Analytical Mechanics

SEVENTH EDITION

Grant R. Fowles
University of Utah

George L. Cassiday
University of Utah

First mode
$N = 1$
$a_k = A \sin \left(\frac{k\pi}{4} \right)$

Second mode
$N = 2$
$a_k = A \sin \left(\frac{2k\pi}{4} \right)$

Third mode
$N = 3$
$a_k = A \sin \left(\frac{3k\pi}{4} \right)$
Contents

1 Fundamental Concepts: Vectors 1
 1.1 Introduction 1
 1.2 Measure of Space and Time: Units and Dimensions 2
 1.3 Vectors 9
 1.4 The Scalar Product 15
 1.5 The Vector Product 19
 1.6 An Example of the Cross Product: Moment of a Force 22
 1.7 Triple Products 23
 1.8 Change of Coordinate System: The Transformation Matrix 25
 1.9 Derivative of a Vector 30
 1.10 Position Vector of a Particle: Velocity and Acceleration in Rectangular Coordinates 31
 1.11 Velocity and Acceleration in Plane Polar Coordinates 36
 1.12 Velocity and Acceleration in Cylindrical and Spherical Coordinates 39

2 Newtonian Mechanics: Rectilinear Motion of a Particle 47
 2.1 Newton’s Law of Motion: Historical Introduction 47
 2.2 Rectilinear Motion: Uniform Acceleration Under a Constant Force 60
 2.3 Forces that Depend on Position: The Concepts of Kinetic and Potential Energy 63
 2.4 Velocity-Dependent Forces: Fluid Resistance and Terminal Velocity 69
 2.5 Vertical Fall Through a Fluid: Numerical Solution 75

3 Oscillations 82
 3.1 Introduction 82
 3.2 Linear Restoring Force: Harmonic Motion 84
 3.3 Energy Considerations in Harmonic Motion 93
 3.4 Damped Harmonic Motion 96
 3.5 Phase Space 106
 3.6 Forced Harmonic Motion: Resonance 113
4 General Motion of a Particle in Three Dimensions 144
 4.1 Introduction: General Principles 144
 4.2 The Potential Energy Function in Three-Dimensional Motion: The Del Operator 151
 4.3 Forces of the Separable Type: Projectile Motion 156
 4.4 The Harmonic Oscillator in Two and Three Dimensions 167
 4.5 Motion of Charged Particles in Electric and Magnetic Fields 173
 4.6 Constrained Motion of a Particle 176

5 Noninertial Reference Systems 184
 5.1 Accelerated Coordinate Systems and Inertial Forces 184
 5.2 Rotating Coordinate Systems 189
 5.3 Dynamics of a Particle in a Rotating Coordinate System 196
 5.4 Effects of Earth’s Rotation 201
 5.5 Motion of a Projectile in a Rotating Cylinder 207
 5.6 The Foucault Pendulum 212

6 Gravitation and Central Forces 218
 6.1 Introduction 218
 6.2 Gravitational Force between a Uniform Sphere and a Particle 223
 6.3 Kepler’s Laws of Planetary Motion 225
 6.4 Kepler’s Second Law: Equal Areas 226
 6.5 Kepler’s First Law: The Law of Ellipses 229
 6.6 Kepler’s Third Law: The Harmonic Law 238
 6.7 Potential Energy in a Gravitational Field: Gravitational Potential 244
 6.8 Potential Energy in a General Central Field 250
 6.9 Energy Equation of an Orbit in a Central Field 251
 6.10 Orbital Energies in an Inverse-Square Field 251
 6.11 Limits of the Radial Motion: Effective Potential 257
 6.12 Nearly Circular Orbits in Central Fields: Stability 260
 6.13 Apsides and Apsidal Angles for Nearly Circular Orbits 262
 6.14 Motion in an Inverse-Square Repulsive Field: Scattering of Alpha Particles 264

7 Dynamics of Systems of Particles 275
 7.1 Introduction: Center of Mass and Linear Momentum of a System 275
 7.2 Angular Momentum and Kinetic Energy of a System 278
 7.3 Motion of Two Interacting Bodies: The Reduced Mass 283
7.4 The Restricted Three-Body Problem 288
7.5 Collisions 303
7.6 Oblique Collisions and Scattering: Comparison of Laboratory and Center of Mass Coordinates 306
7.7 Motion of a Body with Variable Mass: Rocket Motion 312

8 Mechanics of Rigid Bodies: Planar Motion 323
8.1 Center of Mass of a Rigid Body 323
8.2 Rotation of a Rigid Body about a Fixed Axis: Moment of Inertia 328
8.3 Calculation of the Moment of Inertia 330
8.4 The Physical Pendulum 338
8.5 The Angular Momentum of a Rigid Body in Laminar Motion 344
8.6 Examples of the Laminar Motion of a Rigid Body 347
8.7 Impulse and Collisions Involving Rigid Bodies 354

9 Motion of Rigid Bodies in Three Dimensions 361
9.1 Rotation of a Rigid Body about an Arbitrary Axis: Moments and Products of Inertia—Angular Momentum and Kinetic Energy 361
9.2 Principal Axes of a Rigid Body 371
9.3 Euler's Equations of Motion of a Rigid Body 381
9.4 Free Rotation of a Rigid Body: Geometric Description of the Motion 383
9.5 Free Rotation of a Rigid Body with an Axis of Symmetry: Analytical Treatment 384
9.6 Description of the Rotation of a Rigid Body Relative to a Fixed Coordinate System: The Eulerian Angles 391
9.7 Motion of a Top 397
9.8 The Energy Equation and Nutation 401
9.9 The Gyrocompass 407
9.10 Why Lance Doesn't Fall Over (Mostly) 409

10 Lagrangian Mechanics 417
10.1 Hamilton's Variational Principle: An Example 419
10.2 Generalized Coordinates 423
10.3 Calculating Kinetic and Potential Energies in Terms of Generalized Coordinates: An Example 426
10.4 Lagrange's Equations of Motion for Conservative Systems 430
10.5 Some Applications of Lagrange's Equations 431
10.6 Generalized Momenta: Ignorable Coordinates 438
10.7 Forces of Constraint: Lagrange Multipliers 444
10.8 D’Alembert’s Principle: Generalized Forces 449
10.9 The Hamiltonian Function: Hamilton’s Equations 455
11 Dynamics of Oscillating Systems

11.1 Potential Energy and Equilibrium: Stability 465
11.2 Oscillation of a System with One Degree of Freedom about a Position of Stable Equilibrium 469
11.3 Coupled Harmonic Oscillators: Normal Coordinates 472
11.4 General Theory of Vibrating Systems 493
11.5 Vibration of a Loaded String or Linear Array of Coupled Harmonic Oscillators 498
11.6 Vibration of a Continuous System: The Wave Equation 505

Appendix A Units A-1
Appendix B Complex Numbers and Identities A-4
Appendix C Conic Sections A-7
Appendix D Service Expansions A-11
Appendix E Special Functions A-13
Appendix F Curvilinear Coordinates A-15
Appendix G Fourier Series A-17
Appendix H Matrices A-19
Appendix I Software Tools: Mathcad and Mathematica A-24

Answers to Selected Odd-Numbered Problems ANS-1
Selected References R-1
Index I-1