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Decoherence of a localized electron spin in a solid state material �the “central spin” problem� at low
temperature is believed to be dominated by interactions with nuclear spins in the lattice. This decoherence is
partially suppressed through the application of a large magnetic field that splits the energy levels of the electron
spin and prevents depolarization. However, the dephasing decoherence resulting from a dynamical nuclear spin
bath cannot be removed in this way. Fluctuations of the nuclear field lead to an uncertainty of the electron’s
precessional frequency in a process known as spectral diffusion. This paper considers the effect of the elec-
tron’s wavefunction shape on spectral diffusion and provides wavefunction dependent decoherence time for-
mulas for a free induction decay as well as spin echoes and concatenated dynamical decoupling schemes for
enhancing coherence. We also discuss a dephasing of a qubit encoded in singlet-triplet states of a double
quantum dot. A central theoretical result of this work is the development of a continuum approximation for the
spectral diffusion problem which we have applied to GaAs and InAs materials specifically.
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I. INTRODUCTION

Understanding quantum decoherence is a fundamental
subject of interest in modern physics. In this work, we theo-
retically study the issue of quantum decoherence for the
problem of one localized electron spin in a solid state nuclear
spin environment, where the electron spin eventually loses
its quantum phase memory �i.e., dephases� due to its interac-
tion with the surrounding nuclear spin bath. This is often
called “central spin” decoherence in a spin bath, with the
localized electron spin being the central spin and the sur-
rounding nuclear spin environment being the spin bath. This
particular problem is important in the context of quantum
information processing and quantum computation using lo-
calized electron spins as qubits, and as such, we concentrate
on a few systems of interest in solid state quantum compu-
tation architectures, namely, Si:P donor electron spin qubits
and GaAs and InAs quantum dot electron spin qubits, all of
which have considerable recent experimental1–5 and
theoretical6–15 interest. The theory we develop is, however,
applicable to the general situation of the quantum dephasing
of a single localized electron spin in solids due to the envi-
ronmental influence of the slowly fluctuating nuclear spin
bath consisting of many millions of surrounding nuclear
spins mutually flip-flopping due to their magnetic dipolar
coupling.

The issue of specific interest in this paper, as the title of
this paper suggests, is how the detailed form of the confine-
ment for the localized electron in the solid �e.g., the expo-
nentially confined hydrogenic confinement for the localized
P donor electron state in Si or the Gaussian-type simple har-
monic oscillator confinement for the localized electron in the
GaAs/InAs quantum dot� could have a qualitative influence
on its nuclear induced spin dephasing. This subtle �but po-
tentially significant� dependence of electron spin dephasing
on the nature of the electron localization has recently been
emphasized in the discovery16 that a particular type of dy-
namical decoupling �DD� sequence17 can be ideal in restor-

ing quantum coherence in the GaAs quantum dot system, but
not particularly effective in the Si:P system, which can be
traced back to the Gaussian versus the exponential wave-
function localization in the two systems, leading to the va-
lidity or the lack thereof of a particular time perturbation
expansion as discussed in depth in this work. Thus, a detailed
investigation of the effect of the localized electron wavefunc-
tion on the nuclear induced electron spin dephasing problem
is both important and timely in view of the intense current
activity in fault-tolerant quantum computation using spin qu-
bits in semiconductors.

It is important in the context of studying electron spin
decoherence to distinguish among three different spin relax-
ation or decoherence times, T1, T

2
*, and T2, which are dis-

cussed in the literature. �We should mention right at the out-
set that our work is focused entirely on T2, sometimes also
denoted TM or spin memory time. T2 is variously called spin
decoherence time, spin dephasing time, transverse spin relax-
ation time, spin-spin relaxation time, and spin memory time
in the literature.� The spin relaxation time T1, also often
called the longitudinal spin relaxation time or the energy
relaxation time, is connected with the spin-flip process
which, in the presence of an externally applied magnetic
field �the case of interest to us in this work�, necessarily
requires phonons �and spin-orbit coupling� to carry away the
electron spin Zeeman energy, which is 3 orders of magnitude
larger than the nuclear spin Zeeman energy. This
T1-relaxation process can be made arbitrarily long by lower-
ing the lattice temperature so that phonons are simply not
available to provide the energy conservation. At the low
��100 mK or lower� temperatures of interest to us in the
quantum computing context, the relevant T1 times are very
long �T1�100 ms�T2� and are unimportant for our consid-
eration. The T

2
* time is the relevant decoherence time in the

presence of substantial inhomogeneous broadening as, for
example, in ensemble measurements over many electron spin
qubits with varying �i.e., inhomogeneous� nuclear spin envi-
ronments. In the context of single-spin qubits, i.e., involving

PHYSICAL REVIEW B 77, 165319 �2008�

1098-0121/2008/77�16�/165319�16� ©2008 The American Physical Society165319-1

http://dx.doi.org/10.1103/PhysRevB.77.165319


a single electron spin, the T
2
* decoherence sets in due to the

requisite time averaging which, due to ergodicity, becomes
equivalent to the spatial inhomogeneity of the varying
nuclear spin environments of many electron spins. Thus, T

2
*

is measured either in a measurement over an ensemble of
localized spins with the associated spatial averaging or in a
time-averaged measurement for a single spin over many
runs. A spin echo �or Hahn spin echo� measurement gets rid
of the inhomogeneous broadening and characterizes T2, the
pure dephasing time of a single spin �typically for the sys-
tems of our interest, T

2
*�T2 /1000 and T2�T1 /1000�, which

is what we theoretically study in this work. A closely related,
but by no means identical, definition of T2 comes from con-
sidering the free induction decay �FID� of a single spin in a
single-shot measurement without involving either spatial av-
eraging over many spin qubits or temporal averaging over
many runs. Alternatively, FID is observed in a homogeneous
ensemble. We will call such a FID dephasing time TI
��T2� to distinguish it from the spin echo dephasing time T2.

The above discussion of T1, T
2
*, T2, and TI illustrates the

considerable semantic danger of discussing “spin decoher-
ence” because, depending on the context, the “spin decoher-
ence time” for the same system could vary by many orders of
magnitude �i.e., T1�T2�TI�T

2
*, etc.�. To avoid such con-

fusion, we emphasize that, in our opinion, the only sensible
way of discussing spin decoherence is by considering spe-
cific experimental contexts. Our definition of T2 is thus the
decoherence time measured in a Hahn spin echo experiment.
The only license we take with our definition of T2 is that we
continue using T2 as the notation for spin decoherence time
even in situations where the spin coherence has been ex-
tended far beyond the Hahn spin echo time by using multiple
pulse sequences �Carr–Purcell–Meiboom–Gill �CPMG�, con-
catenated dynamical decoupling �CDD�, etc.� much more
complex than the single �-pulse Hahn sequence. For us,
therefore, T2 is the spin decoherence time as measured in an
echo-type pulse sequence measurement, which could be a
simple �-pulse spin echo or more complex pulse sequences
meant to prolong spin memory beyond the spin echo refo-
cusing.

Finally, we point out an additional important complica-
tion, often erroneously neglected in the literature, associated
with discussing spin decoherence in terms of a single deco-
herence time parameter, TCoh �e.g., T1 or T2 or T

2
* or TI�.

Such a description assumes, by definition, that the quantum
memory �i.e., some precisely defined quantum amplitude or
probability� falls off in a simple exponential manner with
time, i.e., exp�−t /TCoh� or exp�−�t /TCoh�n�, where n is a con-
stant, so that a single decoherence time TCoh can completely
parametrize the nature of decoherence. This is, however, not
always the case, and the detailed functional dependence of
quantum coherence on time almost always changes with t in
a complex manner, ruling out any simple single-parameter
characterization of spin decoherence. To be consistent with
the standard literature, we often discuss or describe our re-
sults by a single T2, but we simply define T2 as the time it
takes for the quantum memory to decay by a factor of e �or
the extrapolated time at which an approximate exponential
decay form will reach 1 /e�. This way we are not assuming

any particular functional form of the quantum memory ver-
sus time decay. To be explicit, our results clearly indicate the
decay of the spin probability density over time.

The rest of the paper is organized as follows: Section II
introduces the concept of spectral diffusion, which is the
only spin dephasing mechanism considered in this work �we
believe it to be the most important spin decoherence mecha-
nism for solid state quantum information processing using
electron spins�. Sections II A–II C formally define the prob-
lem in terms of the Hamiltonian, the decoherence measure,
and pulse sequences, respectively. In Sec. III, we review our
cluster expansion method8,11,15 for solving this problem. Sec-
tion IV introduces the role of confinement or wavefunction
by considering the initial time �“short time”� decay of spin
coherence and then providing the detailed theoretical consid-
erations associated with the functional form of the localized
wavefunction as relevant for spin dephasing; Sec. IV C con-
tains a particularly important continuum approximation,
which provides convenient formulas that yield estimated T2
times as a function of the wavefunction size and shape. In
Sec. V, we consider a specific recent experimental situation
of singlet-triplet states in a double quantum dot and show its
equivalence to the single electron case as far as spin dephas-
ing is concerned; in its subsection we discuss the limit on the
experimentally discovered Zamboni effect in enhancing spin
coherence. In Sec. VI, we conclude with a summary and a
brief discussion of open questions.

II. SPECTRAL DIFFUSION

The spin decoherence mechanism known as spectral dif-
fusion �SD� has a long history18–23 and has been extensively
studied recently1–4,6,8,9,11–15,24 in the context of spin qubit de-
coherence. Consider a localized electron in a solid. This is
our central spin. The electron spin could decohere through a
number of mechanisms. In particular, spin relaxation would
occur via phonon or impurity scattering in the presence of
spin-orbit coupling, but these relaxation processes are
strongly suppressed in localized systems and can be arbi-
trarily reduced by lowering the temperature and applying a
strong external magnetic field, creating a large electronic
Zeeman splitting. In the dilute doping regime of interest in
quantum computation, where the localized electron spins are
spatially well separated, a direct magnetic dipolar interaction
between the electrons themselves is not an important dephas-
ing mechanism.25 Therefore, the interaction between the
electron spin and the nuclear spin bath is the important de-
coherence mechanism at low temperatures and for localized
electron spins. Now we restrict ourselves to a situation in the
presence of an external magnetic field �which is the situation
of interest to us� and consider the spin decoherence channels
for the localized electron spin interacting with the lattice
nuclear spin bath. Since the gyromagnetic ratios �and, hence,
the Zeeman energies� for the electron spin and the nuclear
spins are typically a factor of 2000 different �the electron
Zeeman energy being larger�, hyperfine-induced direct spin-
flip transitions between electron and nuclear spins would be
impossible �except as virtual transitions as will be discussed
in Sec. II A� at low temperature since phonons would be
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required for energy conservation. This leaves the indirect SD
mechanism as the most effective electron spin decoherence
mechanism at low temperatures and finite magnetic fields.
The SD process is associated with the dephasing of the elec-
tron spin resonance due to the temporally fluctuating nuclear
magnetic field at the localized electron site. These temporal
fluctuations cause the electron spin resonance frequency to
diffuse in the frequency space, hence the name spectral dif-
fusion. These fluctuations result from the dynamics of the
nuclear spin bath due to dipolar interactions with each other
along with their hyperfine interactions with the qubit. This
scenario is illustrated in Fig. 1. Nuclear spins in the spin bath
flip-flop due to their mutual dipolar coupling �since the typi-
cal experimental temperature scale �100 mK is essentially
an infinite temperature scale for the nuclear spins with nano-
Kelvin scale coupling�, and this leads to a temporally ran-
dom magnetic-field fluctuation on the central spin, i.e., the
electron.

A. Interactions

In the most general form, the SD Hamiltonian for the
central spin decoherence problem may be written �in �
=1 unit�

Ĥ = 	eŜz + �
n

I�̂n · An · S�̂ + �
n


nÎnz + �
n�m

I�̂n · Bnm · I�̂m,

�1�

where S�̂ and I�̂n are vectors of spin operators for the electron
�central spin� and nucleus n, respectively, 	e and 
n are their
respective Zeeman energies �with an external magnetic field
applied in the z direction�, and An and Bnm are tensors de-
scribing electronuclear and internuclear interactions, respec-
tively. Isotropic Fermi-contact hyperfine �HF� interactions
typically dominate An �i.e., An=An1� although anisotropic

HF interactions, due to dipolar contributions, may also be
important. Internuclear dipolar interactions often dominate
Bnm, though other local interactions between nuclei such as
indirect exchange interactions26–28 may also be significant.9

Typical energy scales are shown in Table I for convenience.
The HF energies are typically many orders of magnitude

larger than inter-nuclear dipolar energies: �An�� �Bnm�. By
ignoring the Bnm term for a moment, decoherence may occur
as a result of real or virtual electronuclear flip-flops via the
HF interaction.7,10 Such a process may be suppressed, how-
ever, by increasing the applied magnetic field due to a con-
servation of Zeeman energies. These Zeeman energies are
given by 	e=�SB and 
n=−�nB, where B is the applied
magnetic-field strength, and �S and �n are gyromagnetic ra-
tios of the electron and nucleus n, respectively �with �n de-
fined in an opposite sense as �S�. Typically, �S�103�n, so
that the nuclear Zeeman energy is negligible relative to the
electron’s Zeeman energy and the electron must overcome its
Zeeman energy barrier in order to flip. In the limit of 	e
�A, with A=�nAn, HF-induced electronuclear flip-flops are
effectively suppressed. When we reintroduce Bnm, however,
decoherence still occurs and is well defined in the 	e→�
limit because the electron spin will dephase as a result of
nuclear field fluctuations induced by internuclear interac-
tions. This decoherence is spectral diffusion.

In the limit of a large applied field �formally we will say
	e→��, electron flips are completely suppressed. In this

limit, the effective Hamiltonian becomes Ĥ��n
nÎnz

+�n�A� n · I�̂n�Ŝz+�n�mI�̂n ·Bnm · I�̂m, where A� n is the z column

vector of An. We are free to drop 	eŜz for any dynamical
considerations now because it is a conserved energy in this
limit. Effects due to anisotropic HF interactions may be
treated independently of SD with a trivial disregard for in-
ternuclear interactions.29 For our purposes, therefore, we will

treat only the z component of A� n from the Fermi-contact HF
interaction, which leaves us with

Ĥ � �
n

AnÎnzŜz + �
n


nÎnz + �
n�m

I�̂n · Bnm · I�̂m, �2�

TABLE I. Interactions and estimated energy scales. �A similar
table appears in Ref. 14.�

Interaction Symbol Scale ��=1� Scale �kB=1�

Zeeman �electron� 	e 1011 s−1a 1 Ka

Zeeman �nucleus� 
n 108 s−1a 1 mKa

Contact HF An 106 s−1b 10 
Kb

Cumulative HF A=�nAn �1011 s−1c �1 Kc

Dipolar Bnm 102 s−1 1 nK

Indirect exchange Bnm
Ex 102 s−1 1 nK

HF mediated Anm 10 s−1 10−1nK

aWith a magnetic field of about 1 T.
bIn III-V compound quantum dots with N�105 nuclei and also in
Si:P donors.
cIn III-V compound quantum dots, A�1011 s−1. In Si:P donors,
A� f �1010 s−1, where f is the fraction of 29Si.

Spectral diffusion of a Si:P spin

B

FIG. 1. �Color online� The electron of a P donor in Si experi-
ences spectral diffusion due to the spin dynamics of the enveloped
bath of Si nuclei. Of the naturally occurring isotopes of Si, only 29Si
has a net nuclear spin, which may contribute to spectral diffusion by
flip-flopping with nearby 29Si. Natural Si contains about 5% 29Si or
less through isotopic purification. Isotopic purification or nuclear
polarization will suppress spectral diffusion in Si.
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An =
8�

3
�S�n�	��Rn�	2. �3�

Equation �3� gives Fermi-contact HF coupling constants that
are proportional to the probability of the electron being at the
nuclear site �the square of its wavefunction�.

How large of a magnetic field must we apply for Eq. �2�
to be a valid effective Hamiltonian? To be explicit, one may
use quasidegenerate perturbation theory30 to systematically

transform Eq. �1� into the block form Ĥ���	� 
Ĥ���	,
where �	+ 
 , 	−

 are the electron spin states. This transforma-
tion will be convergent if 	e�A, where A=�nAn is the
maximum cumulative HF field. In III-V compound quantum
dots, 	e�A with an applied field of 1 T, calling this ap-
proach into question; however, the 	e�A condition is
overly strict because this maximum HF field is never reached
in a bath that is not fully polarized. It is more relevant to
consider how higher orders of this transformation �Eq. �2�
represents the zeroth order� compare with the internuclear
Bnm coupling term to generate decoherence. In the next order
of the transformation, HF-mediated �HFM� interactions be-
tween nonlocal nuclei emerge. This interaction, well
known31,32 as the Ruderman–Kittel–Kasenya–Yosida interac-
tion, results from virtual electron spin flips and is suppressed
with a large applied magnetic field. This next order contri-
bution to the Hamiltonian is given by9

ĤHFM = �
n�m

AnmÎn+Îm−Ŝz, �4�

where Anm=AnAm /	e. In applying this transformation, we
must slightly rotate the basis states; this results in a “visibil-
ity” loss33 of coherence estimated as9 �n�An /	e�2 and is cer-
tainly small for a large bath in which 	e�A. In this paper,
we will restrict ourselves to the 	e→� limit and merely
mention how HF-mediated or other higher order interactions
may play a role.

Direct interactions between nuclei are often dominated by
their magnetic dipoles with the form

Ĥnm
D =

�n�m�

2
� În · Îm

Rnm
3 −

3�În · Rnm��Îm · Rnm�
Rnm

5 � . �5�

The dipolar interaction between nuclear spins in semicon-

ductors has a typical strength of Ĥnm
D �102s−1, which is

much smaller than typical nuclear Zeeman energies of about
108 s−1 in an applied field of 1 T. Therefore, energy conser-
vation arguments allow us to neglect any term that changes
the total Zeeman energy of the nuclei. This leaves the fol-
lowing Zeeman energy-conserving secular31,34 part of the in-
teraction:

�
n�m

Ĥnm
D �

1

2 �
n�m

Bnm���n,�m
În+Îm− − 2ÎnzÎmz� , �6�

Bnm = −
1

2
�n�m�

1 − 3 cos2 �nm

Rnm
3 , �7�

where Rnm is the length of the vector joining nucleus n, and
nucleus m, and �nm is the angle of this vector relative to the

z magnetic-field direction. The ��n,�m
denotes that the flip-

flop interaction between nuclei with different gyromagnetic
ratios should be excluded because of Zeeman energy conser-
vation in the same way that the nonsecular part of the dipolar
interaction is suppressed. This occurs, for example, in GaAs
because the two isotopes of Ga and the isotope of As that are
present have significantly different gyromagnetic ratios. This
secular interaction corresponds to a Bnm matrix for Eq. �2�,
with Bnm, Bnm, and −2Bnm along the diagonal, respectively, in
the x−y−z spin basis for a pair of nuclei having the same

gyromagnetic ratios. �The ÎnzÎmz term plays an insignificant
role, which is why we use the same Bnm symbol, in different
fonts, for the scalar and the tensor.�

In addition to the dipolar interactions between nuclei, an
indirect nuclear-spin exchange,26–28,32,35 which is mediated
by virtual electron-hole pairs, may also have a significant
quantitative impact on SD in III-V materials.9 This interac-
tion takes the form

Ĥnm
Ex = Bnm

Ex În · Îm. �8�

The corresponding Bnm is Bnm
Ex =Bnm

Ex1. The leading contribu-
tion to this pseudoexchange interaction for nearest neighbors
may be expressed as26,35

Bnm
Ex =


0

4�

�n
Ex�m

Ex

Rnm
3

a0

Rnm
, �9�

where �n
Ex is the effective gyromagnetic ratio determined by

a renormalization of the electron charge density.9 This inter-
action has been experimentally studied many years ago.26–28

In GaAs quantum dots, these interactions can be comparable
to the direct dipolar interactions. There may be other local
interactions between nuclei in the bath, such as the indirect
pseudodipolar interaction32 or internuclear quadrapole inter-
action, but the dipolar and indirect exchange interactions
alone account for nuclear magnetic resonance line
shapes.9,26–28 In any case, all such local interactions may
easily be included in our formalism.

To summarize and put everything in a convenient general

form, we approximate our Hamiltonian as Ĥ
���	� 
Ĥ���	, where

Ĥ� = � Ĥeb + �Ĥbb. �10�

Ĥeb is the electron dependent part that plays the role of cou-

pling the electron spin to the bath, and Ĥbb includes secular
�preserving nuclear Zeeman energy� bath-bath, i.e., internu-
clear, interactions such as the secular dipolar interaction �Eq.
�6�� and the exchange interaction �Eq. �8��. Zeeman energies
are omitted from this Hamiltonian because they are pre-
served by all included interactions and, thus, not relevant to
the dynamics.

In the 	e→� limit,

Ĥeb �
1

2�
n

AnÎnz, �11�

with a factor of 1 /2 from the magnitude of the electron spin,
and An given by Eq. �3� with a proportionality to the square
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of the electron wavefunction at site n. To validate this ap-
proximate form, one may consider the effects of higher order
interactions of the canonical transformation, such as the HF-

mediated interactions �Eq. �4�� that contribute to Ĥeb �due to

its Ŝz dependence�. These higher order interactions introduce
additional decoherence mechanisms that will shorten coher-
ence times at lower magnetic fields. The main consideration
of this paper is the decoherence that may not be removed by
simply increasing the magnetic-field strength and is appli-
cable in the limit of a large applied field at the point where
decoherence is insensitive to the strength of the applied field.

B. Decoherence

We characterize decoherence as the expectation value of
the electron spin over the evolution of the experiment. Since

we consider a dephasing-only Hamiltonian of the form Ĥ
���	� 
Ĥ���	, we need only deal with dephasing decoher-
ence. Dephasing decoherence involves only the transverse
component of the electron spin. For a given experiment, we

define the up and down evolution operators, Û�, as evolution
operators for the bath given an initially up or down electron

spin. If we just have free evolution for a time t, then Û�

= Û0
�=exp�−iĤ�t�. In general, we can consider an experi-

ment with a sequence of � pulses that flip the electron spin
between periods of free evolution time � j, so that

Û� = . . . exp�− iĤ��2�exp�− iĤ��1� . �12�

The transverse component of the expectation value of the
electron spin will then decay, in magnitude, by a factor of

��Û−
†Û+
�= ��Ŵ
�, where Ŵ� Û−

†Û+, �…
 denotes an appro-
priately weighted average over the bath states, and �…� takes
the magnitude of the resulting complex number. The coher-

ence decay is thus characterized by ��Ŵ
�. In an echo experi-
ment, one initializes an ensemble of pure electron spin state
in some transverse direction, applies a sequence of � pulses
designed to refocus the spins, and observes an echo signal,

vE= ��Ŵ
�, at the end of the experiment.
Given an arbitrary initial bath density matrix written in

the form �̂b�� jPj	B j
�B j	, we may average Ŵ over bath
states with

�Ŵ
 = �
j

Pj�B j	Ŵ	B j
 , �13�

where each 	B j
 is a different bath state. By referring to the
energy scale estimates of Table I, temperatures on the milli-
Kelvin-Kelvin scale are justifiably treated as infinite with
respect to the nano-Kelvin scale intrabath interactions. The
remaining Zeeman and Fermi-contact HF interactions in our
approximate Hamiltonian quantize the nuclear spins in the z

direction �involving only Înz nuclear spin operators� and,
thus, we can approximate the initial bath density matrix as a
mixed state composed of uncorrelated pure nuclear spin
states in this basis so that

	B j
 � �
�n

��
m

pnm	In,m
n� , �14�

where In is the magnitude of the nth nuclear spin and 	In ,m
n
represents the state of the nth nuclear spin with a z projection
of m. The cluster approximation in Sec. III A will make use
of the assumption that the bath is initially uncorrelated �at
least, approximately�. Section IV will use the z quantization
as a further convenience.

C. Dynamical decoupling pulse sequences

If we simply let the system freely evolve, the decay of the
electron spin expectation value strongly depends on the type
of averaging we perform over bath states. If we consider an
ensemble of electron spins, each with its own bath, then we
will see rapid electron spin dephasing simply due to the dis-

tribution of HF nuclear fields, �nAnÎnz /2. This is known as
inhomogeneous broadening because it broadens the electron
spin precessional frequency due to inhomogeneity of the ef-
fective magnetic field. This, however, is an artifact of the
ensemble or our lack of knowledge of the effective nuclear
field of a static bath and not true decoherence. If we consider
a single electron spin with a known nuclear field, or a homo-
geneous ensemble which may be obtained through mode
locking,5 for example, we arrive at a dynamical decoherence
known as FID. In our dephasing model, FID can only arise
from interactions among bath elements, such as local dipolar
or nonlocal HF-mediated interactions.

Traditionally,18 nonhomogeneously broadened coherence
is measured from Hahn spin echoes. The Hahn echo se-
quence simply involves a single � rotation midway through

the evolution such that Û��t�= Û1
��t�= Û0

����Û0
����, with �

= t /2. We denote this sequence with �→�→�: free evolu-
tion for a time �, then a � pulse, then free evolution for a
time � again, with the arrows indicating the sequence ordered
in time. This sequence will reverse the effect of any inhomo-
geneous static field. What remains is SD induced by a dy-
namical nuclear bath. It is important to note, however, that
the effects of the Hahn echo go beyond the elimination of
inhomogeneous broadening. The Hahn echo is also a DD
sequence,36 in which the first order of the Magnus
expansion37 is removed by the fact that the time-averaged

Hamiltonian, proportional to Ĥ++Ĥ−�Ĥb, decouples the
qubit from the bath. For this reason, the Hahn echo does not
have the same effect as homogeneous �or single qubit� free
induction decay.9 In particular, the Hahn echo removes the
lowest-order effects of HF-mediated interactions.9 This is be-

cause HF-mediated interactions, having an Ŝz factor �Eq.

�4��, belong to Ĥeb, and if we consider only HF-mediated

intrabath interactions, then Û1
�=exp��iĤeb��exp��iĤeb��

= 1̂.
Given a DD sequence, such as the Hahn echo for a

dephasing system, coherence over a given net amount of
time may be increased through a rapid repetition of the basic
sequence. This strategy, known as bang-bang in the quantum
information community,38 gives coherence enhancement at
the cost of more frequent applications of � pulses. Pulses
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must be applied more frequently because errors due to higher
order terms of the Magnus expansion pile up over the course
of the sequence. A better strategy is to use recursion, rather
than repetition, to generate concatenated sequences.39 Such
CDD, with the Hahn echo as the base sequence, has been
shown15 to be effective for the SD problem. In fact, with
each concatenation, we demonstrated, in Ref. 15, coherence
enhancement with an increase in the time between pulses �let
alone, the net sequence time�.

With l�0 levels of concatenation, our CDD pulse se-
quence is recursively defined by39 plªpl−1→�→pl−1→�,
with p0ª�. CDD with l=0 is simply free evolution. At l
=1, we have p1ª�→�→�→�, which is simply the Hahn
echo �with an extra � pulse at the end to bring the electron
spin back to its original phase apart from the decoherence�.
With each concatenation, we do to the previous sequence
what the Hahn echo does to free evolution and, in this way,
we obtain improved DD. This sequence may be simplified by
noting that two � pulses in sequence do nothing. Thus,

pl ª �pl−1 → � → pl−1 odd l

pl−1 → pl−1 even l
� �15�

�again, arrows indicate sequences ordered in time� and the up
and down evolution operators at level l have the recursive
form of13

Ûl
� = Ûl−1

� Ûl−1
� . �16�

Recently, a series of DD sequences was discovered by
Uhrig17 to be optimal in the number of pulses for the spin-
boson model. The n-pulse sequence in this series may be
defined by

� j =
1

2
�cos���j − 1�

n + 1
� − cos� �j

n + 1
�� �17�

for 1� j�n+1. Unlike CDD, Uhrig DD �UDD� requires
only a linear �rather than exponential� overhead in the num-
ber of pulses for each order of coherence enhancement. Fur-
thermore, UDD was shown16 to kill off successive orders in
a time expansion in a completely model-independent man-
ner. The UDD sequence has a strong advantage over CDD in
its linear versus exponential scaling of the number of pulses;
however, it is effective only when a time expansion is con-
vergent, while CDD is also effective in the intrabath pertur-
bation for SD �this is important since Bnm�An�.

In Sec. IV, we will discuss the wavefunction dependence
in the short-time approximation. It would be natural to dis-
cuss this in the context of the UDD series since UDD is
effective in this short-time limit. However, the methods of
Sec. IV C work for the CDD series but, unfortunately, do not
work for the UDD series. In this work, we therefore focus
attention on FID and the CDD series. Note, however, that the
UDD and CDD series are the same for levels zero �FID�, 1
�Hahn18�, and 2 �CPMG12,40�.

III. CLUSTER METHOD

In this section, we review our cluster expansion
method8,11 for solving the SD problem in a particularly

simple and illuminating form. Section III A gives the basic
cluster expansion result, the cluster approximation, in which

we equate �Ŵ
 �see Sec. II B� to the exponentiation of single-
cluster contributions. This is useful because perturbation

theory cannot be directly applied to �Ŵ
, but it can be ap-
plied to its single-cluster contributions �it is the multicluster
contributions that are particularly problematic for perturba-
tion theories due to the large number of possibilities in
combing different clusters�. We consider aspects of such per-
turbation expansions in Sec. III B that will be relevant to
Sec. IV.

A. Cluster approximation

The cluster expansion is based on the fact that our Ĥ�

Hamiltonians couple nuclei via relatively weak pairwise in-
teractions in a large bath with N nuclei �any n-way interac-
tions could justify such an approximation as long as n�N�.
The Ŵ operator, which is the product of evolution operators

arising from Ĥ�, can, in principle, be expanded into a sum
of products of the Hamiltonian interaction elements. The in-
teraction elements of each such term will uniquely determine
a set of clusters of nuclei; each cluster, with respect to this
term, may involve interactions among itself but not among
any other cluster, and no cluster may be divided into further
subclusters. For example, a term with B1,2I1+I2−B3,4I3+I4−
forms two clusters, �1, 2
 and �3, 4
, while
B1,2I1+I2−B2,3I2+I3− forms a single cluster of �1, 2, 3
. The
term “cluster” implies proximity among the member nuclei
as applicable to local dipolar interactions; however, we may
also treat nonlocal HF-mediated interactions using the term
cluster in a more general sense as a set of nuclei that are
interconnected by interactions under consideration.

If one considers a perturbative expansion of �Ŵ
 with re-
spect to the pairwise interactions, one immediately faces the

problem that the number of terms of Ŵ scales in powers of N
with successive inclusion of the pairwise interactions, de-
stroying any hope of convergence when N is large. To re-

solve this problem, let us first partition Ŵ according to the
number of clusters involved in each term such that

Ŵ = �
p=0

N

Ŵ�p�, �18�

where we define Ŵ�p� as the sum of the terms from Ŵ that

involve p independent clusters. Note that Ŵ�0�= 1̂. By consid-
ering only local interactions �e.g., dipolar�, then it is apparent

that a perturbative expansion of �Ŵ�1�
 with respect to the
pairwise interactions does not suffer from the adverse N scal-

ing suffered by �Ŵ
 because, when interactions are local,
there are O�N� clusters of any size. Even with nonlocal in-

teractions, the perturbative expansion of �Ŵ�1�
 is a generally
significantly better controlled expansion for large N than that

of �Ŵ
.
Assume that, arising from a perturbative expansion with

respect to the pairwise interactions, Ŵ�1� is well approxi-
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mated when only including contributions due to clusters of
some maximum size that is much less than N. Along with our
assumption that the bath nuclei are initially uncorrelated, Ap-

pendix A shows that �Ŵ�k�
��Ŵ�1�
k /k! �Eq. �A5��. This ap-
proximation breaks down as k becomes significant relative to
N; however, for a large enough bath where the previous as-
sumptions are met,

�Ŵ
 � exp��Ŵ�1�
� �19�

and

vE = ��Ŵ
� � exp�Re��Ŵ�1�

� . �20�

A formalized cluster expansion, with a discussion on conver-
gence tests, is presented in Ref. 11. The cluster approxima-
tion presented in this section gives an equivalent result with
a simpler derivation.

B. Single-cluster perturbation

Given the result of Eq. �20�, we have reduced the problem
of SD decoherence to that of perturbatively treating

Re��Ŵ�1�


. That is, we wish to consider a perturbative ex-

pansion of Ŵ where we neglect terms involving multiple
clusters. To be consistent with the cluster approximation,
such a perturbation should be directly or indirectly tied to
cluster size so that large clusters may be neglected. To this
effect, we may perturbatively treat the pairwise interactions
�the intrabath perturbation� or we may consider a time ex-
pansion which, in a sense, perturbatively treats all of the
interactions �e.g., HF, dipolar, and HF mediated�; in either
case, larger clusters require more interaction factors and
thereby increase the order of the perturbation.

In this section, we will consider general perturbative
properties that apply to both the intrabath and time perturba-
tion expansions. In Sec. IV, we will specifically consider the
time perturbation and see how it may be used in the formu-
lation of a convenient continuum approximation. In a pertur-
bation whose order increases with increasing cluster size, the

lowest order of �Ŵ
−1 is equivalent to the same order of

�Ŵ�1�
 because terms of Ŵ with multiple clusters are auto-
matically higher order terms �products of lower order terms�.
To the lowest order, then, and in the context of CDD with l

levels of concatenation, we will consider �Ŵ
.
By noting that Ûl

� are unitary operators such that

�Ûl
��†Ûl

�= 1̂, we may write

Re��Ŵl

 =
1

2
��Ûl

−�†Ûl
+ + �Ûl

+�†Ûl
−
 �21a�

=1 −
1

2
��l

†�l
 , �21b�

where we define �l� Ûl
+− Ûl

−. Thus, ��l
†�l
 gives a measure

of the decoherence. By applying the recursive definitions for

the Ûl
� evolution operators �Eq. �16��,

�̂l � Ûl
+ − Ûl

− = �Ûl−1
− ,Ûl−1

+ � = �Ûl−1
− ,�̂l−1� , �22�

since Ûl−1
− commutes with itself.

Let us consider a perturbation with a smallness parameter

� in which Ûl
�= 1̂+O��� for all l� l0 for some l0. Two such

perturbations are the time expansion with �=�, l0=0 �since
no evolution occurs in the �→0 limit� and intrabath pertur-
bation with �=�, l0=1 �since there is a perfect spin echo
refocusing in the �→0 limit�. Because the identity commutes

with anything, it is easy to see from Eq. �22� that �̂l=O���
��̂l−1 for all l� l0; this proves that we get successive can-
cellations of the low-order perturbation �� or �� with each
concatenation of the sequence.15 The lowest-order result is
given by

�̂l � ��� d

d�
Ûl−1

− �
�=0

,�̂l−1�, ∀ l � l0. �23�

Conveniently, for all l� l0,

� d

d�
Ûl

��
�=0

= � d

d�
Ûl−1

+ �
�=0

+ � d

d�
Ûl−1

− �
�=0

= 2l−l0� d

d�
�Ûl0

+ + Ûl0
− �/2�

�=0
, �24�

so that Eq. �23� becomes

�̂l � ��2l−l0−1�� d

d�
� Ûl0

+ + Ûl0
−

2
��

�=0
,�̂l−1� , l � l0

� d

d�
�Ûl0

+ − Ûl0
− ��

�=0
, l = l0.�

�25�

Note that in the l= l0+1 case, Eq. �22� yields

�̂l0+1 � �2�� d

d�
Ûl0

− ,
d

d�
Ûl0

+��
�=0

, �26�

which is equivalent to the corresponding case in Eq. �25�,
recalling that any operator commutes with itself.

IV. WAVEFUNCTION DEPENDENCE IN THE SHORT-
TIME LIMIT

In this section, we use the formalism developed in Sec.
III, with the cluster approximation and general perturbation
formulation of Sec. III B, to derive results applicable in a
short-time limit and use these results to formulate a con-
tinuum approximation useful for understanding the depen-
dence of spectral diffusion on the shape of the electron wave-
function. In Sec. IV A, we apply the general results of Sec.
III B to obtain the lowest time perturbation results of

Re��Ŵ�1�

. This is done for the cases of free induction decay
and concatenated echoes. Section IV B shows how the
nuclear dependent and electron dependent parts of this
lowest-order time perturbation solution may be separated in
a way that allows us to generically treat the bath for any
electron wavefunction. Section IV C takes this one step fur-
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ther by treating the bath as a continuum so that we may
obtain results via integration for any given electron wave-
function. In Sec. IV D, we discuss the circumstances in
which the time expansion may or may not be applicable.

A. Time perturbation

Section III B considered the perturbations of concatenated
Hahn sequences in a general sense in the context of the clus-
ter approximation of Sec. III A. Now, we are specifically
interested in the time expansion. We first address this in the
case of FID and then treat the Hahn sequence and its concat-
enations.

1. Free induction decay

The l=0 result of �̂= Û+− Û−, without any pulses, gives

�0=−2iĤeb�. Where Ĥeb=�nAnÎnz /2, this result for �0 is
simply due to inhomogeneous broadening. In the case of free
induction decay, we are not concerned with inhomogeneous
broadening and would like to obtain the SD decoherence of a
single electron spin �or a mode-locked ensemble5�. We may
do this by entering the rotating frame of reference for the
electron precessing in the nuclear field. This may be done,

effectively, by making the transformations, Û0
��t�

→ Û0
��t�exp��iĤebt�. For free induction decay, we then ob-

tain

�̂0 = �Ĥeb,Ĥb�t2. �27�

The free induction decay is then given by Eq. �20� via Eq.

�21b� with this form of �̂0.

2. Concatenated dynamical decoupling

We now consider the Hahn echo sequence and its concat-
enations: l�1. There is no need to go into a rotating frame
as we did for FID because these sequences automatically
reverse the effects of inhomogeneous broadening. We will
apply Eq. �25� by using �=�. In the limit of �→0, no evo-

lution can occur, so it is apparent that 	Û0
�	�=0= 1̂ and, thus,

l0=0 in this context. For l=1, the Hahn echo �Eq. �25�� be-
comes

�̂1 � 2�Ĥeb,Ĥb��2. �28�

Note that there is a simple relationship between Eqs. �28�
and �27� for the Hahn echo and FID, respectively. The rela-
tionship is not so simple when we move away from the 	e
→� limit and consider HF-mediated interactions. In that
situation, as discussed in Ref. 9, the lowest-order contribu-
tion to FID in the time expansion will come from HF-
mediated interactions, but this lowest-order effect will be
cancelled in the Hahn echo.

To consider concatenations of the echo, we simply apply
the recursion of Eq. �25� to obtain

�̂l = − 2�l2−l+2�/2�. . .��Ĥeb,Ĥb�,Ĥb�, . . . ��i��l+1

+ O��l+2�, ∀ l � 0, �29�

with l nested commutations abbreviated by …’s. As a result

of these nested commutations and as observed in Ref. 15,
each concatenation introduces larger cluster sizes to the
lowest-order expression �i.e., each time we commute with

Ĥb, we may introduce an additional nuclear site to any term
of this operator�.

B. Pair “correlations”

A reasonable assumption for many solid-state spin baths

is that the bath Hamiltonian Ĥb, which excludes qubit-bath
interactions, is homogeneous. That is, sites that are equiva-
lent in terms of the Bravais lattice are equivalent with regard
to bath interactions. A notable exception to this is where
isotopes in the lattice are interchangeable; for example, three
different isotopes of Si may occupy any lattice site in Si, and
two different isotopes of Ga may occupy the Ga sublattice in
GaAs. However, if we simply want to know the decoherence
that results from averaging different types of isotopic con-
figurations, then we may regard the bath �apart from the
qubit interactions� as homogeneous and use isotopic prob-

abilities in expressions for Ĥb. Then the only inhomogeneity

is in the interactions with the qubit, Ĥeb. We can then factor
out this inhomogeneous part and compute the rest in a way
that is independent of the qubit interactions. This will be
convenient, for example, when analyzing a quantum dot in
which the wavefunction of the electron �whose spin repre-
sents the qubit� can take on many shapes and sizes.

By referring to Eqs. �27� and �29�, we can make the fol-
lowing factorization of the homogeneous and nonhomoge-

neous parts of ��̂l
†�̂l
 �determining SD via Eqs. �21b� and

�20��:

1

2
	��̂l

†�̂l
		e→� = �
n,m

A
n
*Amfn,m

�l� �p + O��p+2� , �30�

where

p�l� = �4, l = 0

2l + 2 l � 0.
� �31�

For l=0 �FID�,

fn,m
�0� =

1

2
��F̂nz

�0��†F̂mz
�0�
 , �32�

F̂nz
�0� = �Înz,Ĥb� , �33�

and for l�0,

fn,m
�l� � �− ��l+1�2�l2−l+1���F̂nz

�l��†F̂mz
�l� 
 , �34�

F̂nz
�l� = �. . .��Înz,Ĥb�,Ĥb�, . . . � . �35�

where the …’s again denote l nested commutations.
Since we assume the high field limit where secular cou-

pling Ĥb preserves nuclear polarization, �Ĥb ,�nÎnz�=0 so
that �mfn,m

�l� =�mfm,n
�l� =0 for any n. Then, fn,n

�l� =−�m�n �fn,m
�l�

+ fm,n
�l� � /2. By using this fact, we may rewrite Eq. �30� in

terms of the differences of the HF constants; after all, if An is
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the same for all nuclei, there is no nuclear induced spectral
diffusion in the high field limit �nuclear flip-flops would have
no effect on the electron�. We will assume that the HF con-
stants are real, An=A

n
*, as is the case for the Fermi-contact

interaction �Eq. �3��. Then,

�
n,m

AnAmfn,m
�l� =

1

2 �
n�m

AnAm�fn,m
�l� + fm,n

�l� � + �
n

An
2fn,n

�l� =

−
1

4 �
n�m

�An − Am�2�fn,m
�l� + fm,n

�l� � . �36�

Thus, in the short-time limit of Eq. �30�,

1

2
��̂l

†�̂l
 � −
1

2 �
n�m

�An − Am�2 Re�fn,m
�l� 
�p. �37�

The homogeneous part is represented by fn,m
�l� , and by exploit-

ing this homogeneity, we note that this function is equivalent

when we shift by any Bravais lattice vector, R� : f �l��r�n ,r�m�
� fn,m

�l� = f �l��r�n−R� ,r�m−R� �. We may then relate any r�n−R� to
one of the basis sites of the Bravais lattice, so then, with b
representing the corresponding basis site of r�n, we may write

fn,m
�l� = fb

l �r�n − r�m� . �38�

C. Continuum approximation

The pair correlation formulation above is particularly con-
venient in the context of a continuum approximation for HF
coupling constants. From the Fermi-contact HF interaction
�Eq. �3��,

An =
8�

3
�e�n��dnVu

a3 �P�r�n� , �39�

where dn is the charge density for the isotope at site n, Vu is
the volume of the unit cell of the Bravais lattice, a is the
lattice constant, and P�r��� ���r���2 is the electron’s probabil-
ity density normalized such that �d3r�P�r�� /a3=1.

Let � characterize the correlation length scale from Eq.
�34�. Then, if 	�iP	 / 	�ij

2 P	��, where �i=� /�xi and �ij
2

= �� /�xi��� /�xj�, for a given n and m pair in Eq. �30�, we may
use

P�r�n� − P�r�m� � �r�n − r�m� · �� P�r�m� . �40�

Furthermore, by using a continuum approximation where we
replace one of the summations with an integral, Eq. �37� then
becomes

1

2
��̂l

†�̂l
 � −
�p

2 �
j

Cj
l � d3r�

a3 �r� j · �� P�r���2, �41�

where

Cj
�l� = nc��8�

3
�e�I�dI�Vu

a3 ��2

f I
�l��r� j��

I

�42�

and nc is the number of sites in the conventional cell �of
volume a3� and �. . .
I averages over different isotopes. Note

that nc is equal to the number of basis sites multiplied by
a3 /Vu.

By rearranging Eq. �41�,

1

2
��̂l

†�̂l
 � �p� d3r�

a3 ��� P�r���TM�l���� P�r��� ,

M�l� = −
1

2�
j

�r� j��r� j�TCj
�l�, �43�

where x�T denotes the transpose of any vector x�, �r� j��r� j�T is an
outer product, and M�l� is a matrix. It is important to note
that M�l� is independent of the electron wavefunction �or its
probability density�; these are constants that are predeter-
mined for a particular lattice and applied magnetic-field di-
rection. The wavefunction dependence is entirely of the form
�d3r���iP�r����� jP�r���. Being symmetric, we may diagonalize
M�l� to the form M�l�=�iu� iu� i

Tmi
�l� so that

1

2
��̂l

†�̂l
 � �p�
i

mi
�l� � d3r�

a3 �u� i · �� P�r���2. �44�

Details of how we actually computed M�l� for various sys-
tems are given in Appendix B.

Putting this in yet another form,

1

2
��l

†�l
 = � �

�0
�l��p�l�

+ O��p�l�+2� , �45�

1

��0
�l��p�l� � �

i

�d3r��u� i · �� P�r���2/a
�
i

�l��p�l� , �46�

where p�l� is defined by Eq. �31� and the 
i
�l�

= �mi
�l� /a2�−1/�2l+2� have units of time. For a given concatena-

tion level l, the echo signal �Eq. �20�� is approximately

vE � exp�− ��/�0
�l��p�l�� �47�

in the limits of a strong applied magnetic field and in the
short-time approximation �i.e., extrapolated from the short-
time behavior which may or may not be valid at �=�0�.

We will now treat, specifically, the case of a quantum well
with thickness z0 and Fock–Darwin radius r0 �resulting from
a combination of parabolic confinement and confinement due
to the magnetic field�.6 In this case, the wavefunction is sinu-
soidal in the z direction and has a Gaussian form in the
lateral direction. The probability density is of the form

P�x,y,z� � exp�−
x2 + y2

r0
2 �cos2��

z0
z��� z0

2
− 	z	� . �48�

Let us consider the case where the z vector is an eigenvector
of M�l� �e.g., when the problem, with the applied magnetic-
field direction, is symmetric about the z axis�. By recalling
that P�r�� should be normalized such that �d3r�P�r�� /a3=1,

� d3r�� �P�r��
�x

�2

=� d3r�� �P�r��
�y

�2

=
3a6

4�z0r0
4 , �49�
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� d3r�� �P�r��
�z

�2

=
�a6

z0
3r0

2 . �50�

We may simply plug these into Eq. �46� as follows:

�0
�l� = ���a/z0�2

Na
�
z

�l��−p�l� +
3�a/r0�2

2�Na
�
x

�l��−p�l��−1/p�l�

,

�51�

defining Na=V /a3 as the number of a�a�a lattice cubes in
a quantum dot of volume V=z0r0

2. When r0�z0, for example,
we have

�0
�l� � 
z

�l��Na�z0/a�2

�
�1/p�l�

. �52�

Table II shows computed values of 
i
�l� for the GaAs or

InAs lattice with 0� l�3 �free induction decay, Hahn echo,
and up to three levels of concatenation�. Subscripts of 
 in
this table indicate corresponding eigenvector, u� i, lattice di-
rections. GaAs and InAs both have a zinc-blende structure
with the 75As atoms on one of the two fcc lattices and re-
spective lattice constants of 5.65 and 6.06 Å.41 The natural
abundance of Ga isotopes are 60.4% 69Ga and 30.2% 71Ga,
and the natural abundance of In isotopes are 4.3% 113In and
95.7% 115In.42 The gyromagnetic ratios are �I
= �4.60,8.18,6.43,5.90,5.88��103�s G�−1 for 75As, 71Ga,
and 69Ga, 113In, and 115In, respectively.43 We have also used
the following respective charge densities d�I�
= �9.8,5.8,5.8,2.3,2.3��1025 cm−3; these charge densities
were estimated in Ref. 44 for GaAs and estimated in Ref. 14
using the technique in Ref. 44 for InAs. The Ga and As
nuclei have spin magnitudes of I=3 /2 and the In nuclei have

spin magnitudes of I=9 /2, which we account for properly.
The table shows the results for an applied magnetic field in
the �001� or �110� lattice directions. For the bath-only Hamil-

tonian ĤB, we have included the secular dipolar interaction
�Eq. �6�� and, for GaAs, indirect exchange interaction �Eq.
�8�� with28 Bnm

Ex =−�n�m���2.6 Å /2Rnm
4 �. The table shows

GaAs results when we include or exclude indirect exchange
interactions; the remainder of the table only considers spec-
tral diffusion induced by dipolar interactions among bath nu-
clei. Because of the near degeneracy of the In gyromagnetic
rations and the natural predominant abundance of 115In, we
simply show results for 100% 115In; this should also yield the
lower bound of dipolar-induced spectral diffusion decoher-
ence times for any InAs/GaAs mixture �since In induces the
strongest decoherence due to its large I=9 /2 spin�. Mixing a
little Ga into InAs or even mixing a little In into GaAs will
increase decoherence times as a result of the reduced prob-
ability for any given cluster to be of the same nuclear isotope
�only these clusters can contribute in the high magnetic field
limit�. Contributions from the As nuclei to decoherence is
unavoidable in any such mixure; we thus give As-only re-
sults in the table as an upper bound for decoherence times in
InAs/GaAs mixtures. This As contribution, however, will
vary depending upon lattice constant; we give the full range
in which slightly longer decoherence times result from using
the slightly larger InAs lattice constant and vice-versa for the
GaAs lattice constant.

It is important to note that the decay time for the overall
CDD pulse sequence at level l is t0=2l�0. Values of � repre-
sent the time between pulses rather than the overall time.
Thus, the fact that the values of 
i �related to �0 via Eq. �46��
increase in Table II as l increases beyond l=1 yields extra

TABLE II. GaAs and/or InAs material 
i parameters �see Eqs. �46� and �47�� in microseconds with the
magnetic field, B, in the �001� or �110� lattice directions. Considers only dipolar interactions except for values
in parentheses that also include indirect exchange.

Level

B � �001� B � �110�


�100�,�010� 
�001� 
�110� 
�11̄0� 
�001�

GaAs with natural isotope abundances

l=0 0.36 �0.29� 0.33 �0.37� 0.36 �0.28� 0.28 �0.31� 0.41 �0.30�
l=1 0.25 �0.21� 0.23 �0.26� 0.26 �0.22� 0.20 �0.20� 0.29 �0.22�
l=2 2.2 �1.8� 2.0 �2.1� 2.1 �1.7� 1.7 �1.8� 2.2 �1.8�
l=3 4.1 �3.6� 3.6 �3.7� 3.8 �3.2� 3.2 �3.3� 3.9 �3.2�

InAs with 100% 115In

l=0 0.29 0.26 0.30 0.23 0.34

l=1 0.20 0.19 0.21 0.16 0.24

l=2 1.6 1.4 1.5 1.2 1.6

l=3 2.7 2.4 2.6 2.2 2.6

As only �upper bound for GaAs/InAs mixtures�
l=0 0.49–0.55 0.45–0.50 0.50–0.56 0.38–0.43 0.57–0.63

l=1 0.35–0.39 0.32–0.35 0.36–0.40 0.27–0.30 0.40–0.45

l=2 3.3–3.8 2.9–3.4 3.2–3.6 2.6–2.9 3.2–3.7

l=3 6.5–7.5 5.6–6.5 6.2–7.1 5.1–6.0 5.8–7.1

W. M. WITZEL AND S. DAS SARMA PHYSICAL REVIEW B 77, 165319 �2008�

165319-10



coherence time enhancement beyond the 2l extension of t0.
That is, as noted in Ref. 15, not only does concatenation
increase the net coherence time, but it also decreases the
frequency at which one must apply pulses in order to main-
tain coherence.

Figure 2 demonstrates the accuracy of the continuum ap-
proximation compared with exact cluster calculations for
Gaussian shaped quantum dots. It also shows that the con-
tinuum approximation is best for large dots and deviates as
we consider smaller dots. In fact, it has been clearly
reasoned6 that the decay time must approach infinity as the
quantum dot size approaches zero extent, but the continuum
approximation fails to capture this trend.

D. When is the short-time limit appropriate?

The short-time behavior will be exhibited on a time scale
that is short relative to the time scale of the dynamics of the

relevant cluster contributions in Ŵ�1�. Because a large num-
ber of these cluster contributions are added together in

Re��Ŵ�1�

 �and then exponentiated to yield vE from Eq.
�20��, it is possible for the decay of the echo, vE, to occur on
a time scale that is small relative to the dynamical time
scales of any significantly contributing cluster. In particular,
the decay will exhibit a short-time behavior when the clus-

ters with the fastest dynamics dominate Re��Ŵ�1�

. When
there is a mixture of dynamical time scales playing a role,
then the short-time behavior will be washed out by oscilla-
tions generated by HF-induced precessions of the nuclei.

In considering the dynamical time scale of a cluster con-
tribution, we really want to know the effect of this cluster on
electron spin dephasing. This is determined by the difference
in HF energies �with a reciprocal relationship between time
and energy� for different spin polarization configurations of
the nuclei in the cluster. In the extreme case that all of the
HF energies are the same, there is no spectral diffusion in-
duced �the dynamical time scale is infinite�. The dynamical
time scale is also determined by the interactions between the
nuclei that can cause changes in the spin polarization con-
figurations �turning these interactions off will also shut off
spectral diffusion�; however, we can estimate a lower bound
time scale from just the inverse of differences in HF energies
among the cluster.

We first address the 	e→� limit and later discuss, briefly,
the short-time behavior of HF-mediated interactions. Our
previous8,11,12 results in the 	e→� limit show that the echo
decay typically exhibits a short-time behavior in quantum
dots with assumed Gaussian shaped wavefunctions but not in
donors with exponential-like wavefunctions. This is under-
stood in the following way. In the case of the donor, the
fastest dynamics come from those few nuclei in the center
that have large differences in HF energies. These are too few
in number to dominate the decay; therefore, a mixture of
time scales must play a role, slowing down but contributing
more as we consider clusters further from the center, and the
short-time behavior is washed out. For a quantum dot with a
Gaussian shaped wavefunction, however, the fastest contri-
butions occur where the wavefunction gradient is large in a
ring around the dot at a radius of the characteristic size of the
dot. There are many such clusters that are collectively ca-
pable of dominating the echo decay so that it will exhibit a
short-time behavior. These arguments are illustrated in Figs.
3 and 4.

There is a simple self-consistent check of the short-time
behavior �Eqs. �45� and �46�� in the 	e→� limit by com-
paring �0 to the fastest dynamical time scale estimated by the
maximum gradient multiplied by the lattice spacing �as a
typical distance scale between nuclei�. Thus, the short-time

behavior is valid when �0�1 / �a max	�� A�r��	�. For an elec-
tron probability density of the form of Eq. �48�,
max	�� A�r��	�max�An /r0 ,An /z0�. With r0�z0, the dynamical
time scale has more to do with the position of the cluster in
the z direction rather than the radial direction with a time
scale estimate of ��z0 /aAn. With a 10 nm quantum dot
thickness for z0 and lattice constant of about 0.5 nm, this sets
a time scale of about 10 
s. This estimation is slightly pes-
simistic because we have computed cluster expansion results
for z0=10 nm and r0=100 nm to obtain �0�25 
s Hahn
echo decay exhibiting the short-time behavior even though
�0�10 
s. However, our 10 
s estimate is expected to be
overly short because the dynamics is slowed by the weak
10 ms dipolar coupling �necessarily involved in any decoher-
ence in the 	e→� limit�.

This paper is primarily restricted to the 	e→� regime.
For the moment, however, let us consider a finite 	e and
discuss the question of short-time behavior validity with HF-
mediated interactions. Because these are nonlocal interac-
tions, differences in HF energies can be as large as the HF
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FIG. 2. �Color online� Hahn echo total decay times, t0
1=2�0

1, for
GaAs quantum dots with various Fock-Darwin radii r0 and thick-
ness z0 comparing the continuum approximation results �solid lines�
to 1 /e decay times obtained via the cluster expansion and previ-
ously presented in Ref. 11. This example includes dipolar but not
indirect exchange interactions; it therefore slightly overestimates
the decay time.
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energies themselves. This sets a dynamical time scale on the
order of 1 /An�1 
s. Also, the fact that HF-mediated inter-
actions are weak does not help too much in this case because
there are N�105 nuclei with which a given nucleus may
interact; this yields a strong collective interaction of about
NAnm�An. In a manner of thinking, on a microsecond time
scale, a given nucleus is likely to flip-flop with some other
nucleus in the bath through the HF-mediated interaction. On
the other hand, flip-flops between nuclei with large differ-
ences in HF energies will be suppressed due to HF energy
conservation. For this reason, clusters with the fastest dy-
namics, those with large HF energy differences, will give
weak contributions due to energy conservation, while the
larger contributors with matching HF energies will have slow
dynamics. This leads to a situation similar to that of the
donor electron in the 	e→� limit, where the fastest con-
tributors cannot dominate and, therefore, the short-time be-
havior is washed out. A proper treatment of HF-mediated
interactions, therefore, would not use the time perturbation;
instead, we should use the intrabath perturbation, perturba-
tively treating both dipolar and HF-mediated interactions
with respect to the HF interaction.

The short-time behavior that we consider in this paper,
with its convenient application in the continuum approxima-
tion, only applies in the 	e→� limit, where the HF-
mediated interactions are negligible. How large does 	e need
to be for this limit to apply? We may pose this question
differently to ask: How does 	e affect the time scale of

short-time behavior convergence? If we can push this time
scale sufficiently larger than �0, the short-time behavior will
emerge. The HF-mediated interaction represents the lowest-
order interaction with a magnetic-field dependence, Anm
=AnAm /4	e. The time scale of the fast dynamics due to the
HF-mediated interactions will be a combination of the differ-
ence in HF energies ��An� and the collective HF-mediated
energy ��NAnm� to give a time scale of ��AnNAnm�−1/2

��	e. Therefore, according to this simple argument, it is
necessary to quadruple 	e in order to double the time scale
of the short-time behavior as long as HF-mediated interac-
tions are dominant over local internuclear interactions. The
lowest-order effects of HF-mediated interactions, however,
are reversed by any DD refocusing technique. Therefore, this
argument is only relevant for FID.

V. SINGLET-TRIPLET DOUBLE QUANTUM DOTS

Remarkable experiments have recently3,4 investigated the
coherence properties of a single qubit in GaAs quantum dots.
In the earlier of these experiments,3 the qubit was not the
spin of a single electron but, rather, a subspace of two elec-
tron spins, each in separate quantum dots with a controllable
exchange interaction between the two dots. The qubit states
are represented by the two-electron spin states with zero total
spin, 	↑ 
1 � 	↓ 
2 and 	↓ 
1 � 	↑ 
2, where the 1 and 2 subscripts
label the dots �and contained electrons�. An applied magnetic
field protects each electron spin from depolarization; at the
same time, the degeneracy of the zero-spin subspace is pro-
tected from uniform magnetic-field fluctuations.45 Electro-

0 1 2

r / r0

prob. density
gradient
contribution

-1 0 1

z / z0

prob. density
gradient
contribution

FIG. 3. �Color online� A comparison of the position dependence
of the electron probability density, absolute value of the gradient of
this density �strictly speaking, � �

�r P�r��� and � �
�z P�r��� for the top and

bottom graphs, respectively�, and the resulting contribution to the
short-time behavior of SD �integrand of Eq. �46� �r� �

�r P�r���2 and
�� �

�z P�r���2 for the top and bottom graphs, respectively� for a later-
ally confined quantum dot of the form of Eq. �48�. The curves have
arbitrary vertical scales. The short-time behavior exhibited by the
SD decay of such quantum dots is related to the fact that the maxi-
mum contributions occur roughly where the gradient is maximum
and differences in HF coupling among neighboring nuclei are large.

0 1 2 3 4

r / r0

prob. density
gradient
contribution

FIG. 4. �Color online� A comparison of the position dependence
of the electron probability density, absolute value of the gradient of
this density, � �

�r P�r�� ��P�r��, and the resulting contribution to the
short-time behavior SD �integrand of Eq. �46� �r2� �

�r P�r���2� for an
electron with an exponential probability density of the form P�r��
=exp�−r /r0�, where r= �r��. Donor bound electrons, such as in Si:P,
have an exponential-type decay �though not quite as simple�. The
curves have arbitrary vertical scales. The failure of the time expan-
sions in such systems is related to the fact that the maximum con-
tributions do not occur where the gradient is maximum.
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static potentials are used to manipulate the electrons. State
preparation and final readout are performed by biasing the
two electrons, with an applied voltage, into the same dot so
that the singlet state, �	↑ 
1 � 	↓ 
2+ 	↓ 
1 � 	↑ 
2� /�2, has the
lowest energy because of the Pauli-exchange interaction.45,46

Voltage control is also used to turn on an exchange interac-
tion by allowing the wavefunction of the two electrons on
different dots to overlap; such control can be used to rotate
the qubit.45,46 By using this control, one can apply � pulses
in order to perform a Hahn echo sequence or any other DD
sequence �such as those discussed in Sec. II C� to prolong
the coherence of the qubit.

We can simply map this two-electron qubit into our
single-spin qubit formalism. For convenience, we will define
	0
= 	↑ 
1 � 	↓ 
2 and 	1
= 	↓ 
1 � 	↑ 
2 as our two qubit basis
states. Turning on the exchange interaction will split the en-
ergies of the �	0
+ 	1	� /�2 and �	0
− 	1	� /�2 superposition
states and thereby rotate the qubit in a “transverse” direction
as required for a DD sequence that combats dephasing. In
order to obtain the free evolution Hamiltonian needed by our
formalism, we simply need to derive the qubit-bath Hamil-

tonian, ĤebŜz, from the qubit-bath interactions in each of the

two dots, Ĥeb
�1�Ŝ1z+Ĥeb

�2�Ŝ2z, by taking its matrix elements in
terms of our qubit basis states. With these definitions where
we only have a dephasing coupling between the qubit and

the bath, it is clear that �0	Ĥeb
�1�Ŝ1z+Ĥeb

�2�Ŝ2z	1
= �1	Ĥeb
�1�Ŝ1z

+Ĥeb
�2�Ŝ2z	0
=0; we thus have only the following dephasing

qubit-bath interaction:

Ĥeb = 2�0	Ĥeb
�1�Ŝ1z + Heb

�2�Ŝ2z	0


= − 2�1	Ĥeb
�1�Ŝ1z + Heb

�2�Ŝ2z	1
 �53a�

=Ĥeb
�1� − Ĥeb

�2�. �53b�

For each dot i, the qubit-bath interaction is given by

Ĥeb
�i� =

1

2 �
n�doti

An
�i�Inz +

1

2 �
n�m�doti

Anm
�i� În+Îm−. �54�

During the free evolution part of the pulse sequence, the two
electrons must essentially have no overlap in their wavefunc-
tions; therefore, An

�i� will only be nonzero when n represents
a nucleus in dot i. This is the justification for summing over
only the relevant dot in Eq. �54�.

Assuming that the internuclear interactions occur only
within the same bath �and that the bath is initially uncorre-
lated�, then the problem fully decouples into spectral diffu-
sion problems for dots 1 and 2 separately. With regards to

Ŵ�1� in the cluster approximation �Eq. �20��, we simply need
to sum the cluster contributions in the two dots separately. In
a random unpolarized bath with two equivalent dots, the
cluster contributions in each dot will be identical; then vE is
simply the squared value of the echo for the problem of a
single electron in just one of the dots. There should, thus, be
no qualitative difference between the spectral diffusion of a
single-spin qubit and this double-spin qubit; a prediction of
vE�exp�−�� /�0�4� for a single-spin qubit will carry over to
the double-spin qubit.

Although the reported Hahn echo decay time T2 of Ref. 3
is compatible with our theory �which disregards other deco-
herence mechanisms� as a limiting case, it is clear that the
experimental echo decay does not match the exp�−�� /�0�4�
form. The experimentalists seem to be observing a decoher-
ence mechanism that we are not treating. They report that the
T2 time increases with an increase in magnetic field3; there-
fore, they must not be operating in the high field limit re-
gime. Our results may be viewed as yielding the best deco-
herence times achievable by increasing the applied magnetic
field.

Dynamic nuclear polarization and the “Zamboni effect”

To minimize the effects of decoherence due to a bath of
nuclear spins, one strategy is to polarize the nuclei. When
they are polarized, they cannot flip-flop. This is particularly
appealing in III-V semiconductors, where all of the isotopes
have nonzero spin. Recent experiments have successfully
achieved some degree of nuclear polarization in double
quantum dot systems.47 This is accomplished by biasing to a
point where there is an anticrossing between the single state
and the ms= +1 triplet state; the transition between these
states requires a nuclear spin flip to conserve angular mo-
mentum. By cycling through this anticrossing, they are able
to produce polarizations of a few percent �producing effec-
tive nuclear fields of about 20 mT in dots where full polar-
ization would yield about 5 T�.47

Even with such modest polarization, there can be a sig-
nificant impact on inhomogeneous broadening. It does this
by effectively smoothing out the hyperfine field and, because
of this smoothing, has been coined the Zamboni effect by
experimentalists.47 Essentially, the process of dynamic
nuclear polarization will most likely polarize those nuclei
with the strongest coupling to the electron, those with the
largest hyperfine coupling. These nuclei are also the most
important in terms of inhomogeneous broadening �they give
the largest contribution to the effective magnetic field�.
Strong polarization is not necessarily involved in the sup-
pression of inhomogeneous broadening. Homogenizing the
system to remove the broadening need only change the po-
larization by roughly the same amount as the unbiased sta-
tistical broadening, which scales as 1 /�N; this is less than
1% for N=105. By removing the effects of inhomogeneous
broadening in this way, it may be possible to view FID due
to SD.

This modest polarization will have a weak effect on SD
according to our theory. While T

2
* �from inhomogeneous

broadening� is improved by this strategy, T2 �from spectral
diffusion� is not significantly altered. There are two reasons
for this. First, the nuclei being polarized are not necessarily
those nuclei responsible for SD. This is illustrated in Fig. 3,
where the regions of electron occupation probability do not
correspond to the greatest SD contributors. Second, SD has a
weak dependence on polarization because its contributors are
clusters of two or more nuclei. Where we quantify polariza-
tion as p= p↑− p↓ �the difference of the probability of being
up versus down assuming spin 1 /2 nuclei�, the number of
pairs that can flip-flop scales as �1− p2�.48 When the spin is
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larger than 1 /2, the dependence is even weaker �there is a
larger fraction of states of two nuclei that can flip-flop�.
Therefore, one needs nearly 100% polarization in order to
suppress SD T2 decay.

Therefore, we predict, with substantial confidence, that
the coherence enhancement by the Zamboni effect could at
best lead to a decoherence time of TI��T

2
*�, but never up to

T2��TI�, i.e., the Zamboni effect would never produce a co-
herence time longer than the spin echo coherence time.

VI. DISCUSSION AND CONCLUSION

The main result of this paper is the decoherence time
formula of Eq. �46� with wavefunction dependence �Eq. �52�
for the specific case of Gaussian-type simple harmonic oscil-
lator confinement�. By using a table �Table II for GaAs and
InAs� of values for a time quantity that we denote by 
, this
formula will yield �0

�l� for a given pulse sequence of l con-
catenations of the Hahn echo �l=0 for free induction decay,
and l=1 for the Hahn spin echo itself�; the initial behavior of
the coherence or echo decay is exp�−�� /�0

�l��p�l�� �Eqs. �47�
and �31��, where � is the time between pulses for the given
sequence. By using our definitions of decoherence times,
TI=�0

�0� �free induction decay� and T2=2�0
�1� �the traditional

Hahn echo�. The generalized concatenated echo decoherence
times are T2

�l�=2l�0
�l�. An interesting experimental test of this

theory could be to compare the decoherence times of the
same sample with an applied magnetic field in different lat-
tice directions and check for agreement with Table II �for
GaAs�; in such a test, however, one must carefully account
for any change in confinement as a result of changes in the
applied magnetic field. For experimental systems that allow
for the application of pulse sequences, with the ability to
perform rapid � rotations of the electron spin relative to
dynamical time scales, a more straightforward test would be
to compare different levels of concatenation and check for
agreement with Table II and Eqs. �31� and �47�.

There are two important approximations that our decoher-
ence time formula assumes. First, we take the limit of a large
applied magnetic field. This may not always be experimen-
tally accessible, but, in any case, our results represent the
maximum coherence times achievable by applying a strong
magnetic field. Second, we use a short-time approximation
and discuss its validity in Sec. IV D. Failure of the short-time
approximation does not invalidate our general cluster expan-
sion �Sec. III A and Ref. 11�, however; it only means that our
simple wavefunction dependent decoherence time formula
�Eq. �46�� is no longer accurate.

Finally, in our considerations of the singlet-triplet �two
electron� double quantum dot scenario, we show that it is
equivalent to the single dot �one electron� case in terms of
spectral diffusion assuming negligible exchange interaction
between pulses. �For a treatment that includes the exchange
interaction, see Ref. 49.� We also predict that the Zamboni
effect will have little impact on spectral diffusion.
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APPENDIX A: FACTORIZABILITY OF CLUSTER
CONTRIBUTIONS

We define ŴC� as the contribution of cluster C to Ŵ; that is,

ŴC� gives the sum of all terms of Ŵ�1� that involve cluster C.
Thus,

Ŵ�1� = �
C��

ŴC� . �A1�

Likewise, we will define ŴA,B� as the sum of all terms of Ŵ�2�

that involve clusters A and B so that

Ŵ�2� =
1

2 �
A,B��

A�B=�

ŴA,B� , �A2�

where the factor of 1 /2 is necessary to compensate for the

double counting of ŴB,A� =ŴA,B� , and defining ŴS to be the

solution of Ŵ when only including nuclei in the set S �with
all of the interactions between them�. Similarly, we may de-

fine ŴA,B to be the solution of Ŵ when only including nuclei
in the sets A and B with interactions among A and among B
but not between A and B. Because ŴA,B is just a product of

evolution operators of the form exp�−i�ĤA
�+ĤB

����
=exp�−iĤA

���exp�−iĤB
���, ŴA,B=ŴA � ŴB. Note that ŴC� is

the C cluster contribution to any ŴS with S�C; this is sim-

ply due to the fact that any interactions of Ŵ that are not

contained in ŴS are irrelevant when considering terms that

do not involve those interactions. For this reason, ŴA� is the

A cluster contribution of ŴA,B=ŴA � ŴB and ŴB� is its B
cluster contribution. Therefore, ŴA,B� =ŴA� � ŴB� so that the
double cluster contribution is simply the product of the indi-
vidual cluster contributions.

This procedure may be applied to terms of any number of
clusters so that

Ŵ = �
�Ci
 disjoint,

Ci��

�
� i

ŴCi
� . �A3�

Assuming that the initial bath states are uncorrelated, then

�ŴA� � ŴB� 
= �ŴA� 
� �ŴB� 
 and

�Ŵ
 = �
�Ci
 disjoint,

Ci��

�
i

�ŴCi
� 
 , �A4�

which essentially reproduces our cluster decomposition from
Ref. 11.
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When only small clusters, relative to the size of the bath,
give non-negligible contributions to Ŵ�1�, then this factoriz-
ability allows us to make the following approximation:

�Ŵ�k�
 �
1

k!
�Ŵ�1�
k, �A5�

assuming k�N. The right hand side will provide all neces-
sary products of cluster contributions without overcounting
�the 1 /k! factor compensates for permutation overcounting�;
however, it also includes products among overlapping clus-
ters. In a large bath, sets of overlapping clusters are negli-
gible compared to the number of sets of nonoverlapping
clusters so that these extraneous terms are negligible.

APPENDIX B: COMPUTING THE CONTINUUM
APPROXIMATION TENSOR

Computing M�l� of Eq. �43� by calculating fb
�l��r�m� from

Eq. �34� offers the advantage of simplifications due to the

fact that operators which act on different sets of nuclei must

commute. For example, to compute �Înz , Ĥb�, one need only

consider the terms in Ĥb that involve m. For us, however, it

was more convenient to reuse a code that computes �ŴC�
 for
any set of nuclei, C. By noting Eqs. �21b� and �30�, we may
compute fn,n

�l� by letting Ak��n,k and summing together the
lowest-order �in the time expansion� results of all cluster

contributions, �ŴC�
, that include nucleus n �n�C�. Similarly,
if we let Ak��n,k+�m,k for a given pair n�m, we may com-
pute fn,n

�l� + fm,m
�l� + fn,m

�l� + fm,n
�l� . Subtracting off the fn,n

�l� and fm,m
�l�

parts that may be computed by using Ak��n,k and Ak��m,k,
we can obtain fn,m

�l� + fm,n
�l� , which may then be used to compute

M�l� from Eqs. �43� and �42�. We may also use a statistical
sampling of clusters to speed up the calculation of M�l�,
which is particularly useful as one increases the number of
concatenations, l.
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