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Abstract
A numerical time-dependent quantum mechanical approach was developed previously for
simulating the process of photoionization followed by Auger decay for cases where the
photoelectron energy is not very large; the method accurately calculates the interaction between
the two active electrons, but simplifies their interaction with the core electrons. More established
theoretical methods, which take account of postcollision interaction effects, allow an accurate
description of this process when the photoelectron energy is not too low. We demonstrate that
using the time-dependent method (although with some simplifications that are needed for its
numerical implementation) for low energy photoelectrons and more established methods for
higher energy allows accurate calculations for nearly all possible combinations of electron
energy. This is confirmed by performing calculations of the photoelectron energy and angular
distributions for the 1 s photoionization of Ne, with a subsequent KLL Auger transition. By
computing the energy and angular distributions for energies where the two groups of methods
should agree and where they should disagree, we demonstrate their consistency and range of
accuracy. For the regions where the methods disagree, we discuss the reasons for any
discrepancies and the trends in the differences. In addition, some of our calculations are
compared with existing experimental data for the same system. The agreement found in the
comparison confirms the reliability of the theoretical approaches.
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1. Introduction

The phenomenon of photoionization followed by Auger
decay has been extensively studied in the past few decades,
both theoretically [1–21] and experimentally [20, 22–34].
This is an interesting system to study for several reasons.
Firstly, the Auger decay distorts the photoelectron energy
distribution. The energy distribution becomes broader, and
the maximum decreases and is shifted to smaller energy
because of the abrupt increase in the ionʼs charge upon the
Auger decay occurring. This phenomenon is one example of a
postcollision interaction (PCI) effect [7]. PCI implies taking
account of an interaction between the photoelectron, the
Auger electron and the ion field which varies during the

Auger decay. This system is also interesting because the
strong interaction between the two ionized electrons distorts
the distribution of the angle between the two ionized elec-
trons. The two electrons interact with each other strongly,
particularly when the electron emitted later in time has greater
energy and, thus, must pass the electron emitted earlier. A
third reason for interest is that the photoelectron which has
been ionized may be recaptured to a bound state of the ion
due to the PCI effect [35–44]. Recapture takes place only for
low photoelectron energy.

In earlier studies, various two-body models, which
include a classical model [8], a ‘shake-down’ model [9, 10], a
semiclassical model [11, 12], a quasimolecular adiabatic
model [13] and a quantum mechanical model [14–16], have
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been used to describe the interaction of the photoelectron with
the ion field. Later, other models were used to approximately
include the presence of a third particle—an Auger electron.
Ogurtsov proposed a new version of a classical model for
dealing with cases where the energies of all the electrons are
comparable [17]. Junya Mizuno and co-workers studied this
problem by solving the classical Coulomb three-body pro-
blem [18]. The Niehaus semiclassical model was reformu-
lated in [19], to take into account the time that it takes for the
fast Auger electron to overtake the slow electron. The same
effect was considered quantum mechanically in
papers [45, 46].

Another group of quantum mechanical approaches
[3, 4, 6] consider the problem as a three-body problem and
take into account the Coulomb interactions between three
charged particles: two emitted electrons and a receding ion.
These models are applied widely to study PCI effects. Fol-
lowing convention, we refer to them as the SSE (stationary
Schrödinger equation) approach models because they are
based on the solution of the SSE. The SSE approach allows
one to obtain the PCI distorted angle-dependent cross
sections. In this paper we select the three most common
models within the SSE approach, to investigate: the eikonal
approximation [3]; the eikonal approximation with an exact
account taken of the electron–electron interaction [4]; and the
semiclassical approximation [6]. The three models have been
demonstrated to work well in calculating the energy dis-
tribution over a wide energy region, and one of the three—the
eikonal approximation with an exact account taken of the
electron–electron interaction—has been found to yield proper
calculations of the angular distribution, except for cases with
low photoelectron energy.

As with any quantum mechanical three-body problem,
the SSE approach has a limitation arising from the approx-
imate consideration for some of the interactions between each
pair of the particles. This approximation is more accurate
when the photoelectron is energetic, but has larger uncer-
tainties in systems with low photoelectron energy, and it is
poorer if the Auger electron energy is also low. So an
approach that can take account of all of the interactions more
precisely is needed for this energy region. The approach
developed in [1, 2, 47] meets this requirement. It is based on
the numerical solution of the time-dependent Schrödinger
equation (this is the TDSE approach), free from any physical
simplification in interactions between the emitted particles
and restricted mainly by the implementation of numerical
methods. The aim of this paper is to check the applicability of
this recently developed approach [1, 2, 47] (particularly to
show its use in the low photoelectron energy region) and test
its consistency with the SSE approach. To achieve this aim,
we compare the two most important physical quantities in
studying the PCI effects: the photoelectron energy and
angular distributions, calculated by the TDSE and SSE
approaches. Our comparisons are for both low and higher
photoelectron energies and we also compare some of our
calculations in the low photoelectron energy region with
experimental data. Note that carrying out the calculations
within the TDSE method and using the numerical

implementation of the method discussed, we have restricted
ourselves to some approximations which simplify the calcu-
lation dramatically and will be discussed in sections 2 and 4.
Thus, by combining the TDSE and SSE approaches, the PCI
effects can be accurately calculated over an extended range,
including the near threshold photoelectron energies.

The energy and angular distributions are mainly deter-
mined by three parameters; these are the excess energy of the
incident photon above the threshold which is the photoelec-
tron energy, E1, the Auger electron energy, E2, and the energy
width of the inner vacancy, Γ. E1 can be adjusted by changing
the photon energy, the energy released by the electron which
fills the vacancy determines E2, and Γ is proportional to the
inverse of the inner vacancy lifetime. So experimentally, we
can choose different values for E1 while E2 and Γ are deter-
mined by the atomic species. We perform calculations for
nine cases in our paper: six of them are real cases for the
system of Ne 1 s photoionization followed by KLL Auger
decay (where Γ = 0.01 and E2 = 29.4) and the other three are
fictitious cases which have no direct experimental sig-
nificance but will be very helpful in testing the accuracy of the
TDSE approach and highlighting its advantage at low pho-
toelectron energy.

The paper is organized as follows: in section 2 we
introduce the TDSE approach briefly; the SSE approach
models are discussed in section 3; in section 4 we compare
the results calculated by using the TDSE and SSE approaches,
and we also compare some of these theoretical results with
experimental data; the last section contains our conclusion.

Atomic units are used throughout unless stated
otherwise.

2. A brief introduction to the TDSE approach

The TDSE approach is based on the time-dependent close
coupling (TDCC) method [47–49]. Modifications to this
TDCC method that account for an Auger decay of the inner
vacancy were introduced in detail in [1, 2]. This approach
allows us to obtain the two-electron wavefunction in real time
and we can extract different physical properties from it. This
section gives a brief review of this approach.

This TDSE approach is based on the solution of two
equations. Equation (1) describes the propagation of the
photoelectron before the Auger decay. The photoelectronʼs
wavefunction before the Auger decay will be used as part of
the source term of the total wavefunction. This function can
be obtained from a time-independent inhomogeneous
equation:

⎜ ⎟⎛
⎝

⎞
⎠

Γ ϕ+ − =αE H Fi
2

D , (1)g1 1

where E1 is the photoelectron energy, ϕD g describes the
photon absorption of the electron, F1 is the photoelectron
wavefunction, αH is the Hamiltonian of the photoelectron
before the Auger decay and Γ is the width of the inner
vacancy. The potential in αH is taken as− r1 and ϕD g is taken
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to be a simple short-range function in the calculation; these
two approximations are justified for the case studied here
because the important interactions take place far outside the
core region. Γ is proportional to the inverse of the inner
vacancyʼs lifetime. The wavefunction of the photoelectron,
F1, has the form of a damped continuum wave at energy E1;
the spatial extent of F1 increases when E1 increases or Γ
decreases.

Equation (2) is the time-dependent Schrödinger equation
with a source term for the two ionized electrons after the
Auger decay. The two-electron wavefunction Λ tr r( , , )1 2 is
the solution of

Λ Λ∂
∂

− =
t

H S t F r F ri ( ) ( ) ( ), (2)1 1 2 2

where S(t) is the strength of the source, F r( )2 2 is the source
term for the Auger electron, and H is the total Hamiltonian.
We use = + −S t t t( ) 1 {1 exp [10(1 5 )]}f , where tf is the
final time of the calculation [2]; this form is chosen to make S
(t) start at ∼0 at t = 0 and smoothly transit to 1 well before tf.

There are three parts in H

= + +H H H H , (3)1 2 3

where H1 and H2 are the Hamiltonian for the photoelectron
and the Auger electron respectively, and =H r13 12 is the
interaction between the two ionized electrons. The potential in
H1 and H2 is taken to be − r2 , because the ion is doubly
charged after the Auger decay; this simple form for the
potential works well because the important interactions take
place well outside the core.

The two-electron wavefunction Λ can be expressed as

∑ ∑Λ Ω Ω= ( ) ( )R r r t C Y Y( , , ) (4)
ℓ ℓ

ℓ ℓ
LS

m m

m m
ℓ ℓ L

ℓ m ℓ m

,

1 2

,
0 1 2

1 2

1 2

1 2

1 2
1 2

1 1 2 2

where Cm m m
ℓ ℓ ℓ

1 2 3
1 2 3 is a Clebsch–Gordan coefficient, Ω is the solid

angle and ΩY ( )ℓm is a spherical harmonic. In this paper we
will consider the case where the two electrons have the same
angular momentum: = =ℓ ℓ ℓ1 2 . (The reason will be given in
section 4 when we discuss the limitations and approximations
of the TDSE approach.) Then equation (4) is simplified as

∑Λ
π

θ= − ( )R r r t Y
( 1)

4
( , , ) cos (5)

ℓ

ℓ

ℓ ℓ1 2 0 12

where θ12 is the relative angle between the two ionized
electrons [1]. Gives the details for how to numerically solve
equation (2) and obtain the total wavefunction Λ.

We can extract different physical properties from the
two-electron wavefunction Λ. Obviously, the time-dependent
position of each electron can be obtained from Λ. At early
time, the Auger electron travels behind the photoelectron.
After a certain time, the Auger electron will pass the photo-
electron and continue ahead of it, perhaps changing the
direction of the photoelectron.

With the total wave-function Λ, the energy distribution ϵPi

can be calculated:

∫ ∫ϵ ϵ ϕ ϕ= ϵ ϵA r r r r R r r t( , ) d d ( ) ( ) ( , , ) (6)ℓ ℓ ℓ ℓ1 2 1 2 * 1 * 2 1 21 2

∫ ∑ϵ ϵ ϵ=ϵ
=

P Ad ( , ) , (7)j

ℓ

ℓ

ℓ

0

1 2
2

i

max

where i,j =1,2 and ≠i j (1 and 2 correspond to the photo-
electron and Auger electron, respectively), ϵi is the always
positive energy, ϵPi is the energy distribution, and ϕϵ r( )ℓ ii

is
the electron continuum eigenwavefunction; for the photo-
electron, the continuum wave is evaluated in a potential of
− r2 while for the Auger electron the potential is − r1 .

We can also calculate the angular distribution of the
electrons with positive energy. The angle of interest is the
relative angle between the two electrons. The angular dis-
tribution, θD (cos )k 12 , can be calculated

∫ ∫ ∑ϵ ϵ θ ϵ ϵ= −
=

( )D Y Ad d ( 1) * cos ( , ) . (8)k

ℓ

ℓ
ℓ

ℓ ℓ1 2

0

0 12 1 2

2
max

The angular momentum distribution can be calculated as
well

∫ ∫= ( )P r r R r r td d , , . (9)ℓ ℓ1 2 1 2
2

Figure 1 displays the angular momentum distribution at dif-
ferent times. The distribution is concentrated at =ℓ 0 at early
times. With the increase of time, the probability for larger
angular momentum increases because the interaction between
the two electrons becomes stronger. Pℓ needs to become small
for several ℓ values before ℓmax.

We use all of the physical quantities to check the con-
vergence of the calculation. For example we can check
whether the calculation converges with respect to the time
step, the spatial grid width, the energy grid width and the
number of angular momenta. Usually larger energy requires a
smaller spatial step to achieve convergence because the spa-
tial grid has to be much less than the wavelength of the Auger
electron. We also find that cases with a stronger interaction
require more angular momenta. The number of angular

Figure 1. The angular momentum distribution at different times. The
wavefunction is mostly at =ℓ 0 at early time because the two
ionized electrons start with zero angular momentum. At later times,
the angular momentum of each electron can increase due to the
electron–electron interaction. After t = 423.36, the Auger electron
passes the photoelectron and thus the angular momentum distribu-
tion stays the same.
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momenta is 70 for the case Γ= = =E E( 0.3, 1.0, 0.02)1 2 ,
to get converged results, and for other cases such as

Γ= = =E E( 0.3, 29.4, 0.01)1 2 , 15 are sufficient for the
convergence. The interaction between the two electrons is
stronger when they have comparable velocities. Also, we can
check whether these quantities are converged with respect to
time. We extend the calculation time tf until the physical
quantities are no longer changing. Usually, we can obtain
converged photoelectron energy and angular momentum
distributions at early times in the simulation. It requires more
time for the angular and Auger electron energy distributions
to converge.

The advantage of the TDSE approach lies in its accuracy
in calculating different physical quantities. This is a fully
quantum mechanical method, and all of the interactions
between each pair of charged particles are considered without
any simplification, which is very important when the two
emitted electrons propagate with low energies [2]. Displays
the angular distribution comparison between the calculation
and experimental data for the system of neon 1 s photo-
ionization followed by Auger decay with low photoelectron
energy but high Auger electron energy. The good agreement
in the comparison demonstrates the validity of this theoretical
method in the low photoelectron energy region. Experimental
data for cases with both the photoelectron and Auger electron
in the low energy region are needed to demonstrate the
importance of considering all the interactions precisely.

3. Models for the SSE approach

We will compare results of calculations of the angular and the
energy distributions within the TDSE approach with the ones
in the framework of the SSE approach. The models that have
taken into account the interaction between the receding ion,
the photoelectron and the Auger electron and were evaluated
within the SSE approach are the eikonal approximation (EIA)
[3], the eikonal approach with account taken of the exact
interaction between the emitting electrons (EIAEIE) [3, 5],
and the semiclassical approximation (SCA) [6]. All of these
models present the amplitude of the process as proportional to
the integral of overlap between the photoelectron wavefunc-
tions calculated before and after the Auger decay:

ψ ψ∼ ′εA (10)k

where ψ ⃗r( )k is the wavefunction of the photoelectron with

momentum ⃗k moving in the field of the doubly charged ion
and the Auger electron, and ψ ′ ⃗ε r( ) (the F1 in the TDSE
approach) is the photoelectron wavefunction moving in the
field of the singly charged ion with the complex energy
ε Γ− i 2. These functions are calculated via the solution of
the stationary Schrödinger equations.

Evaluating an amplitude within the EIA, it is assumed
that the interaction of each pair of charged particles (the
photoelectron with the ion and the photoelectron with the
Auger electron) occurs mainly at large distances where the
kinetic energy is much greater than the potential energy of the

interacting particles, ≫W Wkin pot. This condition leads to the
limitation of the energies of the slow photoelectron, E1:

Γ≫ ( )E E 2 (11)1
2 3

0
1 3

where E0 is the atomic unit of energy. On the other hand, the
case of similar energies for the photoelectron and Auger
electron when they are emitted at small relative angles vio-
lates the condition of the applicability of the EIA. Note that
the inaccurate account of the interaction of the electrons leads
to impossibility of the calculation of the total PCI distortion
factor for the angular distribution of the emitted electrons
(when it is integrated over all the energies of the emitted
electrons) [5].

The EIA was extended to the case where the emitted
electrons have comparable velocities and are ejected at small
relative angles. In this case, the interaction between the
photoelectron and Auger electron has to be taken into account
more precisely. This has been done within the EIAEIE [4],
where the movement of the photoelectron is considered in the
EIA, but the Coulomb interaction between the emitted elec-
trons is taken into account exactly within the quantum
mechanical approach. The EIAEIE allows one to calculate the
energy and angular distributions of the emitted electrons for a
wide range of energies and angles for the ejection of the
photoelectron and Auger electron, except for the cases where
the condition in equation (11) breaks down.

The semiclassical approximation, SCA, uses the WKB
(Wentzel–Kramers–Brillouin) wavefunctions for calculating
the overlap integral and leads also to the angle-dependent PCI
distortion cross section [6]. It can be applied to the case of
low energy photoelectron ejection which lies beyond the
condition in equation (11). However, the energy distribution
calculation within the SCA method is faced with another
restriction, which is

< − <v v v0 1, (12)1 2 1

where v1, v2 are the velocities of the photoelectron and Auger
electron, respectively. If the relative velocity of the emitted
electrons is small and they lie in the region where

− >v v v| | 11 2 1 , the SCA approach cannot be used. This
restriction is connected to the fact that the point of the sta-
tionary phase (this method is used for evaluation of the
overlap integral) in the region considered is going to infinity
and the stationary phase method breaks down.

An advantage of the SSE approach is the fact that all
three models considered here give analytical expressions for
the amplitudes and cross sections that can be used for analysis
and calculation of the energy and angular distributions over a
wide region of energies and angles of electron emission. A
numerical implementation of these formulas is straightfor-
ward and reduces to the calculation of some special functions
in the complex plane. Note that calculations within the
models considered for the SSE approach carried out in the
region of their applicability give results that agree quite well
with measurements both of energy distributions (see e.g. [20])
and of angular distributions [25, 26, 30]. So the line shapes of
the 2.7 eV 4d photoelectrons in Xe (Γ = 110 meV) calculated
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within the EIA approach agree very well with the measured
energy distributions in papers [20] and [50]. Also the energy
distributions of the 2p photoelectrons in Ar (Γ = 118 meV)
calculated by using the EIA model agree well with the mea-
sured ones for the excess photon energies 3 eV, 9 eV and
12 eV but disagree for the excess energy 0.85 eV [33].
However, the calculation within the SCA approach [21]
shows good agreement with experimental data in this case.
The angle-dependent energy distributions of the 30.5 eV
electrons in the Xe 4d ionization followed by the N5O23O23

Auger decay were measured in coincidence with the Auger
electrons [25, 26] and show good agreement with the calcu-
lation within the EIA approach. The angular distribution of
the 17 eV 4d photoelectrons in Xe was measured in coin-
cidence with the 30 eV N5O23O23 Auger electrons [30] and
shows good agreement with the calculations within the
EIAEIE. The angular distribution of the 13.5 eV 2 s photo-
electrons emitted due to the resonance photoionization in
neon and followed by Auger decay

→ ++ +e s p P p S e s p D e(N *(2 2 ( )3 ( )) N (2 2 ( )) A
5 3 2 2 2 4 1 ,

where the Auger electron has similar energy to the photo-
electron) was calculated by using the EIAEIE in [28], and the
agreement between the calculations and measurements is
quite reasonable.

4. Comparison between the results from the TDSE
and SSE approaches

In this section, we compare the photoelectron energies and
angular distributions for several cases calculated by using the
two different quantum mechanical approaches: TDSE and
SSE. This comparison will highlight the agreement and dis-
agreement of results obtained by various methods. Note that
some approximations are made in the TDSE approaches. For
example, we use −Z r as the potential in the Hamiltonian.
This approximation is accurate when the photoelectron travels
far from the nucleus before it interacts with the Auger elec-
tron. For very low photoelectron energy ( ≈E 01 ), the
approximation will not be as accurate. We use a different
potential, − + − −Z Z r r r( (10 ) exp ( ))a (ra is atomic
radius, and it is 0.71 for neon) in the calculation and find that
the results with this potential are the same as those with the
potential −Z r except for the situation when the initial pho-
toelectron energy is very close to 0. Another approximation is
that in which the expressions for ϕD g in equation (1) and
F r( )2 2 in equation (2) are replaced by two simple short-range
functions. As with the simple approximation to the Hamil-
tonian, this approximation breaks down for 0 initial photo-
electron energy or large Γ. We also assume that both ionized
electrons start with 0 angular momentum. This approximation
is not necessary, but it simplifies the calculation dramatically
and allows us to use the available computer capacities and to
carry out the calculation in reasonable time. This restriction
means that cases with nonzero total angular momentum L are
not treated in the current TDSE calculations. However, we
expect the general trends for other total angular momenta to

be similar to those in this paper because the electrons are at
large distance when the interaction occurs. We plan to per-
form calculations with different total angular momentum in
future work by using more refined numerical methods. The
main limitation of the TDSE approach is the computer
capacity. If an electronʼs energy is larger, a greater number of
points for the radial grid is needed to get a converged result; if
two electrons have comparable velocities, more angular
momenta are required in the calculation. So the TDSE
approach breaks down when both of the ionized electrons
have very large velocities or have large and comparable
velocities.

The SSE approach contains three different approxima-
tions for calculating the energy distribution. The first is the
EIA which works for cases where the two ionized electrons
have large and different velocities and the relative angle
between them is not too small. When the two ionized elec-
trons have large and comparable velocities or the Auger
electron is launched near the direction of the photoelectron,
the second approximation, the EIAEIE, should be applied.
The condition in equation (11) can be used to test whether the
EIA or the EIAEIE approximation is accurate. The third
approximation is the SCA, which is accurate for low excess
photoelectron energy. The condition in equation (12) has to
be satisfied for this semiclassical approximation. In this paper,
only the EIAEIE approximation is applied to calculate the
angular distribution. The EIA fails in the calculation of the
angular distribution because the interaction between the two
ionized electrons is the main reason for the distortion in the
angular distribution [5]; the EIA is used when three particles
are far apart and their trajectories are a straight line, so the
angular distribution calculated by using the EIA has little PCI
distortion. The reason for not calculating the angular dis-
tribution using the SCA is similar, because the interaction
between the two ionized electrons is not fully considered in
this approximation either. The PCI distortion factor for the
angular distribution given by the EIA approach was shown to
be strongly equal to 1 (see [5]), and we have a similar con-
clusion for the SCA, which has been checked by direct
numerical calculation.

For the system studied here, a close comparison between
theoretical methods, and with experiment, is critical for
developing a full picture of the dynamics. In the following
subsections we compare a range of theoretical calculations. At
the end of each section we also compare with available
experimental data.

4.1. Comparison of the photo-electron energy distributions

First we examine the photoelectron energy distributions. Four
typical cases are selected for discussing the similarity and
distinction of results obtained by various approaches. We will
also investigate the differences between the results, relating
them to the restrictions of these approaches.

The first two cases are Case 1A
Γ= = =E E( 0.0735, 2.0, 0.01)1 2 and Case 2A

Γ= = =E E( 0.1, 29.4, 0.01)1 2 . For Cases 1A and 2A, the
right-hand side of the condition in equation (11) is
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≈0. 01 (1 2) 0.03682 3 1 3 . E1=0.0735 in Case 1A and 0.1 in
Case 2A. Neither of the two values is much larger than
0.0368. So the EIA and the EIAEIE approximation should not
work well. However, the value of −v v v| |1 2 1 in the condition
in equation (12) is approximately 0.161–0.237 for Case 1A
and 0.055–0.062 for Case 2A. The two ranges are both
between 0 and 1, and the SCA should give accurate results.
As shown in figure 2, the PCI distortions in the EIA and in the
EIAEIE approximation are much larger than those in the
TDSE approach and the SCA: the shift of the distribution
maximum is larger and the left wing of the distribution
broadens strongly. This is connected with the violation of the
condition in equation (11) in the near threshold region and
with underestimation of the potential energy. It leads to a
stronger influence of the ionic field variation on the photo-
electron propagation, and consequently on the PCI distortion.
As the photoelectron energy decreases, the discrepancy
between the calculations increases. The disagreement
between the results within the EIA and within the SCA was
first noted in [6]. For both cases, the results obtained with the
SCA agree much better with those from the TDSE approach.
The agreement in Case 2A is better than that in Case 1A, and
the discrepancy lies in the left wing of the distribution in both
cases. These small disagreements can be connected with the
approximations which were used in the evaluation of the SCA
[6]. The results obtained using the EIA and using the EIAEIE
approximation almost coincide in these two cases. Because
the velocities of the two electrons are not very close to each
other, whether one considers the interaction between the two
emitted electrons exactly or not makes little difference to the
results.

The other two cases selected for discussing the photo-
electron energy are Case 3A Γ= = =E E( 0.5, 29.4, 0.01)1 2

and Case 4A Γ= = =E E( 0.3, 1.0, 0.02)1 2 . The condition
in equation (11) is satisfied for both cases: ≫0.5 0.0368 for
Case 3A and ≫0.3 0.0585 for Case 4A. The value of

−v v v| |1 2 1 is approximately 0.115–0.150 for Case 3A and
0.354–1.211 for Case 4A. Case 3A fully satisfies the condi-
tion in equation (12) but Case 4A fails for some angles
( θ< <0.913 cos 112 ). In Case 3A (the right part of figure 3),
the three different SSE approximations give the same pho-
toelectron energy distribution because both the conditions in
equation (11) and those in equation (12) are satisfied, and they
agree quite well with those from the TDSE approach. In Case
4A (the left part of figure 3), the four results are also close
although none of the SSE approximations agree perfectly with
the TDSE result. The result from the TDSE approach agrees
best with that obtained using the EIAEIE approximation
because the condition in equation (12) is not satisfied for
some angles and the two electrons have comparable large
velocities. The small difference between the TDSE approach
and the EIAEIE approximation results is also found in the left
wing because the condition in equation (11) is not satisfied in
the low energy range.

Our theoretical findings can be verified by the available
measurements [32]. Figure 4 presents the theoretical and
experimental energy distribution comparison for the case

Γ= = =E E( 0.05, 29.4, 0.01)1 2 . The results calculated
within the EIA (the thin solid line) and within the EIAEIE
approximation (the dashed line) coincide with each other, but
significantly deviate from the experimental data [32] (sym-
bolized by dots in figure 4). This is what we expected,
because this case violates the condition in equation (11) (E1 is
comparable with the value ≈0. 01 (1 2) 0.03682 3 1 3 ). How-
ever, the condition of equation (12) is satisfied (the value of

−v v v| |1 2 1 is 0.0396–0.043), and the result calculated using
the SCA should be more accurate. The results from the TDSE
method (the thick solid line) and obtained using the SCA (the
dot–dashed line) agree with each other. They also fit well with
the experimental data, and the agreement in the low energy
region is better than that in the higher energy region. The

Figure 2. The photoelectron energy distribution comparison for
different approaches for two cases. The left curves are for Case 1A
( Γ= = =E E0.0735, 2.0, 0.011 2 ), and the right curves are for Case
2A ( Γ= = =E E0.1, 29.4, 0.011 2 ). For both cases the dotted line is
for the calculation obtained using the EIA of the SSE approach, the
dashed line is for the EIAEIE approximation, the dot–dashed line is
for the SCA and the solid line is the result obtained using the TDSE
approach.

Figure 3. The photoelectron energy distribution comparison for
different approaches for two cases. The left curves are for Case 4A
( Γ= = =E E0.3, 1.0, 0.021 2 ), and the right curves are for Case
3A ( Γ= = =E E0.5, 29.4, 0.011 2 ). For both cases the dotted line is
for the calculation obtained using the EIA of the SSE approach, the
dashed line is for the EIAEIE approximation, the dot–dashed line is
for the SCA and the solid line is the result obtained using the TDSE
approach.
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difference between the experimental data and the SCA or the
TDSE curve may be caused by a yield of occasional electrons
(via the capture and re-emission of slow photoelectrons)
which are recorded experimentally but not included in the
calculations here. Another possible reason for this small
disagreement may be associated with the photon energy
resolution which is also not included in the calculation. For
the resolution of the electron spectrometer, we simulate this
function by the Gaussian with permanent FWHM = 170 meV
[32] for all energies of the calculation range. However, the
real experimental function may differ from the function that
we used and have a more complicated form. That is also a
possible reason for the disagreement.

4.2. Comparison of the angular distributions

To investigate the angular distribution, we selected cases
designed for comparing the TDSE approach and the EIAEIE
approximation. Any difference between the two approaches
should be related to the photoelectron energy E1 and the
Auger width Γ because of the condition in equation (11).
However, we found that the TDSE approach and the EIAEIE
gave closer results for larger Auger electron energy, which
suggests an approximation beyond that captured by the con-
dition in equation (11).

Cases with low excess photoelectron energy cannot
satisfy the condition in equation (11), so the angular dis-
tribution calculated by the EIAEIE and by the TDSE
approach should be expected to have a notable difference.
With the increase of the photoelectron energy, the agreement
between the two approaches becomes better. For cases with
low photoelectron energy, if the Auger electron energy is also
small, the agreement between the two methods is poorer, as
compared to cases with larger Auger electron energy. Figure 5
shows the comparison of the angular distribution for the three
cases. The solid lines are the results from the TDSE approach

and the dotted lines are the results from the SSE approach.
Case 2B ( Γ= = =E E0.0735, 29.4, 0.011 2 ) has the same Γ
and E2 as Case 3B ( Γ= = =E E0.05, 29.4, 0.011 2 ), but a
different E1. For these two cases, the test for the condition in
equation (11) is ≫0.0735 0.0368 for Case 2B and

≫0.05 0.0368 for Case 3B. Neither of these satisfies the
condition, and as a result the SSE approach does not agree
very well with the TDSE approach. Case 2B has the same Γ
and E1 as Case 1B ( Γ= = =E E0.0735, 2, 0.011 2 ), but a
quite different E2. The condition in equation (11) fails in both
cases. However, the error in Case 1B is much larger than that
in Case 2B because the Auger energy is much smaller.

One reason for this phenomenon may be that the dis-
tortion in the angular distribution is mainly caused by the
electron–electron interaction which has been considered
exactly in the EIAEIE approximation. The interaction
between the ion and photoelectron or Auger electron also
plays some role in the angular distribution. When the Auger
electron has very high energy, the eikonal approximation for
the ion–Auger electron interaction used in the EIAEIE
approximation is valid, and causes little error. This is the
other possible reason for this phenomenon. Thus, we can
conclude that, unlike for the energy distribution case, the
angular distribution calculated by using the EIAEIE approx-
imation can be more accurate or close to the TDSE result in a
case with low photoelectron energy (i.e. where the condition
in equation (11) is not satisfied) but very high Auger electron
energy.

For cases with high photoelectron energy, the agreement
between the TDSE approach and the SSE approach is better.
This is what we expect, because the condition in equation (11)
is satisfied here, and the EIAEIE approximation works well.
We divide this energy region into two scenarios. When the
two electrons have quite different energies, the disagreement
between the two methods lies in the small angle region, which
can be shortened if we increase the photoelectron energy.

Figure 4. The photoelectron energy distribution comparison for
theoretical calculations and experimental data for the case of 1 s
photoionization of Ne ( Γ= = =E E0.05, 29.4, 0.011 2 ). The dotted
line is for the experimental measurement extracted from [32], the
thin solid line is for the calculation obtained using the EIA of the
SSE approach, the dashed line is for the EIAEIE approximation, the
dot–dashed line is for the SCA and the thick solid line is the result
from the TDSE approach.

Figure 5. The angular distribution comparison for the two
approaches for three cases. The solid lines for the three cases show
the calculations obtained using the TDSE approach, and the dotted
lines are for the SSE approach. Case 1B is ( =E 0.07351 , =E 2.02 ,
Γ = 0.01), Case 2B (shifted up by 0.25) is ( =E 0.07351 , =E 29.42 ,
Γ = 0.01) and Case 3B (shifted up by 0.5) is ( =E 0.051 , =E 29.42 ,
Γ = 0.01).
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figure 6 shows the angular distribution comparison for three
cases. They are Case 4B ( Γ= = =E E0.3, 29.4, 0.011 2 ),
Case 5B ( Γ= = =E E0.4, 29.4, 0.011 2 ) and Case 6B
( Γ= = =E E0.5, 29.4, 0.011 2 ). These three cases have the
same E2 and Γ but different E1. The E2 in all three cases is
much larger than E1. The right-hand side of the condition in
equation (11) is approximately 0.0368 for all three cases,
which means that the condition in equation (11) is fully
satisfied. So the two approaches agree better in the three
cases. The difference between the two approaches starts from

θ =cos 0.7412 in Case 4B, 0.80 in Case 5B and 0.85 in Case
6B. Case 6B has the smallest discrepancy angle range due to
its highest E1. It is unclear where the difference comes from
and which method works better for this situation; it may be
connected either with the limitation of adopting L = 0 in our
version of the TDSE approach or with inaccuracies of the
EIAEIE method in this region.

As for the second situation, when the two electrons have
comparable energies, the difference between the two
approaches lies in the position where the angular distribution
starts to decrease. The difference for this situation is mainly
caused by the inaccuracy of the EIAEIE approximation for
small photoelectron energy and by the range of the photo-
electron energies included in the consideration. We get such a
conclusion because the difference is smaller when we recal-
culate the angular distribution with narrower photoelectron
energy integration range (smaller photoelectron energy is
excluded in this range). Figure 7 shows the angular dis-
tribution comparison for the case

Γ= = =E E( 0.5, 2.0, 0.02)1 2 with two different photo-
electron energy integration ranges. Substituting values into
the condition in equation (11) gives ≫0.5 0.0585, which
indicates that the EIAEIE approximation should work well.
Agreement between the two methods is better when the
photoelectron energy integration range is narrow, 10–15 eV,
and the difference becomes larger when we integrate the

photoelectron energy from 6.2 to 18 eV because some low
photoelectron energies (after the Auger decay) do not satisfy
the condition in equation (11).

In the final part of the angular distribution investigation,
we select two cases (2B Γ= = =E E( 0.0735, 29.4, 0.01)1 2

and 3B Γ= = =E E( 0.05, 29.4, 0.01)1 2 ) in order to com-
pare the angular distributions calculated from theories and
that measured experimentally. The comparison for Case 2B
shown in figure 8 meets our expectation. The TDSE calcu-
lation (the solid line) agrees well with the experimental
measurement (the dotted line) [2]. Though the condition in
equation (11) is not satisfied in this case, the EIAEIE curve
(the dashed line) fits the experimental data nicely. One

Figure 6. The angular distribution comparison for the two
approaches for another three cases. The solid lines for the three cases
show the calculations obtained using the TDSE approach, and the
dotted lines are for the SSE approach. The two approaches agree
well. Case 4B is Γ= = =E E( 0.3, 29.4, 0.01)1 2 , Case 5B (shifted
up by 0.1) is Γ= = =E E( 0.4, 29.4, 0.01)1 2 and Case 6B (shifted
up by 0.2) is Γ= = =E E( 0.5, 29.4, 0.01)1 2 .

Figure 7. The angular distribution comparison for the two
approaches for the case Γ= = =E E( 0.5, 2.0, 0.02)1 2 with differ-
ent photoelectron energy integration ranges. The solid lines of the
ranges are for the calculation obtained using the TDSE approach,
and the dotted lines are for the SSE approach. The curves marked
‘Narrow range’ and ‘Full range’ correspond to the photoelectron
energy integration ranges 10–15 eV and 6.2–18 eV, respectively.

Figure 8. The angular distribution comparison for the theoretical
calculations and experimental data for 1 s photoionization of Ne. The
dotted lines show the experimental measurements from [2] (Case
2B) and [32] (Case 3B), the solid line is for the calculation obtained
using the TDSE approach, and the dashed line is for the SSE
approach. The error bars for the statistical inaccuracy are shown for a
few points for case 3B. Case 3B is ( =E 0.051 , =E 29.42 , Γ = 0.01);
Case 2B (shifted up by 0.3) is Γ= = =E E( 0.0735, 29.4, 0.01)1 2 .
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possible reason is that the inaccuracy of the angular dis-
tribution calculated by using the EIAEIE approximation is
small if the initial Auger electron energy is very high, which
has been discussed above. The other reason may be that the
integration range of the photoelectron energy for Case 2B is
0.5–2.5 eV; very low photoelectron energies are not included
in calculations, which reduces the error of the EIAEIE
approximation.

Generally, the theoretical calculations also agree with the
experimental data in the comparison for Case 3B displayed in
figure 8. Note that the integration range for the photoelectron
energy is 0.1–2.0 eV for the calculated curves, and the theo-
retical curves were convoluted with a Gaussian with a FWHM

of °2.2 [32]. One surprising result is that the deviation of the
results obtained by the TDSE method from the experimental
data (the dotted line) [32] is larger than that for the EIAEIE
calculation, although the TDSE and EIAEIE curves both
agree reasonably well with the measured dependence. This
unexpected phenomenon can be explained by two features.
Firstly, the interaction between the photoelectron and the
Auger electron, which is taken into account exactly in
EIAEIE calculations, is the main factor in determining the
shape of the angular distribution. Our calculation within the
EIAEIE neglects the capture of slow photoelectrons, which is
important at very low photoelectron energies, and could
influence the angular distribution under certain experimental
conditions (see, e.g., [40]). However the measurements [32]
do not satisfy these conditions and the EIAEIE results agree
quite well with the experimental data. Secondly, our calcu-
lations in this paper within the TDSE approach take into
account only the angular momentum L = 0 of the pair of
emitted electrons. However for the Ne 1 s case the other
momenta =L 1, 2, 3 can contribute to the electronʼs emis-
sion and slightly change the angular distribution.

5. Conclusion

In this paper, we performed calculations for different cases
within two groups of quantum mechanical approaches. After
comparing the calculated and measured photoelectron energy
and angular distributions, we made the following
generalizations.

For cases with low photoelectron energy, the TDSE
approach describes well both the photoelectron energy and
the angular distributions. The SCA for the SSE approach
gives a similar photoelectron energy distribution to the TDSE
approach if the condition for its applicability is satisfied. The
other two approximations of the SSE approach, the EIA and
the EIAEIE approximation, are not accurate for the energy
distribution because the condition for their applicability
usually cannot be satisfied in this energy region. The EIAEIE
approximation has less inaccuracy in its angular distribution
than its energy distribution if the Auger electron has very high
energy.

For cases with medium to high photoelectron energy, the
EIAEIE approximation of the SSE approach describes well

both the photoelectron energy and the angular distributions.
All the three models for the SSE approach give similar energy
distributions as long as the conditions for their applicability
are satisfied. The TDSE approach is suitable for use in cal-
culating both the photoelectron energy and the angular dis-
tributions in this energy region. The agreement between the
results from the two approaches is excellent for the photo-
electron energy distribution. For the angular distributions,
there are only small differences between the results from the
two methods. The TDSE approach may break down if both
electrons have high and comparable energies. In this case
larger numbers of angular momenta and radial mesh points
are required to get the converged results, requiring very large
computational resources.

For cases where both electrons have very high energies,
the SSE approach can be applied for both the energy and the
angular distributions, and the TDSE approach breaks down
because of the requirement for a huge number of points in the
calculation.

By considering an energy region where both methods are
applicable, it has been shown that, together, the TDSE and
SSE approaches cover almost all of the energy range for
which people might be interested in studying PCI effects. Our
theoretical methods are confirmed by the agreement with
measurements of the energy and angular distributions of the
1 s photoelectrons emitted from Ne. More precise agreement
of the results from the TDSE approach and measured angular
distributions can be reached both by including higher total
angular momenta in the calculation and by carrying out
measurements with less statistical inaccuracy.
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