THE STM IMAGING OF THE SURFACE STRUCTURE OF GRAPHITE

Nyamjav, Dorjderem

Abstract.
The scanning tunneling microscope allows us to image an atomic structures of materials. In this experiment we scanned a graphite using easyScan STM system and were able to obtain an image of the crystal structure of the graphite. The graphite atoms form a hexagonal close-packed structure with lattice constant of $a=2.5\text{Å}$. From our experimental data we found it $(2.27 \pm 0.30)\text{Å}$.

1. Introduction

The scanning tunneling microscope was invented by Nobel laureates G.Binnig, H.Rohrer and their colleagues at the IBM Zurich Research Laboratory in 1981. This technique allows us to image a material surface and now days it is used even to modify a material in an atomic scale. Quantum mechanics show that a particle, such as an electron, can be described by a wave function, has a finite probability to penetrate through classically forbidden barrier. The wave function for the particle, inside of the 1D rectangular barrier, is,

$$\psi \propto e^{-kz}, \quad \text{where} \quad k^2 = \frac{2m\phi}{\hbar^2} \quad \text{and} \quad m\text{-mass of the particle}, \quad \phi \text{- work function.} \quad (1)$$

Therefore, the transmission probability or the tunneling current, I, is 2

$$I \propto e^{-2kz}. \quad (2)$$

In STM, a sharp metal tip is brought very close, in order of a few nanometers, to a surface of the sample, so that the wave functions of the tip and the sample overlap, thus enabling electrons to tunnel through the potential barrier when a bias voltage is applied to the tip. The vacuum gap between the tip and the sample serves as potential barrier. Fig.1. shows the principle of the STM. For tunneling between two electrodes with a voltage V across the gap, only the states within V or below the Fermi level, E_F, can contribute to tunneling. Other states can not contribute either because there are no electrons to tunnel at higher energy, or the exclusion principle at lower energy. The electrons, which are near the Fermi level, have higher transmission probability. Thus STM tunneling current is carried by those electrons. 2
The work function in the equation (1) is defined as \(\phi = E_F - V \). The Fermi level diagram is shown in Fig.2.

In our experiment we had used a graphite as a sample and obtained an surface image of it. The graphite has a hexagonal close-packed crystal structure, with a lattice constant of \(a = 2.5\text{Å} \). (please see Fig.3.) Based on our images, we were able to calculate a lattice constant of the graphite crystal.

We used easyScan STM system manufactured by Nanosurf AG, Liestal, Switzerland. This equipment is shown in Fig. 4.
The tip voltage of .05V was applied to the platinum tip. We used constant current mode throughout this experiment. Since the tunneling current is very sensitive to the distance between the tip and the sample, by keeping the feedback current constant the distance between the tip and sample is also kept constant.

The sample was, as stated above, HOPG (highly orientated pyrolytic graphite).
3. **Results and discussion.**

The obtained images are shown in Fig.6.-7.

![Fig.6. STM image of the graphite atoms.](image)

- (a)
- (b)

Fig.6. STM image of the graphite atoms.

![Fig.7. STM image of the graphite atoms.](image)

- (a)
- (b)

Fig.7. STM image of the graphite atoms.

Although, the one critical point in this experiment was whether the obtained image was a real image or just an electronic noise, we could easily check it by changing the scanning scale. If the image were real, the number of atoms would have changed when we change the scale, while it would have contained the same number of atoms if it were noise. This procedure is reflected in Fig. 8. Because of the temperature instability cells representing atoms are stretched and look rectangular rather than circular. The carbon atoms in our image form (white cells) hexagonal, which matches with the theory.
Fig. 8. The graphite surface image in two different scales. There are 10 atoms in (a), scan range of 3.89 nm, while 16 in (b), scan range of 5.84 nm.

Fig. 9. The atomic image of the graphite surface and its lattice planes. [4]

Out of the lattice model of graphite one can see that there are two different positions of the carbon atoms in the graphite crystal lattice: One with a neighboring atom in the plane below (gray in Fig.9.) and one without neighboring atom in the lattice below (white in Fig.9. and also it can be seen in Fig.3.). Consequently, the electrical conductivity of the graphite surface varies locally slightly so that the atoms without neighbors appear higher than the others. Therefore, the hexagonal in Fig.8 are twice much as the true hexagonal.

The lattice constant was measured using easyScan software and the result is shown in Fig. 10. Moreover, the analysis on data was done by using KaliedaGraph. This calculation gives us the
lattice constant of $$(2.27 \pm 0.03) \text{A}$$. Also the angle for hexagonal was measured and found to be $$(120.67 \pm 0.64)^\circ$$. The error was calculated as follows,

$$\text{Standard deviation} = \sqrt{\frac{\sum_{j=1}^{n} (y_j - M)^2}{(n-1)}}$$

$$M = \frac{\sum_{j=1}^{n} y_j}{n}$$

$$\text{Standard Error} = \frac{\text{Standard deviation}}{\sqrt{n}},$$

where y_j is measured value, n- number of data points.

Finally the hexagonal plane structure of the graphite is drawn and it is shown in Fig. 8.

<table>
<thead>
<tr>
<th>Lattice constant</th>
<th>Angle</th>
<th>Lattice constant</th>
<th>Angle</th>
<th>Lattice constant</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.99</td>
<td>121</td>
<td>2.16</td>
<td>127</td>
<td>Minimum</td>
<td>1.99</td>
</tr>
<tr>
<td>2.1</td>
<td>118</td>
<td>2.43</td>
<td>121</td>
<td>Maximum</td>
<td>2.43</td>
</tr>
<tr>
<td>2.1</td>
<td>114</td>
<td>2.29</td>
<td>116</td>
<td>Sum</td>
<td>54.45</td>
</tr>
<tr>
<td>2.37</td>
<td>116</td>
<td>2.43</td>
<td>122</td>
<td>Points</td>
<td>24</td>
</tr>
<tr>
<td>2.35</td>
<td>122</td>
<td>2.35</td>
<td>114</td>
<td>Mean</td>
<td>2.26875</td>
</tr>
<tr>
<td>2.17</td>
<td>120</td>
<td>2.11</td>
<td>121</td>
<td>Median</td>
<td>2.29</td>
</tr>
<tr>
<td>2.29</td>
<td>122</td>
<td>2.29</td>
<td>121</td>
<td>RMS</td>
<td>2.27243</td>
</tr>
<tr>
<td>2.3</td>
<td>121</td>
<td>2.3</td>
<td>124</td>
<td>Std Deviation</td>
<td>0.13205</td>
</tr>
<tr>
<td>2.42</td>
<td>121</td>
<td>2.12</td>
<td>122</td>
<td>Variance</td>
<td>0.01744</td>
</tr>
<tr>
<td>2.43</td>
<td>123</td>
<td>2.16</td>
<td>123</td>
<td>Std Error</td>
<td>0.02695</td>
</tr>
<tr>
<td>2.42</td>
<td>124</td>
<td>2.29</td>
<td>120</td>
<td>Skewness</td>
<td>-0.3513</td>
</tr>
<tr>
<td>2.42</td>
<td>123</td>
<td>2.16</td>
<td>120</td>
<td>Kurtosis</td>
<td>-1.0466</td>
</tr>
</tbody>
</table>

4. References
