors to become antiparallel as the
atoms approach each other.

Finally, exchange ionization was studied and its depen-
dence on the magnitude of angular momentum was found to
be similar to that of the total ionization cross section. The cal-
culations indicated that the exchange ionizations contributed
to about 50% of the total ionizations.

These results indicate several ways in which the stability
of Rydberg atoms against collisional ionization can be sig-
nificantly improved. The lowest ionization cross section is
achieved for the case of circular orbits and when the relative
orientation of the two atoms is of cymbal type.
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