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We demonstrate direct detection of individual electron spin states, together with measurement of spin

relaxation time (T1), in silicon metal-oxide-semiconductor-based quantum dots (QD). Excited state

spectroscopy of the QD has been performed using a charge-sensing technique. T1 of single spin excited

states has been done in the time domain by a pump-and-probe method. For an odd and an even number of

electrons, we found a magnetic field dependent and invariant T1, respectively.
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The potential of using individual electron spin states in a
semiconductor quantum dot for quantum information pro-
cessing has triggered a stream of experimental investiga-
tions in recent years to detect and manipulate single spins
in the few-electron limit [1]. The spin relaxation time T1,
an important measure of the interaction between a two-
level quantum system and its environment, has now been
successfully measured in GaAs based quantum dots and in
self-assembled InGaAs quantum dots for spin-flip transi-
tions between two magnetic field induced Zeeman sub-
levels [2–4], and between a singlet ground state and a
triplet excited state [5–7]. The distinct band structure
makes Si differ from GaAs in a number of ways, which
are important to the spin relaxation process, such as the
nature of the electron-phonon coupling [1,8–12], the
strength of spin-orbital interaction, the closely spaced lev-
els due to the valley degeneracy [13], and a vanishingly
small hyperfine interaction with nuclear spins as there is
only 5% silicon isotope with nonzero nuclear spins.
Therefore the dominating mechanism leading to spin re-
laxation in a Si quantum dots (QDs) needs to be experi-
mentally explored.

However, comparable electrostatically defined Si de-
vices, which have only started to emerge very recently
[14], usually do not have the stability and/or controllability
required for the demanding spin relaxation measurements.
Here we present such a T1 measurement of individual
electron spins in the few-electron regime of a Si MOS-
based quantum dot. Excellent stability and controllability
of the devices were achieved through continuous technol-
ogy improvements. These allow us to directly study the
spin state spectroscopy of individual electrons. T1 was
subsequently measured using pump-and-probe technique.

The device fabrication started with a commercial
Si=SiO2 wafer with a 50 nm thick thermal oxide. First,
multiple confinement gates were fabricated by electron-
beam-lithography. Then, a 100 nm Al2O3 layer was grown
epitaxially by atomic layer deposition. Finally, a global
gate was fabricated to accumulate 2D electron gas (2DEG)
near the interface of the Si and SiO2 across the entire

sample. The 2DEG mobility (with confinement gates in-
active) reaches 2� 104 cm2=Vs when electron density is
in the working range of 1–3� 1011 cm�2. Figure 1 shows
the pattern of the confinement gates and the cross-sectional
view of the device. Architecturally, this double insulating
layered Si MOS-based quantum dot structure is similar to
those reported in a number of earlier publications [14].
With the top global gate voltage set at a fixed positive

value, lower voltages are applied to the six confinement
gates LT, RT, LB, RB, P, and Q to shape the QD and the
charge-sensing channel. While gate P was used primarily
to control the number of electrons in the QD, gates LT-LB
and RT-RB controlled the transparency of the left and right
barriers, respectively. Gate Q, along with RT and LT,
formed a 1D charge-sensing channel to count the number
of electrons via capacitive coupling. A small gap between
LT and RT was created to maximize this capacitive cou-
pling without passing through direct electron tunneling. A
dc biasing voltage of 0.8 mV was applied across the sens-

FIG. 1 (color online). (a) Scanning electron micrograph of the
confinement gates that define the QD (open circle), along with
the measurement setup. (b) The cross-sectional view of the
device. (c) A typical trace of the differential conductance signal
of the charge-sensing channel as a function of the dc bias VP,
VLT ¼ �0:1 V, VRT ¼ �0:16 V, VLB ¼ �0:85 V, VRB ¼
�0:44 V, VQ ¼ �0:7 V, and Vglobal ¼ 3:2 V. A square pulse

of �Vp ¼ 3 mV and f ¼ 10 kHz was superimposed to dc bias

on gate P to dynamically charge and discharge the QD.

PRL 104, 096801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 MARCH 2010

0031-9007=10=104(9)=096801(4) 096801-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.096801


ing channel while the resulting current was amplified by a

high-bandwidth (200 kHz) and low-noise (130 fA=
ffiffiffiffiffiffi
Hz

p
)

current amplifier (FEMTO DLPCA-200) at a gain of
108 V=A. The resistance of the sensing channel was set
by gate Q to about 105 ohms, which corresponds to a
bandwidth of 50 kHz. Also, a Stanford Research System
SRS535 Pulse/Delay Digital Generator was used to pro-
vide the electrical pulses and a SRS 830 lock-in amplifier
was used to record time integrated signal. An Agilent
Infiniium 54855A oscilloscope with a sampling rate up to
5 G=S was used for the time-resolved measurements. The
experiments were done in an Oxford top-loading He3
refrigerator with a base temperature of 300 mK. A mag-
netic field was applied along the plane of the device.

We can detect the addition of an electron to the QD by
tracking changes in the 1D channel current. Typically the
addition of a single electron would result in a reduction in
the total current of about 1%. To offset the large current
background, we used a lock-in detection method developed
earlier for GaAs work [15]. A square shaped pulse was
superimposed on the dc bias on P. A lock-in detector in
sync with the pulse frequency measured the change of the
channel current due to the pulse modulation. Figure 1(c)
shows a typical trace of the lock-in signal as a function of
the voltage applied to gate P. The four dips indicate the
transitions in the charge states by addition or subtraction of
single electrons. The QD was put into an environment in
which the left barrier was essentially opaque and the
tunneling frequency between the right barrier and the
reservoir was about 1 kHz. The tunneling rate can be tuned
continuously from 100 Hz to 30 kHz for the last few
electrons and can be measured in time domain by an
oscilloscope. The four dips shown are most likely the last
four electrons in the QD, as we could not detect any addi-
tional dips as the QD was further squeezed. We verified
that the absence of the additional peak was not due to the
closure of the QD by increasing the voltages on RT and RB
(i.e., the transparency of the right barrier).

The information contained in the signal goes beyond
simple charge counting. For instance, varying the pulse
amplitude can reveal excited states. Figures 2(a) and 2(b)
show in a gray scale plot the derivative of the signal as a
function of the pulse amplitude and gate voltage for the
N ¼ 0 $ N ¼ 1 and the N ¼ 1 $ N ¼ 2 transitions,
respectively. In each case, a triangular pattern with an
extra interior line (indicated by the arrow) can be visual-
ized. The left line is due to the front edge of the pulse
beginning the process of electron loading while the right
line is for the point where the ground-state electron is
unloading. An extra interior line [dark for Fig. 2(a) and
bright for Fig. 2(b)] indicates an excited state. The ex-
cited state becomes visible when the excitation frequency
is high enough in comparison to the relaxation rate from
the excited state to the ground state. As shown in the
Fig. 2(d), a pulse with sufficiently high amplitude can
populate either the ground state or the excited state during

the high-voltage cycle and depopulate during the low-
voltage cycle. We found that the interior line termi-
nates on the right side for the 0–1 transition and terminates
on the left side for the 1–2 transition. Following arguments
from excited state spectroscopy (see Fig. 5 of Ref. [1]),
both point A and B measure the energy difference between
one of the excited states of N ¼ 1 and the ground state
of N ¼ 1.
We studied the dependence of the termination points on

a magnetic field applied parallel to the Si=SiO2 interface
and found that point A was largely independent of the
magnetic field while the termination point B varied linearly
with the field, as shown in Fig. 2(c). For this reason, point B
is most likely a measure of the spacing of the two Zeeman
sublevels for N ¼ 1 electron, and point A is assigned to the
orbital level spacing of the QD. Assuming the g factor of
an electron in Si to be 2, a conversion factor between the
pulse voltage and the energy can be extracted from the
magnetic field dependence of the energy level spacing to
be 27 meV=V. This conversion factor is consistent with
that obtained from the transport measurement of the
Coulomb diamonds. The B-independent energy spacing
is therefore about 0.4 meV. The Coulomb charging ener-
gies needed to add an additional electron to N ¼ 1, N ¼ 2,
and N ¼ 3 QD are 5 meV, 3.8 meV, and 3 meV,
respectively.
Having established the energies of the QD charge states,

we now present a relaxation measurement for both theN ¼
1 and N ¼ 2 QD. For the N ¼ 1 QD, it should be a spin-
flip transition between two magnetic field induced Zeeman
sublevels, as discussed for point B. We used a two-step
pulse sequence, adapted again from earlier work on GaAs
QDs [2,4,6]. Figure 3 illustrates schematically the working
principle of this electrical pump-and-probe technique.
The QD during the first phase is emptied or initialized as

FIG. 2 (color online). Gray scale plots of the derivative of the
current signal with respect to �Vp as a function of �Vp and Vp

at B ¼ 3 T for (a) the N ¼ 0 to N ¼ 1 transition (open circles),
and (b) the N ¼ 1 to N ¼ 2 transition (closed squares). (c) Pulse
amplitude for the termination points of the excited state line, a
measure of the QD level spacing and the Zeeman splitting, as a
function of the magnetic field. (d) Schematic electrochemical
potential diagrams illustrate the charging and discharging of the
QD during the high and low voltages of the pulse.
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the Fermi level sits below the ground state. The Fermi
level is then moved above both the down-spin ground
and the up-spin excited states during the second phase.
After waiting for a certain period of time tW , the Fermi
level is placed to the middle of the two levels for the state
readout during third phase. For tW � T1, the electron is
expected to relax to the ground state and there should be no
tunneling from the QD to the reservoir. However, for short
tW , if the electron still remains in the excited state, the

electron tunnels out and subsequently tunnels back into the
ground state, generating a transient signal in the charge-
sensing channel. In principle, this tunneling event can be
detected by applying a single pulse (i.e., single-shot mea-
surement) [2,4]. However, the relatively poor signal-to-
noise ratio of our detection, about 1:5, prevented us from
seeing the tunneling event in real time. We therefore
applied multiple pulses and averaged the channel signal
over several thousand times. The resulting signal was
captured by a digital oscilloscope. Displayed in Fig. 4(a),
typical traces in the readout phase show a broadened peak.
The broadening is expected from the statistical distribu-
tions of the tunneling electron in and out of the QD as
simulated in Fig. 3(c).
For the simulation, we have developed a rate equa-

tion model to determine the expectation value of the num-
ber of electrons on the quantum dot, which is proportional
to the averaged signal over many periods of the pulse
sequence. The probabilities that the quantum dot is in
each of the three allowed states (electron spin-up, spin-
down, and no electron) are contained in the vector p ¼
ðp"; p#; p0Þ, which evolves in time according to the equa-

tion: dp=dt ¼ Qp. Here Q is a transition matrix that
describes the instantaneous transition rates between the
states. There are three matrices corresponding to the initi-
alization or reset, injection and wait, and readout phases of
the cycle, respectively:

Q1 ¼
�W � �";out 0 0

W ��#;out 0

�";out �#;out 0

0
BB@

1
CCA Q2 ¼

�W 0 �";in
W 0 �#;in
0 0 ��#;in � �";in

0
BB@

1
CCA Q3 ¼

�W � �";out 0 0

W 0 �#;in
�";out 0 ��#;in

0
BB@

1
CCA;

where �"ð#Þ;inðoutÞ is the tunneling rate into (out of) the
j"iðj#iÞ state, and W is the rate of relaxation from j"i to
j#i. We are most interested in the probability vector during
the readout phase:

p ðtÞ ¼ eQ3ðt�t2�t1ÞeQ2t2eQ1t1pð0Þ; t2 � t � t2 þ t3;

where t1, t2, and t3 are the pulse width for each of the three
phases, respectively. t2 is just equivalent to the waiting
time tW . pð0Þ ¼ ð0; 0; 1Þ, suppose the electron is always
emptied out in the initialization phase. The channel current
IðtÞ is proportional to p"ðtÞ þ p#ðtÞ, which during the read-
out phase first increases approximately like e�";outðt�t2Þ, as
spin-up electrons tunnel out of the quantum dot, and then
decreases approximately like e��#;inðt�t2Þ, as spin-down
electrons tunnel back in. This is labeled as the ‘‘tunneling
peak’’ in Fig. 3(c). This signals the occupation of the spin-
up state and its amplitude decreases as we increase t2
because spin-up electrons relax to spin-down. In the limit
that the tunneling rates are much faster thanW, the depen-
dence on t2 is e

�Wt2 , in which case we can determine the
relaxation rateW by fitting the tunneling peak amplitude as
a function of t2 to an exponential decay curve. When W is
on the same order of magnitude as the tunneling rates, as it

sometimes is in our experiment, the rate equation model is
useful for comparing to the observed data.
In Fig. 4(a) the tunneling peak is shown for several

waiting times at B ¼ 4 T. The trend of the reduction of
the height with increasing waiting time can be clearly seen.
This dependence is plotted in Fig. 4(b) and was fit to an

exponential decay A ¼ e�tW=T1 to extract T1. Our measure-
ment capability is limited by the charge detector bandwidth
at the short-time scales. The relaxation rates from the ex-
cited state to ground state are plotted as a function of the
magnetic field. For theN ¼ 1QD the relaxation rate shows
a strong dependence on B. In contrast, the relaxation time
is essentially a constant of around 5 ms for the N ¼ 2 QD.
For a N ¼ 1 QD, in the presence of a magnetic field, the

main mechanism for electrons to relax from one Zeeman
split sublevel to another is through the stochastic electric-
field fluctuations caused by phonons of the host materials
[1,8–12]. The coupling between the magnetic fields of
spins to the electrical fields of phonons can be facilitated
by the relatively strong spin-orbital coupling (SOC) in
semiconductors. For GaAs QDs, it has been demonstrated
that the spin relaxation rate T�1

1 depends both on the

piezoelectric effect (i.e., piezoelectric phonons) and the

FIG. 3 (color online). (a) Two-step pulse sequence used for the
T1 measurement, (b) Schematic electrochemical potential dia-
grams for the three stages of the pulse. (c) Simulated current
signal in time domain, averaged over many cycles of such a
pulse sequence. The simulation parameters used were �";in ¼
�";out ¼ 2 kHz, �#;in ¼ �#;out ¼ 0:2 kHz, W ¼ 100 Hz.
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spatial deformation of the crystal structure (i.e., deforma-
tion potential phonons) [1,2,4–6]. Since it is not a polar
crystal, for Si the piezoelectric phonon contribution should
be negligibly small [10], so the relaxation is expected to be
dominated by the deformation potential of acoustic pho-
nons. The relaxation rate depends on the phonon density of
states at the Zeeman energy, the amplitude of the electric
fields generated by the phonons, and the strength of the
SOC. The fingerprint of the deformation potential is that
T�1
1 is expected to depend on the seventh power of the

magnetic field in the limit that the wavelength of the
phonon is larger than the size of the QD [1,10].

If we fit data preferentially to B7, a proportionality
constant of 0.017 (T7 s) can be extracted. Since there is
no theory that works out specifically for electron spins near
the Si=SiO2 interface, where the SOC is known to be
dominated by the Rashba effect due to the strong electric
field, we cannot further discuss this constant quantitatively.
The B dependence appears to be stronger than that ob-
served in GaAs [1] and in InGaAs [3] QDs. The data also
clearly show a tendency for weaker B dependence as B !
0. This residual relaxation could be caused by electrical
noise generated by background charge fluctuations, as the
noise can dominate when contributions from phonons rap-
idly diminish as B ! 0. Meanwhile, we cannot rule out the
possibility of a different spin relaxation mechanism, which
becomes more prominent as B ! 0. We also do not know
what influence the presence of the Si=SiO2 interface has on
spin relaxation. Further theoretical study is well deserved.

In contrast to the N ¼ 1 case, the relaxation time mea-
sured is roughly independent of the magnetic field around
5 ms for N ¼ 2. Since the valley energy splitting in Si is
generally unknown for QD structures [13], we do not know
the exact excited states spectra to positively identify the

origin of the relaxation transition, even for a two-electron
QD. Normally, for a QD with paired spins, the spin relaxa-
tion involves a transition between one of the triplet states
and a singlet state [1]. The relaxation rate in this case
should be proportional to the phonon density of states at
the transition energy. If we use the B-independent level
spacing of 0.4 meV to roughly estimate the spin flipping
energy, it is equivalent to a Zeeman energy at 3 T not too
far off from the observed crossover of B ¼ 4 T.
It should also be noted that during the preparation of this

manuscript, we have received a preprint from HRL
Laboratories, LLC that reported a measurement of spin
relaxation time of Si/SiGe quantum dots [16]. Empirically,
our T1 of 40 ms at B ¼ 2 T appears to be roughly the same
as that of the Si/SiGe QD, which is shorter by a factor of 2
than that in a GaAs QD [4]. A more informative compari-
son, however, should be made for identical Zeeman ener-
gies and QD level spacing in order to reveal the spin-orbital
coupling strength of different systems.
We have measured the spin relaxation times of a few-

electron Si=SiO2 based QD and studied their magnetic
field dependence by an electrical pump-and-probe. Given
the prominent importance of Si=SiO2 based materials in
mainstream electronics, it is crucial to determine whether
the Si=SiO2 QD is indeed a good candidate for quantum
information processing. Further interesting experiments
will be measurements of the phase coherence time T2,
which will tell if the promise of long phase coherence
time for bulk Si can be kept in the presence of a Si=SiO2

interface.
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FIG. 4 (color online). (a) The tunneling signal at the readout
phase is displayed for three different waiting times. A vertical
offset is applied to the curves for visual clarity. (b) An example
of fit to the model for the tW ¼ 1 ms data. (c) The amplitude of
the tunneling signal, proportional to the probability of occupying
the spin-up state, as a function of tW . The amplitude is fitted to an
exponential curve that gives T1 � 10 ms. (c) The relaxation
times for the N ¼ 1 (closed squares) and N ¼ 2 (open dots) as
a function of the magnetic field. The dashed line projects a B7

dependence.
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