PURDUE DEPARTMENT OF PHYSICS

Physics 42200 Waves & Oscillations

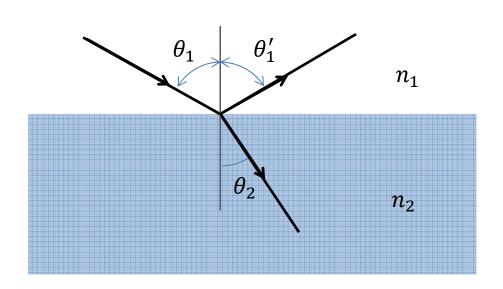
Lecture 29 – Geometric Optics

Spring 2013 Semester

Matthew Jones

- When the wavelength of light is much smaller than the dimensions of objects it interacts with, we can ignore its wave nature.
- Multiple paths by which light can reach a given point – phases are random (incoherent).
- We are generally not concerned with polarization.
- Treat light as rays propagating in straight lines

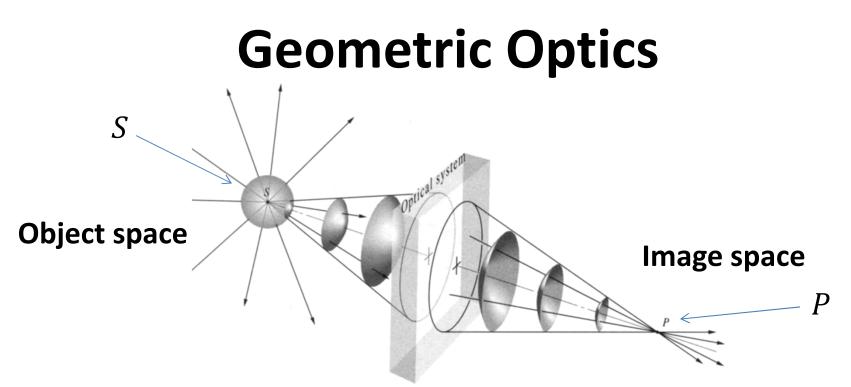
 Under these conditions, the only physical principles we need to describe the propagation of light are:



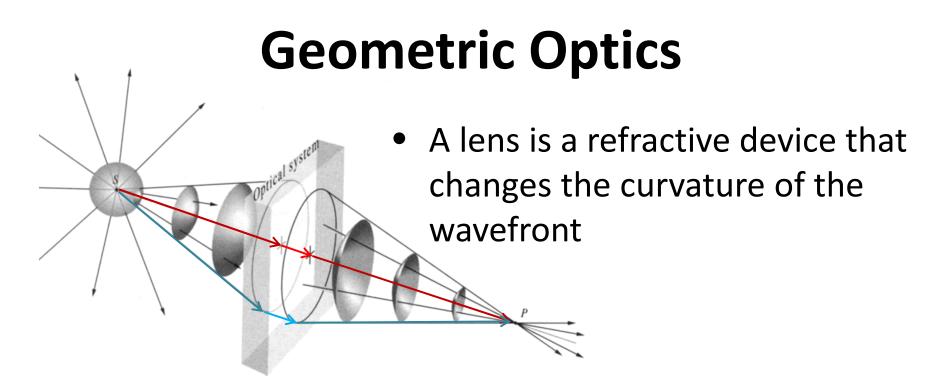
Reflection: $\theta'_1 = \theta_1$

Refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

- Each point on an illuminated surface is a source of spherical waves
 - Rays diverge from that point
 - We perceive an image as the collection of points from which the rays emerge
- An optical system can cause the rays to diverge from a different point
 - We perceive this point as an image of the original object



- A point from which a portion of the spherical wave diverges is a focus of the bundle of rays
- A point to which the portion of the spherical wave converges is also a focus of the bundle of rays
- The paths are reversible
- P and S are *conjugate points*



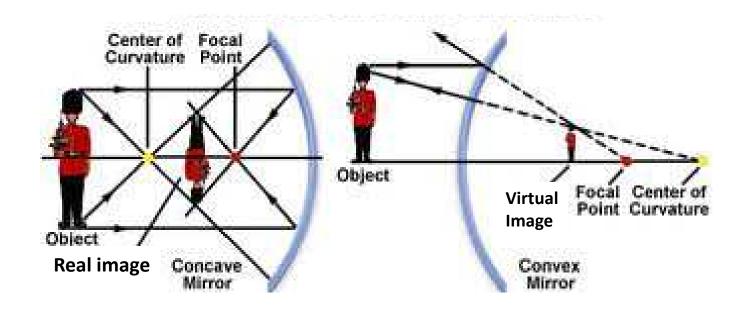
• All points on the wavefront have the same optical path length (OPL)

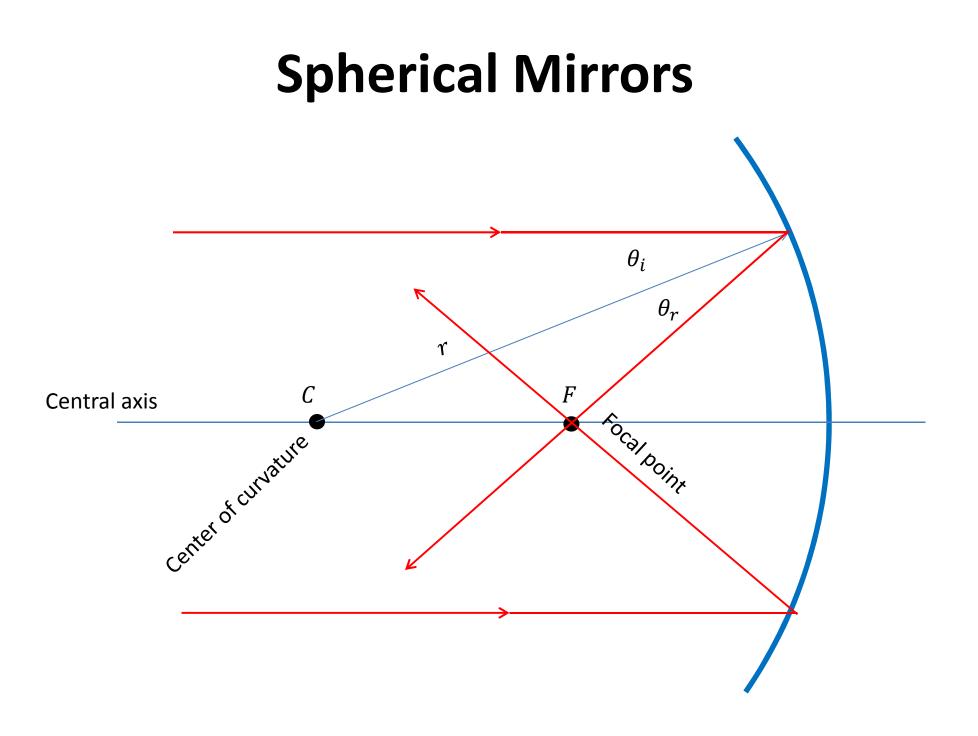
$$t = \frac{1}{c} \sum_{i=1}^{N} n_i s_i \to OPL = \int_{S}^{P} n(s) ds$$

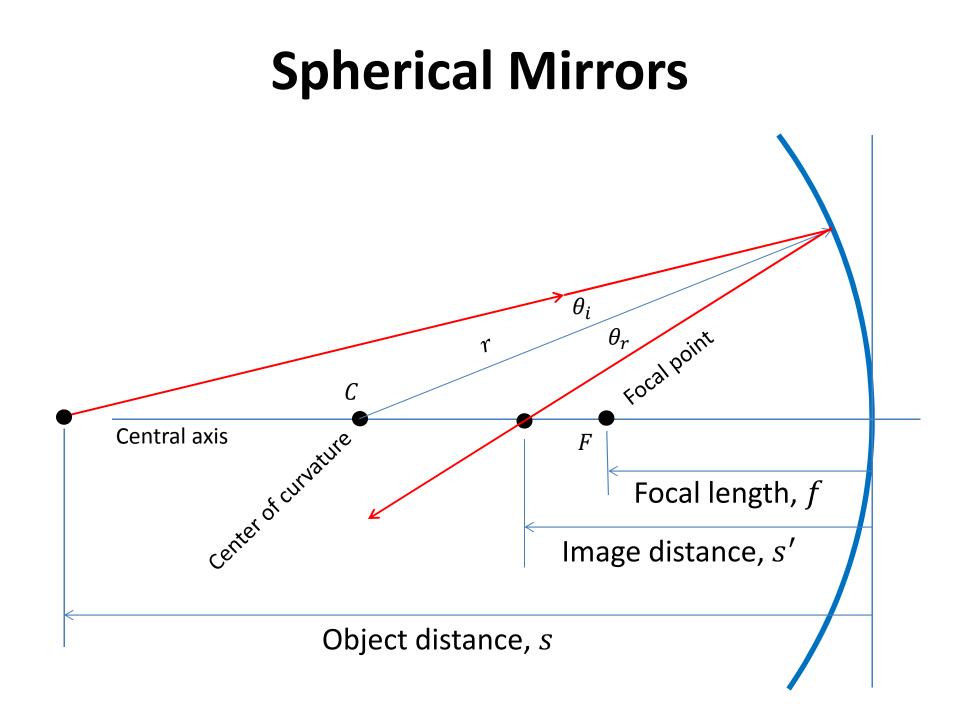
- Typical problems in geometric optics:
 - Given an optical system, what are the properties of the image that is formed (if any)?
 - What configuration of optical elements (if any) will produce an image with certain desired characteristics?
- No new physical principles: the laws of reflection and refraction are all we will use
- We need a method for analyzing these problems in a systematic an organized way

Types of Images

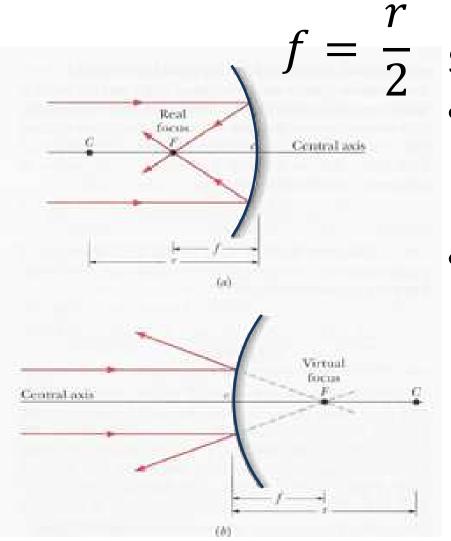
- **Real Image:** light emanates from points on the image
- **Virtual Image:** light *appears* to emanate from the image







Focal Points of Spherical Mirrors



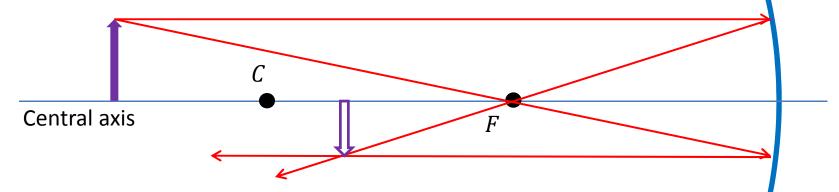
Sign convention:

- Concave:
 - Radius of curvature, r > 0
 - Focal length, f > 0
- Convex:
 - Radius of curvature, r < 0
 - Focal length, f < 0

 $\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$

Properties of Images

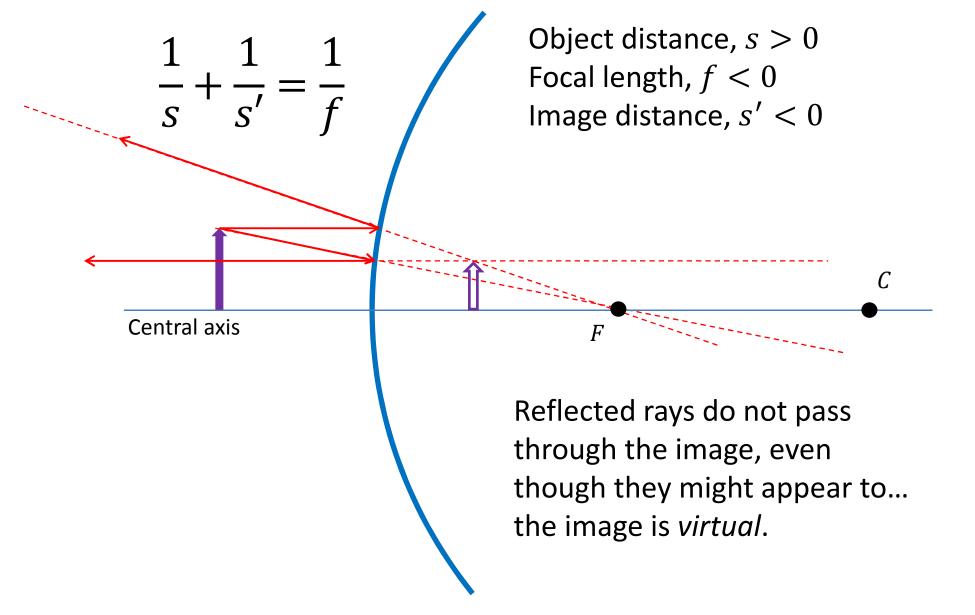
- 1. Ray parallel to central axis reflected through focal point
- 2. Ray through focal point reflected parallel to central axis.



Reflected rays pass through the image:

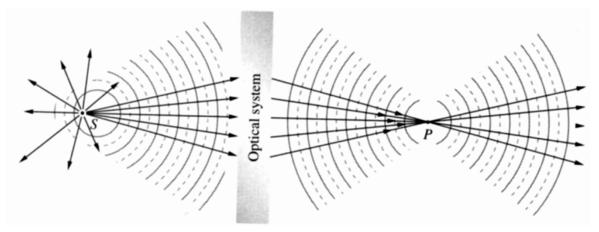
it is a *real image* The image is inverted.

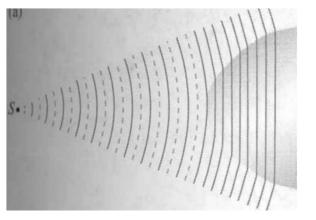
Properties of Images



Lenses

• Insert a transparent object with n > 1 that is thicker in the middle and thinner at the edges

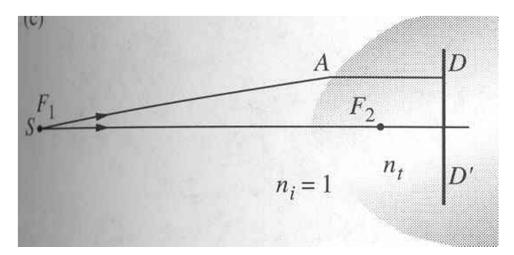




Spherical waves can be turned into plane waves.

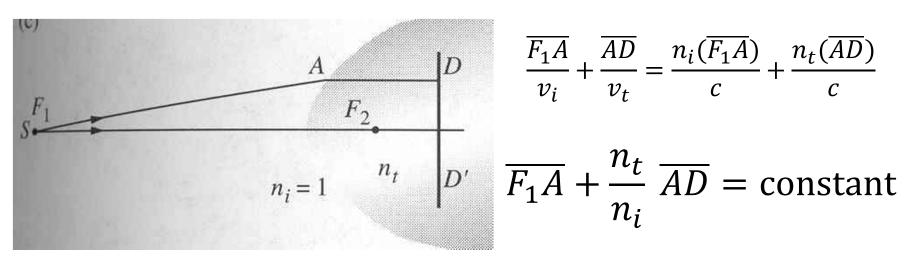
Aspherical Surfaces

 What shape of surface will change spherical waves to plane waves?

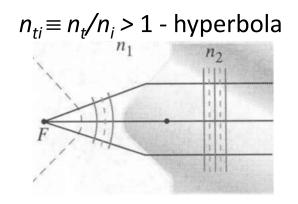


• Time to travel from S to plane DD' must be equal for all points A on the surface.

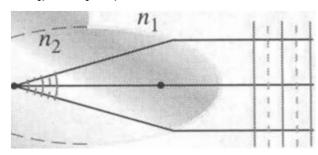
Aspherical Surfaces

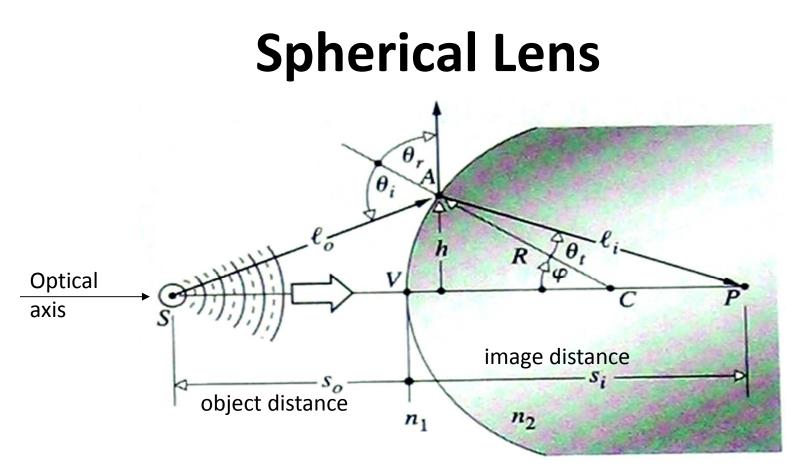


• This is the equation for a hyperbola if $n_t/n_i > 1$ and the equation for an ellipse if $n_t/n_i < 1$.









• Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos A$ $\ell_o = \sqrt{R^2 + (s_o + R)^2 - 2R(s_o + R)\cos \varphi}$ $\ell_i = \sqrt{R^2 + (s_i - R)^2 + 2R(s_i - R)\cos \varphi}$

Spherical Lens

Fermat's principle: *Light will travel on paths for which the optical path length is stationary* (ie, minimal, but possibly maximal)

$$\begin{split} \ell_o &= \sqrt{R^2 + (s_o + R)^2 - 2R(s_o + R)\cos\varphi} \\ \ell_i &= \sqrt{R^2 + (s_i - R)^2 + 2R(s_i - R)\cos\varphi} \\ OPL &= \frac{n_1\ell_o}{c} + \frac{n_2\ell_i}{c} \\ \frac{d(OPL)}{d\varphi} &= \frac{n_1R(s_o + R)\sin\varphi}{2\ell_o} - \frac{n_2R(s_i - R)\sin\varphi}{2\ell_i} = 0 \\ &= \frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} = \frac{1}{R} \left(\frac{n_2s_i}{\ell_i} - \frac{n_1s_o}{\ell_o}\right)_{\text{But P will be different for different values of } \varphi_{\dots} \end{split}$$

Spherical Lens

$$\frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} = \frac{1}{R} \left(\frac{n_2 s_i}{\ell_i} - \frac{n_1 s_o}{\ell_o} \right)$$

• Approximations for small φ :

$$\cos \varphi = 1 \qquad \sin \varphi = \varphi$$
$$\ell_o = s_o \qquad \ell_i = s_i$$
$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

- The position of P is independent of the location of A over a small area close to the optical axis.
- **Paraxial rays**: rays that form small angles with respect to the optical axis.
- **Paraxial approximation**: consider paraxial rays only.

Spherical Lens

• For parallel transmitted rays, $s_i \rightarrow \infty$

$$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R} \to \frac{n_1}{f_o} = \frac{n_2 - n_1}{R}$$

• First focal length (object focal length):

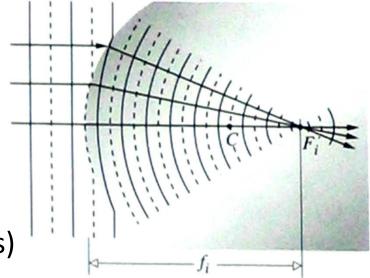
$$f_o = \frac{n_1}{n_2 - n_1} R$$

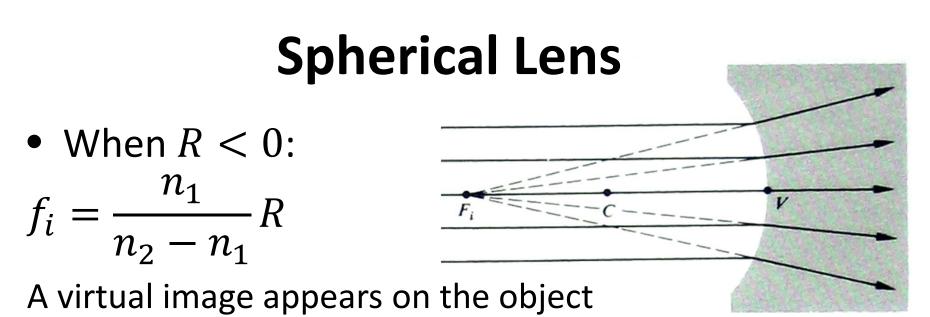
Second focal length

(Image focal length)

$$f_i = \frac{n_2}{n_2 - n_1} R$$

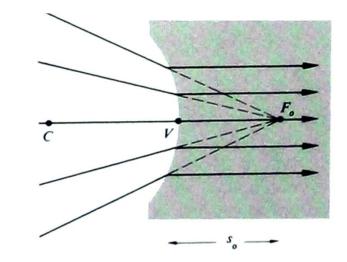
 $R > 0, n_2 > n_1 \rightarrow f > 0$ (converging lens)





side.

$$f_o = \frac{n_2}{n_2 - n_1} R$$

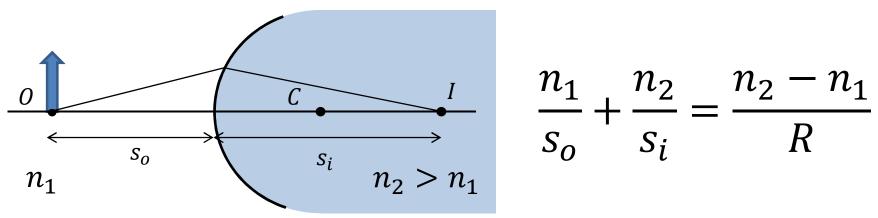


$\frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$

• Assuming light enters from the left:

 $s_o, f_o > 0$ when left of vertex, V $s_i, f_i > 0$ when right of vertex, VR > 0 if C is on the right of vertex, V

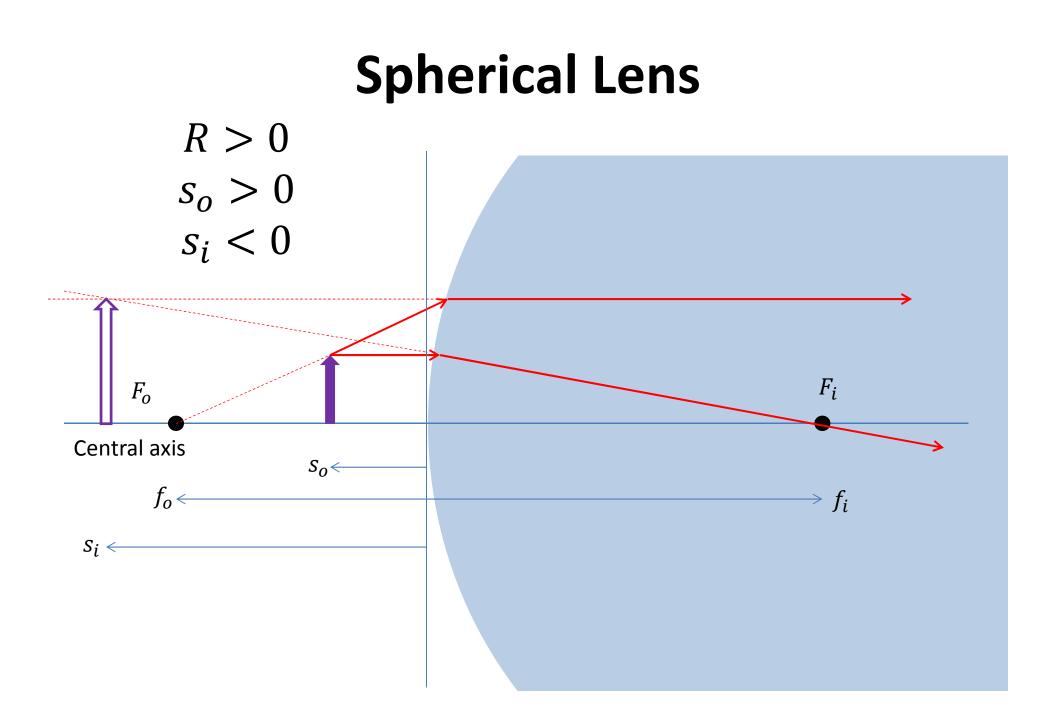
Sign Conventions



- Convex surface:
 - $-s_o$ is positive for objects on the incident-light side
 - $-s_i$ is positive for images on the refracted-light side
 - -R is positive if C is on the refracted-light side



- Concave surface:
 - $-s_o$ is positive for objects on the incident-light side
 - $-s_i$ is negative for images on the incident-light side
 - -R is negative if C is on the incident-light side



Magnification

• Using these sign conventions, the magnification is

$$m = -\frac{n_1 s_i}{n_2 s_o}$$

- Ratio of image height to object height
- Sign indicates whether the image is inverted