Physics 422 - Spring 2015 - Assignment #1, Due February 2nd

1. Consider the polynomial
 \[Ax^2 + Bx + C = 0. \]
 (a) What are the roots of the polynomial?
 (b) What conditions must \(A, B, \) and \(C \) satisfy for the roots to be real?

2. Show that the complex valued function
 \[z(t) = ae^{i\alpha}e^{i\omega t} + be^{i\beta}e^{i\omega t} \]
 can be written in the form
 \[z(t) = re^{i(\omega t + \varphi)} \]
 and find expressions for \(r \) and \(\varphi \) in terms of the real numbers \(a, b, \alpha \) and \(\beta \).

3. Consider two springs with spring constants \(k_1 \) and \(k_2 \).
 (a) Show that the effective spring constant, \(k_p \), that would result if the springs were connected in parallel, is given by
 \[k_p = k_1 + k_2. \]
 (b) Show that the effective spring constant, \(k_s \), that would result if the springs were connected in series, is given by
 \[k_s = \left(\frac{1}{k_1} + \frac{1}{k_2} \right)^{-1}. \]

4. Consider an object made out of elastic material of length \(L \) that has a uniform elastic modulus, \(Y \), and a cross sectional area given by the function \(A(\ell) \), where \(0 \leq \ell \leq L \). Find an expression for the spring constant of the object.
5. A mass, \(m \), is attached to one end of a spring with spring constant \(k \) and equilibrium length \(\ell \). The other end of the spring moves with constant velocity so that its position \(X(t) \) at time \(t \) is given by

\[
X(t) = \ell + vt.
\]

Find an expression for the position of the mass as a function of time, \(x(t) \), if at time \(t = 0 \) the mass is initially located at \(x(0) = 0 \) and is initially at rest, \(\dot{x}(0) = 0 \).