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Long-Lived Memory for Mesoscopic Quantum Bits
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We describe a technique to create long-lived quantum memory for quantum bits in mesoscopic
systems. Specifically we show that electronic spin coherence can be reversibly mapped onto the
collective state of the surrounding nuclei. The coherent transfer can be efficient and fast and it can
be used, when combined with standard resonance techniques, to reversibly store coherent superpositions
on the time scale of seconds. This method can also allow for “‘engineering’ entangled states of nuclear
ensembles and efficiently manipulating the stored states. We investigate the feasibility of this method
through a detailed analysis of the coherence properties of the system.
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A broad effort is now under way to develop new tech-
niques for coherently controlling quantum degrees of
freedom in mesoscopic systems [1]. These efforts are
stimulated in part by the proposals to use these systems
as quantum bits in the context of quantum information
science. The fast decoherence associated with solid-state
environments proves to be the main obstacle for experi-
mental realization of such control.

Spin degrees of freedom of electrons confined in semi-
conductor quantum dots are attractive qubit candidates
[2,3] with relatively long decoherence times. Techniques
for the coherent manipulation and measurement of elec-
tron spins are now being developed. For the latter, cou-
pling of spin and charge degrees of freedom is probably
necessary. Experimental measurements of the spin re-
laxation times indicate sub-MHz rates [4], although it is
not yet clear what will determine the ultimate coherence
lifetimes.

This Letter describes a technique for greatly extending
the lifetimes of electron-spin qubits in confined structures
by coherently mapping an arbitrary spin superposition
state into the spins of proximal, polarized nuclei. This is
achieved by effective control of the spin-exchange part of
hyperfine contact interaction. After the transfer is com-
pleted, the resulting superpositions could be stored for a
very long time — up to seconds — and mapped back into
the electron-spin degrees of freedom on demand. We
further show that the stored states can be manipulated
using an extension of standard resonance techniques.

Although it is widely known that nuclear spins can
possess exceptionally long coherence times due to their
weak environmental coupling, single nuclear spins are
very difficult to manipulate and measure in practice [5].
In the present approach these problems are circumvented
by using collective nuclear degrees of freedom. We dem-
onstrate that such collective states are extremely robust
with respect to realistic imperfections, such as partial
initial polarization and spin diffusion, and decoherence.
As a result the present technique combines the strengths
of electron-spin (or charge) manipulation with the excel-
lent long-term memory provided by nuclei.
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When uncontrolled, the coupling of electronic spin
degrees of freedom to nuclei may be considered an envi-
ronmental decoherence process. Interesting features of
this process arise from its non-Markovian nature [6—8].
The present Letter shows that properly controlled cou-
pling of electrons to nuclei can be used to greatly extend
the effective coherence time of electron spins. This study
parallels recent work involving the use of atomic en-
sembles as quantum information carriers [9].

To illustrate the technique, consider a single electron
localized in quantum dot. The effective Hamiltonian for
the electron and N spin-/; nuclei in a magnetic field B,
along the z axis is

H = g"uyByS, + gn,u,,,BOZIAé: + Vi (L
J

The first two terms of Eq. (1) correspond to the Zeeman
energy of the electronic and nuclear spins; the third term
is the hyperfine contact interaction between the s-state
conduction electrons and the nuclei in the dot, Vg =

>a; I’ - S. The coefficients a; = Avoly(F, )|? correspond
to the one-electron hyperfine interaction w1th the nuclear
spin at site 7;, where A is the hyperfine contact interaction
constant, v is the volume of a unit cell, and #(7) is the
envelope function of the localized electron. Spin-orbit
effects are strongly suppressed in confined structures
[10] and here only lead to electron-spin decoherence.
The hyperfine term can be written Vi =V, + Vg
where V), —Z/ajf’S‘ and Vg, =Zjaj/2(f7 S, +F.S.).
VD produces an effective magnetic field for the electron
Byt =By — 1/g* ,uBZjaJL, which results in the well-
known Overhauser shift. However, when g*upB.s <
V., spin-exchange dominates.

We start with a perfectly polarized nuclear ensemble
|0),, = |1y, ..., Iy),, as shown in Fig. 1(a). Because of con-
servation of total spin only a spin-down initial elec-
tron state can undergo nontrivial evolution. When the
dynamics are governed by Vi (Bys— 0), there is a
coherent exchange of excitations between electronic and
nuclear degrees of freedom. For the inital state ||), ® |0),,,
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FIG. 1 (color online). (a) A schematic of an electron trapped
in a quantum dot with polarized nuclei. (b) Storage, where a
pulse in the magnetic field starts amd brings the spins into
resonance for a 7 pulse. Readout is the same process in reverse.

spin-exchange couples this state to the collective nuclear
excitation with one flipped spin [), ® |1),, with

-1/2
1), = (Zlaj|2> Zaon,---,(Io
J J

Hence the evolution is given by the two-level dynamics

IDI0)T,. [ cos(@i/2)  —isin(@1/2) 7| Bl0y
[IT>|I>}(I - [ isin(@Q1/2)  cos(Q1/2) }[|1>|1>}(0)

The ensemble displays Rabi-oscillations with

O = 2102|a]|2
~ J

At the same time, the spin -up electronic state [1), ® |0),, is
an eigenstate of both V,, and Va. Hence, by pulsing the
applied field to go from g* upBess 3> Vo to By ~ 0 for a
time ¢ = 7r/() as diagrammed in Fig. 1(b), an arbitrary
superposition of the electron-spin will evolve as

(alb)e + BlD.) ®10), = 1), ® (]0), + iBl1),), (2)

demonstrating that an electronic spin state can be coher-
ently mapped into nuclei.

The Rabi-flopping process can be controlled by remov-
ing the electron from the dot or by changing the effective
magnetic field, By. Away from the resonance condition
(IBegel > Q/g* up), the system is far detuned and no
evolution will occur. For the perfectly polarized state
the effective detuning is 8 = (g"up — g, ) Bo + [HA +
(I — 1)A/N. The Rabi frequency depends upon the dis-
tribution of the a; coefficients, Q = \2I,A/v/N[1 +
(Ad?)/a*]"/? with bars denoting averages over the set
{a;}. For a GaAs dot with 10* nuclei and Aa* ~ %, A =
90u eV and I, = 3/2, and the speed of transfer is deter-
mined by /27 = 0.6 GHz, which exceeds the expected
spin coherence time (including contributions due to spin-
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orbit coupling) by 3 orders of magnitude. The resonance
condition is fulfilled for |B.sy| < 50 mT. Retrieval of
the stored qubit can be implemented by reversing this
process: we either inject a spin-polarized electron into
the dot or change the effective magnetic field, bringing
the levels into resonance, and Rabi oscillations pick up
at the same point as before. The rise time of such a pulse
must be much less than the Rabi time for high fidelity
transfer. This requirement can be greatly alleviated by
using adiabatic passage techniques (see, e.g., Ref. [9])
Before proceeding with a detailed description of the
coherence properties and imperfections we note that the
above results can be easily generalized to the preparation
of complex collective nuclear states. For example, injec-
tion of a series of spin-down electrons into spin-up
polarized nuclei will lead to a progressive increase of
the nuclear spin. In the basis of collective angular mo-

Zifl, we define the total angular mo-
mentum nuclear states |m), = |I = NIy, I, = — m),.
Each electron can effect the transfer |]), ®
|m), — |1), ® Im + 1),. When injected electrons are pre-
pared in different superposition states this process can be
used to effectively “‘engineer” collective states of nuclear
ensembles. In fact using a proper sequence of electrons an
arbitrary state of the type |W), = 3! ¢, |m), can be
prepared [11]. We note, in particular, that the highly
entangled states of the kind (|0), + |m),)/+/2, with large
m could be used for high-resolution NMR spectroscopy
in analogy with related atomic physics studies [12,13].
Such states can also be prepared by manipulating one-
electron in the dot with fast electron-spin resonance
(ESR) pulses.

Injection of polarized electrons, combined with ESR
pulses, can also be used to perform manipulation of the
stored nuclear state. For example, the qubit stored in
nuclear-spin could be mapped into the injected electron,
manipulated by ESR, and then mapped back. Alterna-
tively off-resonant (|8] > ) coupling of storage states
to electron-spin can be used to shift the resonance fre-
quencies of transitions |m}, — |m + 1), relative to each
other. For example in the case of two lowest states m =
1,2 the differential shift is on the order of Q*/|8|.
Whenever this shift is large compared to decoherence
rate and the spectral width of excitation pulse, the lowest
two states of collective manifold |0),, |1), can be consid-
ered as an effective two-level system and can be manipu-
lated through NMR pulses and other means. These ideas
could be extended to the spin-exchange coupled qubits
proposal [2].

We now turn to the consideration of various deco-
herence mechanisms and imperfections that limit the
performance of the storage technique. To evaluate the
effects of spatial inhomogeneity we note that the col-
lective state |), ® |1), is not an eigenstate of Vp un-
less the a;’s are identical. The effect is determined
by the distribution of eigenenergies under V, of the states
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Since AE? ~ Aa?, the inhomogeneous linewidth is ~a@ = Ww=3,

A/N. Hence inhomogeneous broadening is smaller than
the relevant time scale for Rabi flopping by a factor of
N, and is negligible during transfer operation. After the
mapping, its effect can be mitigated by either removing
the electron from the dot, thereby turning off the hyper-
fine interaction entirely, or by using ESR spin-echo tech-
niques to reverse the phase evolution [14].

The leading decoherence process for the stored state
is nuclear-spin diffusion, with dephasing rates in the
kHz domain. Thermal effects associated with spin-lattice
coupling are on the order of minutes even for room-
temperature samples [15]. As for spin-diffusion, tech-
niques from NMR can be used to mitigate its effect
[15,16]. By applying fast NMR pulse sequences [17] to
rotate the nuclear spins the time average of the leading
terms in the dipole-dipole Hamiltonian can be reduced to
zero, leaving only residual dephasing due to second-order
dipolar effects, pulse imperfections, and terms due to the
finite length of the averaging sequence. These phenomena
have been studed for several decades for solid-state NMR
systems and well-developed techniques routinely reduce
T, by several orders of magnitude [15], down to sub-Hz
levels. Hence, coherent qubit storage on the time scale of
seconds seems feasible.

To evaluate the effects of partial polarization on the
storage fidelity, we use the Heisenberg picture. In the
homogeneous case (a; = a = A/N), the Dicke-like col-
lective operators defined above yield 1> and J, = S, + I,
as the constants of motion. We consider operator equa-
tions of motion A = i[A, H], for the three operators
S’Z, §+f_, and S_f+, which commute with the constants
of motion. We replace I . terms in the resulting equations
with J, —§. and use the identity [,f = P>—J? —
[I_,1.7/2 to put the equations in terms of constants of
motion and the three operators we look to solve:

d s S.1-— @St

S=a > , (3)
d . - o . .\ s
5, 0+1-) = il(g" g = gupa)By + alJ. — DIS1-)
—ia(l* = J2 + 1/4)8.. “

It is convenient to choose new constantsAof motion, 5=
(8" mp — guia)By +a(J,—1) and Q=a(> -T2+
1/4)'/2. These commute with each other and with
S'z, S.I_. As these equations are similar to those for
two-level atoms in a field, we make the Bloch vector
identifications:
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and Egs. (3) and (4) become 117[=1r4><A(f’) with @ =
(Q, 0, —3). The Bloch vector_operator, M, will rotate
about the axis defined by @ at a frequency @, =

V8% + O2. For no initial electron spin-nuclear spin cor-
relation, we can easily solve for S, and find

82 + O cos(dyt

~2
Wy

(8.(0) = < ©6)

For the perfectly polarized nuclear state, Eq. (6) gives
(8,) = —1/2cos(Ay/2I,/N1) for the spin-down species
and 1/2 for the spin-up species, exactly replicating the
fully polarized behavior. In the case of partial polariza-
tion, even though we will set (8) = 0, (6*) remains finite.
The first part of Eq. (6) prevents complete transfer, to
order (6%)/{@2). For partial polarization P < 1, (&3) =~
a’N[2I,+ O(1 — P)].Ina thermal state, all two-particle
expectation values factor, so (6) = 0 and

(8% = () — (J)}) = Na*(1 = P2L,.  (7)
Accordingly, the error scales as
a2
@ ~1—P (8
(&f

Remarkably, this result demonstrates that efficient trans-
fer is possible even with many nuclei in the “wrong’ state
as long as the average polarization per nuclei is high.
We modeled this system numerically with an initial
thermal nuclear state. Oscillation of (S‘ .) for several polar-
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FIG. 2. Transfer characteristics for different nuclear polar-
izations. (a) The evolution of (S.(¢)) for three nuclear po-
larizations, P = 0.96 (solid curve), 0.82 (dotted), and 0.67
(dot-dashed) versus time in units of the P =1 Rabi time.
(b) Solid line: Storage fidelity F for inhomogeneous effects
(N = 10%) versus error in nuclear polarization, 1 — P. Dotted
line: analytical estimate of thermal effects. Dashed line: nu-
merical simulations of thermal effects. Dot-dashed line: prod-
uct of inhomogeneous and thermal results.
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izations is shown in Fig. 2(a). The effect of partial polar-
ization is immediately apparent; the transfer peak is less
than 1/2, and the Rabi frequency decreases. We de-
fine minimal fidelity as F = Tr{po[1/2 + S,(7/{&¢))*}
with a spin-down initial state. Figure 2(b) shows that
the analytical estimate is close to the numerically calcu-
lated values; thus, the transfer error can, to a large extent,
be explained by the thermal uncertainty in 6. The resid-
ual effect most likely stems from phase mismatch-
ing, as measured by the broadening of g, such that
(cos(mwo/{wp))) =1 — O(1 — P).

Inhomogeneous broadening for a thermal initial
nuclear state is somewhat more pronounced than the fully
polarized case first considered. The V), inhomogeneity
causes slow dephasing of the stored state, and the inho-
mogeneous coupling in V, results in leakage in readout
of the stored state into a set of states orthogonal to the
original nuclear state. The results shown in Fig. 2(b) were
calculated for a distribution of a;’s corresponding to a
Gaussian |(7)|>. We plot the estimated fidelity for a
complete storage and readout cycle as a function of the
initial polarization of nuclear spins. The total expected
fidelity, is approximated by the product of these two
results [Fig. 2(b)]. Hence, only modest nuclear polariza-
tions are required to obtain a high fidelity of storage.

In summary, we have demonstrated that it is possible to
reliably map the quantum state of a spin qubit onto long-
lived collective nuclear-spin states. The resulting states
have long coherence times, and can be retrieved on de-
mand. Furthermore, the stored states can be efficiently
manipulated and similar techniques can be used for
quantum state engineering of collective nuclear states.

Experimental implementation of these ideas will re-
quire strong nuclear-spin polarization in the vicinity of
confined electrons. Optical pumping of nuclear spins has
demonstrated polarizations in GaAs 2D electron gases on
the order of 20% [18] and 65% in self-assembled dots
[19], and forced spin flips through quantum hall edge
states [20] has a claim of a similarly high polarization
ability (85%). The methods outlined in this Letter can be
used to further increase the nuclear polarization. A cur-
rent of spin-polarized electrons passing through the
quantum dot with a dwell time 74, < 7/ will result
in spin transfer, thereby increasing nuclear polarization.
By keeping B tuned to zero with increasing nuclear
polarization the spin flip-flop remains resonant and, when
combined with dephasing to prevent saturation, leads to
efficient cooling, similar to a recent proposal [21].

Coherence properties of the spin-exchange process
could be probed in transport measurements. For example,
sending spin-polarized currents through the quantum dot
in which the spin-exchange interaction is tuned to reso-
nance will result in collapses and revivals of the electron-
spin polarization that will be a periodic function of the
dwell time in the dot. Those can be measured using spin-
filter techniques. For a given polarization P and 74y, the
spin will be rotated by Q(P)7gyen/ 7.
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Practical applications of the storage and retrieval tech-
niques and manipulation of stored states requires time-
varying control over the spin-exchange coupling. This
can be accomplished by using a pulsed magnetic field of
order 50 mT for a few ns, by engineering the electron g
factors [22,23], or by optical ac Stark shifts [18]. These
techniques can be combined with a number of avenues for
entanglement and manipulation of the electronic spin and
charge states currently under exploration [1,2]. Finally,
quantum memory can facilitate implementation and re-
duce scaling problems for more ambitious tasks such as
quantum error correction [24] or quantum repeaters [9].
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