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We propose to couple an on-chip high finesse superconducting cavity to the lateral-motion and spin state
of a single electron trapped on the surface of superfluid helium. We estimate the motional coherence times
to exceed 15µs, while energy will be coherently exchanged with the cavity photons in less than 10 ns for
charge states and faster than 1µs for spin states, making the system attractive for quantum information
processing and cavity quantum electrodynamics experiments. Strong interaction with cavity photons will
provide the means for both nondestructive readout and coupling of distant electrons.

PACS numbers:

Electrons on helium form a unique two dimensional
electron gas (2DEG) at the interface between a quantum
fluid (superfluid helium) and vacuum. The system has ex-
ceptional bulk properties, with the highest measured elec-
tron mobility > 108 cm2/Vs[1] and spin coherence times
predicted to exceed 100 s[2]. For these reasons electrons
on helium were among the first systems proposed for quan-
tum information processing[3]. The initial proposals fo-
cused on the motional states of a single trapped electron
normal to the helium surface[4], which promise long co-
herence times but have transition frequencies exceeding
100 GHz. Further, they were to be detected (destructively)
using state-selective ionization and electron multiplying
multichannel plate detectors, a significant technical chal-
lenge. More recently a promising proposal has suggested
the electron spin as the quantum state of interest[2], but
it has not been clear how to best read-out or couple these
spins.

Here, we address these challenges using the recently de-
veloped circuit QED architecture[5] to detect the quantized
in-plane motion of a single trapped electron. The in-plane
motion can be engineered to have transition frequencies of
a few GHz, and could be readily coupled to an on-chip cav-
ity for non-destructive readout analogous to that used for
superconducting qubits[5] or electron cyclotron motion in
g-2 experiments[6]. In addition, the coupling of the elec-
tron spin to single photons and other spins would be sig-
nificantly enhanced by a controllable spin-orbit coupling,
using mechanisms reminiscent of those proposed for semi-
conductor quantum dots[7]. The trapped electrons can be
considered as quantum dots on helium operating in the sin-
gle electron regime. These dots would be sufficiently small
(sub-micron) that the lateral spatial confinement and poten-
tial depth will determine the orbital properties. The feasi-
bility of creating such nano-scale traps is buoyed by recent
experiments in which few electron charge coupled devices
(CCD’s) transported electrons around a microchip with
high efficiency, indicating the absence of charge traps[8].
There has also been an experiment which has detected sin-
gle electron tunneling events and counted electrons enter-

ing a micron-sized quantum dot[9]. However, so far there
have been no observations of either intradot quantization or
spin resonance on helium.

It is instructive to compare electrons on helium with tra-
ditional semiconductor quantum dots. In most traditional
2DEG’s such as GaAs the electrons form a degenerate
gas with effective masses (m∗

e,GaAs ≈ 0.067me) much
smaller than that of a free electron and with renormalized
g-factors (gGaAs ≈ −0.44). The light mass leads to an
enhancement of quantum effects, which has aided in the
recent success of laterally-defined single electron quantum
dot experiments[10, 11]. However, because of the strong
piezoelectric coupling to the substrate the motional states
have short coherence times (∼ 100 ps)[12]. For this reason
spin is typically used[10, 11, 13], but its coherence time
can be strongly affected by nuclear spins[13, 14]. In con-
trast, electrons on helium retain their undressed mass and
g-factor and partially for this reason the study of helium
quantum dots is less mature. With the techniques described
here, single electron quantum dots on helium promise some
advantages over traditional semiconducting dots. We pre-
dict the decay of the orbital states to be 104 times slower
than in GaAs. Further, superfluid 4He has no nuclear spins
(10−6 natural abundance of 3He), leading to long predicted
spin coherence times, which are primarily limited by cur-
rent noise in the trap leads. Perhaps most importantly, elec-
trons on helium is a fascinating system where coherent sin-
gle particle motion has not been accessible until now.

An electron near the surface of liquid helium will ex-
perience a potential due to the induced image charge of
the form V = Λ/z, with Λ = e2(ε − 1)/4(ε + 1) and
ε ≈ 1.057. Together with the 1 eV barrier for penetration
into the liquid, the image potential results in a hydrogen-
like spectrum Em = −R/m2 of motion normal to the
surface, with an effective Rydberg energy R ∼ 8 K and
Bohr radius 8 nm[15]. At the proposed working tempera-
ture of 50 mK the electron will be frozen into the ground
out-of-plane state, and the helium will be a superfluid with
negligible vapor pressure.

With the vertical motion eliminated, the electron’s lat-
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FIG. 1: Top view of electrostatic electron trap. The ground plane
and cavity center pin are shown in blue, while the trap electrode is
magenta. The configuration of center pin and ground plane pro-
vide two-dimensional confinement. A DC voltage, Ve is provided
via a wire insulated from the resonator. Manipulation and read-
out is performed via an RF voltage applied to the input port of
the resonator with the modified signal measured by a cryogenic
amplifier at the output port.

eral motion within an electrostatic trap could be coupled
to the electric field of a superconducting transmission line
cavity. As shown in Figs. 1 & 2, the cavity center-pin and
ground plane form a split-guard ring around a positively bi-
ased trap electrode. We approximate the trapping potential
in each of the lateral dimensions as being nearly harmonic,
with level spacing≈ h̄ωx,y. We assume a high-aspect ratio
trap so that the x and y motional frequencies are distinct. It
may also be interesting in the future to consider low-aspect
ratio traps in which angular momentum could be a useful
quantum resource. Because the trap is small and the poten-
tial must flatten at the outer electrodes, it has a small quartic
perturbation Vα = h̄αx4/3a4

x, where ax = (h̄/mωx)1/2

is the standard deviation of the motional ground state wave-
function, and α is the anharmonicity of the first few levels.
The Hamiltonian can be approximated as

H =
p̂x

2

2me

+
1
2
meω

2
xx̂

2 + h̄α
x̂4

3a4
x

(1)

with the n to n+1 transition frequency ωx,n ≈ ωx,0+(n+
1)α. The electron motion can be treated as a qubit when α
is larger than the decoherence rates[16]. The scaling of the
system parameters with geometry (see Fig. 2) can be esti-
mated analytically by approximating the trap potential as
Vt cos(2πx/W ). In this case ωx = 2π(eVt/meW 2)1/2,
α = (2π/W )2h̄/8me, and Vt ≈ Vee

−2πd/W , therefore
one can tune the motional frequency by adjusting the bias
voltage, determine the anharmonicity by the trap size (con-
finement effects), and trade-off sensitivity in bias voltage
for sensitivity to trap height (generally d ∼ W so as to
avoid exponential sensitivity to film thickness).

To get more accurate estimates, we simulate the trap-
ping potential and resulting wavefunctions for the specific
geometry shown in Figs. 1 & 2 using physically reason-
able trapping parameters: helium depth d = 500 nm, trap
size W = 500 nm, trapping voltage Ve = 10 mV. These
result in a trap depth eVt/h ≈ 20 GHz � kBT deep
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FIG. 2: Side view of trap electrodes with energy levels and wave-
functions of electron motional state. The electron is confined to
the surface of the helium film of thickness, d. The trap electrode
(magenta) is biased positive relative to the ground and center pin
(blue) of the CPW to laterally confine the electron. These elec-
trodes form a confining potential which is harmonic to first order,
but which flattens over the outer electrodes, giving it a small soft-
ening anharmonicity. A sample potential and nearly-harmonic
wavefunctions are shown. The spatial extent of the electron zero-
point motion ax is small compared to the characteristic size of the
trap w. To define a spin quantization axis a magnetic field in the
x-direction is applied. To couple the motional and spin degrees
of freedom one can apply a current through the center electrode
creating a z-field gradient within the trap.

enough to prevent thermal escape, and a transition fre-
quency ωx/2π ≈ 5 GHz convenient to microwave elec-
tronics. The electron’s motion within the trap is affected
by and induces an electric field in the microwave cav-
ity. If the level spacing h̄ωx is in resonance with the en-
ergy of a cavity photon, the two systems can exchange en-
ergy at the vacuum Rabi frequency, 2g =

√
2eaxE0/h̄

where E0 ∼ 2 V/m is the zero-point electric field in
the cavity. The electron motional states can be manipu-
lated quickly due to the large coupling strength g/2π =
20 MHz, a consequence of the large electron dipole mo-
ment eax/

√
2 ∼ 2 × 103 Debye, and without exciting

transitions to higher lateral states due to the anharmonicity
α/2π ≈ −100 MHz.

In addition to the motional degree of freedom, the elec-
tron carries a spin degree of freedom. The coupling of
the cavity photons to the spin is many orders of mag-
nitude weaker than to the charge, but can be enhanced
via controlled spin-motion coupling. A spin-quantization
axis is established using a magnetic field in the x̂ direc-
tion (Fig. 2). The Larmor frequency is approximately
ωL = 2µB/h ≈ 2.89 MHz/G. Niobium CPW cavities
have been demonstrated to maintain Q > 20, 000 in paral-
lel fields of up to 2 kG, allowing Larmor frequencies of up
to ωL ∼ 6 GHz. The cavity and charge degree of freedom
have h̄ω � kBT so that they thermally relax to the ground
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state. It is possible to manipulate the spin magnetically but
this requires large RF currents and does not provide an easy
channel for measurement.

We propose instead to create a non-uniform z-field com-
ponent with a gradient along the vibrational axis, ∂xBz,
by passing a current through the center electrode (in the y-
direction see Fig. 2). This leads to a new term in the Hamil-
tonian, Hs = −2µBszx∂Bz/∂x. The resulting spin-orbit
interaction provides an enhanced cavity coupling mediated
through the motional state. This allows manipulation and
readout of individual spins, as well as the use of coupling
techniques developed for superconducting qubits[17]. Fur-
ther, the coupling is proportional to the applied current, al-
lowing the spin-cavity to be tuned in-situ on nanosecond
timescales. For a 1 mA current 500 nm away from the elec-
tron a ∂Bz/∂x ∼ 8 mG/nm field gradient can be created
producing a spin vacuum Rabi coupling

gs = µBax
∂Bz
∂x

g
√

2
h̄ωx(1− ω2

L/ω
2
x)

(2)

For ωL � ωx these parameters give gs ∼ 8 kHz. If
ωx − ωL ≈ 10 MHz then the coupling can be made large
gs ≈ 1.5 MHz. Alternatively, spin interactions could be
mediated via exchange coupling between two co-trapped
electrons as is done in semiconducting quantum dots[10],
but this would require a double-dot structure and might also
prove harder on helium than in GaAs due to the electron’s
larger mass.

The current also creates a second-order variation in the
x-component of ~B, leading to a new term in the Hamil-
tonian, Hsb = −µBx

2∂2
xBxsx. If the constant magnetic

field is applied along the y-direction, this term will lead
to sideband transitions simultaneously changing the orbital
and spin states by driving at ω± = ωx ± ωL. These tran-
sitions can be used to manipulate, cool, and detect the spin
using its coupling to the lateral motion. With such cooling
it might allow one to use smaller spin frequencies.

Nearly every aspect of the trapped electron system can
be controlled by appropriate choice of geometry and ap-
plied voltages. This tunability allows one to engineer the
properties of this artificial atom and compensate for defects
in trap fabrication. However, it also provides channels for
noise to couple to the system, causing decoherence of the
motional and spin states[18]. There two major sources of
decoherence are from the electrical fluctuations in the leads
and excitations in the liquid helium. Here we present a
short summary of these mechanisms and their contributions
to decoherence (also see Fig. 3). A detailed explanation of
these mechanisms is presented in the supplementary mate-
rials to this work.

A motionally excited electron can relax radiatively via
spontaneous emission directly into free space, through the
cavity, or the trap bias electrode. The electron radiates very
little into free space, both because it is small (ax � λ),
and because the microwave environment it sees is deter-
mined mostly by its surrounding electrodes. Emission

5 10 15 20
1

10

100

1000

104

105

Motional Frequency, ωx/2π (GHz)

D
ec

oh
er

en
ce

 R
at

e 
(s

-1
)

bias leads
ripplons
phonons
total

FIG. 3: Decoherence rates of motional states as a function of
the trap frequency, at T = 50 mk. Rates are computed using
parameters specified in the text. Solid lines are decoherence rates
due to energy relaxation (Γ1/2), while dashed lines are dephasing
rates (Γφ). Single ripplon relaxation rate and phonon dephasing
rates are smaller than 1 Hz. Spin decoherence rates are discussed
in the text.

through the cavity can be enhanced (for fast initialization)
or suppressed (for long lifetimes) via the Purcell effect[19].
In a perfectly symmetric trap, radiation through the bias
leads would be suppressed by a parity-selection rule. We
conservatively assume that the electron is displaced from
the trap center by ∼ ax, which gives a relaxation rate
∼ 1.6× 103 s−1. Though this mechanism is not expected
to be dominant, it could be easily reduced significantly by
engineering the impedance of the trap bias lead. In ad-
dition, slow fluctuations in the trap electrode voltage (Ve)
can deform the potential, changing the motional frequency
and resulting in dephasing. This can occur from drift in
the voltage source, thermal Johnson voltage noise, or local
“1/f” charge noise. Drift is relatively small and occurs on
time scales slow compared with the experiment time, and
is easily compensated. The thermal noise at 50 mK is quite
small < 100 Hz. Ideally, any charge fluctuations would be
well screened by the trap electrodes and their large capaci-
tance to ground. Even in worst case scenario in which the
trap electrode acts like a disconnected island (rather than an
electrode with a large capacitance to ground), we estimate
a dephasing rate 8 × 10−3, which would not be the dom-
inant decoherence rate. Noise from the cavity and ground
plane electrodes should have less effect as the frequency is
insensitive to first order to changes in those voltages.

In addition to decoherence through the electrodes, the
electron can lose coherence to excitations in the helium.
Two major types of excitations are relevant. One is capil-
lary waves on the helium surface, or ripplons. The other
mechanism is loss via phonons in the bulk. The electron
is levitated above the surface at height rB ∼ 8 nm, which
greatly exceeds the height of the surface fluctuations, and
therefore coupling to the ripplons is small. Because the in-
teratomic interaction in helium is comparatively weak, the
characteristic electron speed axωx significantly exceeds
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the speed of sound vs in He and the characteristic group
velocity of ripplons. As a result, the rate of direct decay
with excitation of one ripplon is exponentially small. De-
cay into ripplons is dominated by second order processes
in which two ripplons of nearly opposite momentum simul-
taneously interact with the electron. Because the coupling
to ripplons is weak in the first place, this is a second-order
process, the phase volume is limited by the condition on
the total ripplon momentum, and the corresponding decay
rate is small. It is estimated in the supplementary material
to be <∼ 103 s−1 (see Fig. 3).

The most important mechanism related to helium exci-
tations is decay into phonons. The coupling to phonons
is reminiscent of piezoelectric coupling in semiconduc-
tors. An electron creates an electric field that causes
helium polarization, which in turn affects the electron.
Phonons modulate helium density and thus the polariza-
tion, which changes the electron energy. However, in con-
trast to semiconductors, where the typical polarization con-
stant is epz ∼ 1014 e/cm2[20], the polarization in He is
∼ e(ε − 1)/4πr2

B ∼ 1010 e/cm2. Therefore coupling to
phonons is much weaker than in semiconductors. The cor-
responding decay rate is ∼ 3× 104 s−1 (see Fig. 3).

Besides decay, coupling to helium excitations leads to
fluctuations of the electron frequency and ultimately to de-
phasing. The major contribution here comes from two-
ripplon processes, since ripplons are very soft excitations
with comparatively large density of states at low energies,
so that they are excited even for low temperatures. How-
ever, because of the coupling being weak, the dephasing
rate remains small, ∼ 2 × 103 s−1 for T = 50 mK
(see Fig. 3). It also decreases rapidly as the tempera-
ture is lowered. Another mechanism of dephasing, are
slow non-equilibrium drifts in the helium film thickness
due to vibrations or acoustic couplings, which change the
trap frequency through the dependence on the height, d,
of the electron. Fortunately the cavity forms a liquid He
channel[21] in which the film height is stabilized by sur-
face tension, rendering it much less susceptible to low fre-
quency excitations.

The electron spin promises much longer coherence
times. With no enhancement of the spin-orbit interaction
the lifetime is expected to exceed seconds[2]. When the
spin is coupled to the motion, it will also inherit the orbital
decoherence mechanisms with a matrix element reduced
by µB∂xBzax/h̄ωx. These mechanisms can be further
diminished by turning off the gradient field or changing
the spin-motion detuning, to reduce the coupling. In ad-
dition to decoherence felt through the spin-orbit coupling,
the electron spin can be dephased by fluctuating magnetic
fields. These can arise from Johnson current noise in the
leads which would lead to dephasing rates less than 1 s−1.
It is also possible that the spin will be affected by “1/f”
flux noise[22], often seen in SQUID experiments. The trap
involves no loops or Josephson junctions, so it is difficult
to predict to what extent this noise will be present in this

geometry, however even a worst case estimate (see suppl.
material) still yields a dephasing rate of only 200 s−1.

While electrons on helium have been studied for some
time, many fundamental questions remain unanswered.
For example, single electron motion and electron spins (ei-
ther individual electrons or in ensembles) have never been
measured, due to a lack of suitable detection technology.
The circuit QED approach proposed here, gives a new route
to detection and manipulation of these interesting states.
Once controlled, the trapped electrons could themselves
serve to probe the physics of phonons, ripplons, vortices
and other excitations of superfluid helium. It appears that
both the motional and spin coherence times can be long,
making the architecture described here a promising candi-
date for quantum information processing and the study of
cavity QED.
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INTRODUCTION

These supplementary materials estimate the rates of
relaxation and dephasing of the quantized electron mo-
tion in a small electrostatic trap. A variety of de-
coherence mechanisms are explored including, electric
and magnetic noise from the electrodes as well as emis-
sion and scattering of ripplons and phonons. We use
DPS where we refer to Dykman et al, PRB 67, 155402
(2003)[4]. The notations below are from this paper. We
refer to Eq. (X) in this paper as DPS (X). A discussion
of the relaxation and dephasing of the electron spin can
be found elsewhere[2].

DEFINITIONS AND USEFUL RELATIONS

In addition to the constants defined in the main text
and DPS there are some definitions and relations that will
be useful throughout these materials. The motional state
of the electron is represented as |nx, ny〉 where n{x,y}
is the quantum number in the x, y direction. The cor-
responding transition frequencies are ωi and the local-
ization lengths are ai = (~/mωi)1/2, with i = x, y. In
this supplement the electron is assumed to remain in the
ground state of motion normal to the helium surface.

With these notations, we have

gl(q) =
∣∣〈1, 0|eiq r|0, 0〉

∣∣2

=
1
2

(qxax)2e−
P

j q
2
ja

2
j/2, (1)

gph(q) =
∣∣〈1, 0|eiq r|1, 0〉 − 〈0, 0|eiq r|0, 0〉

∣∣2

=
1
4

(qxax)4e−
P

j q
2
ja

2
j/2. (2)

Respectively,

1
(2π)2

∫
dqgl(q) =

1
4πaxay

1
(2π)2

∫
dqgph(q) =

3
8πaxay

(3)

The kinetic energy normal to the helium surface for

zero pressing field E⊥ is

z〈1|p2
z/2m|1〉z = R

R =
~2

2mr2
B

≈ h× 158 GHz

rB = ~2/Λm ≈ 7.64 nm,

Λ =
(εhe − 1)e2

4(εhe + 1)
, (4)

where |1〉z is the ground state wave function of motion
normal to the helium surface.

It is also helpful to include several properties of helium.
The dielectric constant of helium is εhe ≈ 1.057. The
density of helium is ρ = 0.145 g/cm3, with surface tension
σ = .378 dyne/cm, and a dispersion relation for capillary
waves (ripplons) is ωq = (σq3/ρ)1/2. For phonons the
dispersion relation is ωQ = Qνs, with νs ≈ 2.4×104cm/s
the speed of sound in superfluid helium.

For obtaining numerical results the following discus-
sion will assume that the electron vibrational frequency
is ωx ≈ 5 GHz, the zero-point motion of the electron is
ax ≈ 4.8 nm, and g ≈ 25 MHz.

LIFETIME

The general prescription of this section will be to write
down Fermi’s golden rule with the appropriate matrix
element for the specific process. The matrix element will
then be evaluated and integrated over the appropriate
density of states.

Photon emission

A vibrating electron can emit a photon via electric-
dipole radiation into the vacuum. If the electron were in
vacuum it would radiate at a rate

Γ(v)
1 =

2
3
e2

~c

(
2πax
λ

)2

ωx (5)

where λ = 2πc/ωx is the wavelength of the vibrational
frequency. If this were the only relaxation process the
excited state would last for longer than 100 s.

Of course, the electron is embedded in the electromag-
netic environment created by the microwave resonator
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and bias wiring. For a simple two-level dipole coupled to
a single mode cavity with frequency ωc for nonresonant
coupling, g � |ωx−ωc|, the spontaneous emission rate is

Γ(v)
1 =

g2κ

(ωx − ωc)2
(6)

where κ is the mode decay rate. In the resonant case and
in the bad cavity limit, where the cavity decay is faster
than the coupling and the detuning, κ� g, |ωx−ωc|, the
decay rate is Γv = g2/κ. In the strong coupling limit,
the rate of emission is Γ(v)

1 = κ/2 on resonance. It is
also possible to model the case of a dipole in multi-mode
cavity circuit[19].

In addition to the emission through the cavity, the elec-
tron can also decay through the trap bias lead. This
decay rate can be found by considering the effect of the
Nyquist noise, SVe(ωx) ≈ 2~ωxRe[Z(ωx)] of the bias elec-
trode on the electron. If there are no other fields, the
bias electrode only couples to x̂2, and would not cause
relaxation. However any displacement ∆x from the bias
electrode null, due to stray or intential DC fields from
other electrodes will add a x̂ interaction and will open
a channel of relaxation. In this case the coupling to the
electrode potential fluctuations δVe is given by ĥδVe, with
ĥ = ex̂∂Ex/∂Ve, where Ex is the electric field on the
electron in the x direction due to the bias electrode. The
decay rate is then

Γ(el)
1 =

1
~2

∣∣∣〈0, 0|ĥ|1, 0〉
∣∣∣
2

SVe
(ωx). (7)

For small ∆x compared to the inter-electrode distance,
we have eEx = meω

2
x∆x = ~ωx∆x/a2

x. Substituting
these results into Eq. 7 and allowing for ∂Ex/∂Ve =
Ex/Ve, one obtains

Γ(el)
1 =

Re[Z(ωx)]
~/e2

(
~ωx
eVe

)2

ωx (8)

Even assuming that the electron is displaced significantly,
∆x ≈ ax and Re[Z(ωx)] ≈ 50 Ω, this relaxation is quite
small Γ(v)

1 ≈ 1.6 × 103s−1 and should not be a limiting
factor. If this becomes a hindrance in the future it can
be reduced by several orders of magnitude by changing
Re[Z(ωx)] using a resonant structure.

Two-ripplon scattering

Single ripplon scattering is exponentially suppressed
by the mismatch of the size of the electron wave func-
tion to the ripplon wavelength at the same energy. The
dominant decay process is one in which two ripplons are
emitted in nearly opposite directions, each with approx-
imately half of the electron energy ~ωx.

The decay rate due to such a process can be estimated
by applying Fermi’s Golden rule to DPS(11)

Γ(2r)
1 =

2π
~
∑

q1,q2

∣∣∣〈0, 0|ξq1ξq2e
i(q1+q2)·rVq1,q2 |1, 0〉

∣∣∣
2

×δ(~ω − ~ωq1 − ~ωq1)(n̄q1 + n̄q2 + 1), (9)

where ξq is the helium surface displacement due to a
ripplon with wave vector q and n̄q ≡ n̄(ωq), with n̄(ω) =
[exp(~ω/kBT )− 1]−1. This calculation can be simplified
significantly by noticing that, because of the Gaussian
form of the matrix element Eq. (1), |q1 + q2| ≤ 1/ax.
Since qres found from condition 2ωqres = ωx is ≈ 4.6 ×
106 cm and qresax ≈ 30, we approximate |q1| ≈ |q2| =
qres.

The strength of the direct two-ripplon coupling Vq1q2 is
a sum of contributions from the kinetic, or inertial term
(from electron accommodating to the curvature of the
barrier on the helium surface), and a polarization term,
which comes from the change of the image potential due
to the curvature of the surface. In Eq. 9 and below it
should be assumed unless otherwise stated that Vq1q2 is
the matrix element of the interaction with ripplons or
phonons on out-of plane wave functions |1〉z. A simple
calculation shows that the main contribution to scatter-
ing comes from the kinetic term, see DPS (11)-(13),

Vq1q2 ≈ −Rq1q2. (10)

A correction from the polarization term, DPS (13), is
comparatively small. The corresponding matrix element
of the interaction is

Λz−3[2− x2K2(x)] ≈ 4.6R/r2
B (11)

with x = qresz. The ratio of this term to the kinetic-
energy term is 40%. The remaining term in the polar-
ization coupling, DPS (13), is even smaller and partly
compensates the above term. The contribution of the
polarization coupling decreases, relatively, when we ap-
ply a pressing field.

Using this approximation to evaluate the matrix ele-
ment and converting the sum to an integral yields

Γ(2r)
1 =

~
16π2ρ2

(∫
dqgl(q)

)

×
∫
dq
q3

ω2
q

(
q2R

)2
δ(~ω − 2~ωq)(2n̄q + 1)

≈ R2

192πaxay
ρ2/3ω

7/3
x

21/3σ8/3
(12)

This rate is small, ∼ 450 s−1.

Renormalization due to single-ripplon coupling

The single-ripplon coupling leads to renormalization
of the two-ripplon coupling. The renormalization leads
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to the replacement of the matrix element of two-ripplon
coupling

〈µ|ei(q1+q2)rV̂q1q2 |ν〉 → 〈µ|ei(q1+q2)rV̂q1q2 |ν〉

−1
2

∑

κ

Vµκ(q1)Vκν(q2)
[
(εκ − εν)−1 + (εκ − εµ)−1

]
,

Vµν(q) = 〈µ|eiqrV̂q|ν〉. (13)

Here, |µ〉 are electron states (µ enumerates both in-plane
and out-of-plane states), εµ are the state energies. We
have disregarded the dynamics of ripplons, i.e., we as-
sume that the change of the electron energy in a virtual
transition is much larger than the ripplon energy change.
The explicit form of the coupling matrix element (an op-
erator with respect to motion normal to the surface) V̂q

is given by DPS (10). We need virtual transitions into
such states µ that the matrix elements 〈µ‖| exp(iqr)|0, 0〉
is of order 1 for q ∼ qres, where |µ‖〉 is the in-plane com-
ponent of the wave function |µ〉. This condition leads
to typical εµ ≈ ~2q2

res/2m. Such energy is very large,
∼ 12R. The terms in V̂q that are ∝ q2 are also large for
such q. They lead to renormalization [? ] of the matrix
elements of direct two-ripplon coupling, reducing them
by a factor ∝ (qrB)−1 which is ∼ 0.3 for q = qres. The
polarization coupling is also reduced. Therefore, the rate
of two-ripplon decay is reduced down to < 103 s−1.

Phonon scattering

Another way that the electron motion can relax is
through phonon emission. The electron can launch a
phonon by two mechanisms. In the first the coupling is
mediated by modulation of the dielectric constant along
with the density wave. In the second, the electron can
couple to the surface displacement in much the same way
as in the ripplon case but now launching most of the en-
ergy normal to the surface.

Phonon scattering: dielectric constant modulation

For frequency ωx = 5 GHz and phonon sound velocity
νs = 2.4 × 104 cm/s, we have the normal to the surface
component of the wave vector of the resonant phonon
(Qz)r = ωx/νs ≈ 1.3× 106 cm−1, whereas the typical in-
plane wave number qx = (mωx/~)1/2 ≈ 1.6 × 105 cm−1.
This shows that the phonons involved in inelastic scat-
tering propagate almost normal to the surface. We will
modify DPS (25) - (27) to write the interaction in terms
of the velocity potential

φ(r, z) =
∑

Q

φQ

(
ĉqQz

+ ĉ†−qQz

)
eiqr sin(Qzz),

φQ = (~νs/ρV Q)1/2, Q = (q, Qz), (14)

where ĉqQz is the annihilation operator of a phonon with
the wave number (q, Qz); r,q are two-dimensional vec-
tors and Qz > 0. Using the Fermi golden rule, for
n̄(ωx)� 1 the decay rate can be written as

Γ(d)
1 =

2π
~
∑

Q

∣∣∣〈0, 0|φQe
iq·rV (d)

Q |1, 0〉
∣∣∣
2

×δ(~ωx − ~ω(ph)
Q ), (15)

V
(d)
Q =

iΛqQ
νs

z〈1|v(d)|1〉z,

v(d) =
∫ ∞

0

dz′(z + z′)−1 sin(Qzz′)K1[q(z + z′)].

Here, ω(ph)
Q is the phonon frequency.

Using the explicit form of the ground-state wave func-
tion and taking into consideration that the typical in-
plane wave numbers are small, q � 1/rB , so that in
Eq. (15) K1[q(z + z′)] ≈ 1/q(z + z′) (this is an overes-
timate), one can write the expression for the decay rate
due to modulation of the dielectric constant ε as

Γ(d)
1 = 32R2ωx/

(
πρν3

s~axay
)

×
∣∣∣∣∣

∫ ∞

0

dz1 dz2

(
z1

z1 + z2

)2

e−2z1 sin(QzrBz2)

∣∣∣∣∣

2

(16)

The dimensional factor in front of the integral in
Eq. (16) is 4.3 × 106 s−1. With (Qz)rr

(0)
B = 1.01 this

gives the overall rate of ∼ 2.7× 104 s−1.

Phonon scattering: surface displacement

The contribution to the decay rate comes also from the
displacement of the helium surface, which can be consid-
ered a free surface for high-energy phonons propagating
almost normal to it. This is much like the ripplon case,
but here a single-phonon decay is allowed because the
2D momentum is conserved while the excess energy is
dumped into the normal component. The decay rate can
be expressed as

Γ(s)
1 =

2π
~ν2
s

∑

Q

∣∣〈0, 0|φQe
iq·rVq|1, 0〉

∣∣2

×δ(~ω − ~ω(ph)
Q ). (17)

Here, Vq is the diagonal matrix element of the coupling
operator V̂q, which is detailed in DPS (9) - (10), calcu-
lated on the wave functions of the ground state of motion
normal to the helium surface,

Vq = z〈1|V̂q|1〉z = eE⊥ + Λq2〈vpol〉, (18)

where E⊥ is the electric field that presses the elec-
tron against the surface and 〈vpol〉 = z〈1|(qz)−2[1 −
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qzK1(qz)|1〉z. Then

Γ(s)
1 =

2
~ρνsωx

1
(2π)2

∫
dqgl(q)

∣∣Vq

∣∣2 (19)

The contribution from the pressing field is

Γ(E⊥)
1 =

e2E2
⊥

2π~ρνsωxaxay
(20)

For a comparatively strong field E⊥ = 300 V/cm this
rate is 8.6× 103 s−1.

We now consider the contribution to Γ(s)
1 of the

term 〈vpol〉. For typical q . 1/ax we have 〈vpol〉 ∼
− ln(qrB)/2. Using this approximation, we obtain for
the corresponding contribution

Γ(pol)
1 =

Λ2

2π2~ρνsωx

∫
dq q4gl(q)|〈νpol〉|2

∼ 48R2r2
B

π~ρνsωxa6
x

[ln(rB/ax)/2]2 . (21)

Here, we assumed that ax ∼ ay. The last factor is some-
what smaller than the numerical result for actual rB/ax.
For a numerical estimate we set it equal to one. This
gives 1.8× 103 s−1. There is an interference term of the
two last expressions, but it is smaller than their sum.

Therefore, polarization phonon scattering is the dom-
inating mechanism of inelastic scattering due to excita-
tions in liquid helium.

Lifetime summary

There are several contributions to the lifetime of the
excited vibrational state of the electron. There are ef-
fects which could modify these results (though the esti-
mates here are conservative), but in the current analysis
the dominant mechanism appears to be phonon emission,
coupled mostly via modulation of the dielectric constant.
It gives the lifetime of the vibrational state T1 ≈ 35µs.

DEPHASING

In addition to loss of coherence of the electron due
to decay processes, excitations in the environment at
low frequencies can cause variations in the transition fre-
quency, leading to dephasing of superposition states. In
this section we treat dephasing from voltage noise, vari-
ations in helium level, and state dependent quasi-elastic
scattering of ripplons off the electron.

Voltage noise

The depth of the potential and thus the electron tran-
sition frequency depends on the trap bias voltage. Any

low frequency noise on the bias electrode will result in
electron phase noise. Noise on the bias lead can arise
from slow drift of the voltage source, thermal fluctuations
(Johnson noise), or anomalous local sources (1/f noise).
For typical electrode geometries the transition frequency
scales like ωx ∝ V

1/2
e . Small changes in Ve cause a fre-

quency shift δω = −ωxδVe/2Ve. Typical long term drifts
for precision voltage sources are δVe/Ve ≈ 10−6, or a drift
of about δωx ≈ 8×103s−1. Because this drift is typically
on hour timescales it should be easily compensated by
measuring the transition frequency and readjusting the
voltage. For thermal noise [18]

Γ(v)
φ =

(
∂ωx
∂Ve

)2

SVe/2

=
ω2kBTRe [Z(ω)]

4V 2
e

(22)

If superconducting leads are used then there is no local
Johnson noise but noise can still be coupled in from dis-
sipative sources off chip. For the simulated bias voltage
Ve ≈ 10 mV and conservatively assuming an environmen-
tal impedance of Z = 50 Ω, Eq. 22 gives Γ(v)

φ ≈ 90s−1.
Usually the dominant source of electrical dephasing is

1/f noise which is thought to arise from mobile charges
in the substrate. This type of noise spectrum does not
lead to a simple dephasing rate. The diffusion of phase
can be estimated as [18]

〈[φ(t)− φ(0)]2〉 ∼
(
∂ωx
∂Ve

)2

SVe
(1 Hz) ln(0.4/fmt)t2

=
(ωxt)2

4V 2
e

SVe
(1 Hz) ln(0.4/fmt) (23)

where f−1
m is the total averaging time, and t is the pre-

cession time of single measurement. The dephasing time
for uncompensated 1/f noise can be estimated as the
time for 〈[φ(tπ) − φ(0)]2〉 = π. Local charges should be
screened by the bias electrode. To get an estimate of
their effect we assume that SVe

= Sq/Ceff and that the
effective capacitance is only Ceff ≈ 1 fF (though it should
be much more than that) and the “typical” charge noise
of Sq(1 Hz) ≈ 10−4 e/Hz1/2. With these assumptions
t−1
π = 8 × 103 s−1. Even these conservative assumptions

lead to rates smaller than the relaxation rates, which can
be seen as a result of the electron being physically sepa-
rated from the electrodes where the charges may fluctu-
ate.

Fluctuations in helium level

The potential energy landscape is created by electro-
static gates beneath the helium surface. Any fluctuations
in the thickness of the helium above the electrodes will
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change the effective voltage seen by the electron result-
ing in changes to the transition frequency. While quan-
tized excitations in the helium level will be treated in the
next section, here we explore the effect and susceptibil-
ity to slow changes in the level of liquid helium in the
reservoir due to fluctuations in temperature, or external
vibrations. This type of fluctuation is unlikely to cause
dephasing during the lifetime of the qubit and should be
susceptible to spin-echo techniques, but if unchecked can
lead to slow drifts in the frequency, making it difficult to
bias the electron reliably.

For the geometry simulated in Fig. 2 the transition
frequency has a sensitivity to small fluctuations in the
mean helium film thickness of ∂ωx/∂d ≈ 10 MHz/nm.
Fortunately superfluid has two properties, the formation
of a Van der Waals film, and ideal capillary action that
help stabilize the film thickness. Exploiting these prop-
erties, the electron can be trapped above a channel[? ]
in which the thickness is determined by the geometry
and surface tension. The trap is supplied by the Van
der Waals creep film from a reservoir located well be-
low the trap[? ], significantly reducing its sensitivity to
fluctuations in the reservoir height. To accomplish this
we design the guard ring of the trap to be much thicker
than the bias electrode, forming a channel of the desired
height. The superfluid obeys Jurin’s law, Rc = 2σ/ρgH
causing it to fill the trap if it is smaller than Rc, the
capillary radius of curvature[? ]. For H = 5 mm, the
capillary length is Rc ≈ 53µm and the trap is well filled,
with sensitivity reduced by ∂HRc∂Rcd = w/H ≈ 10−4.

Direct two-ripplon coupling

An important contribution to dephasing is due to ther-
mally excited ripplons. For T= 100 mK the typical
wave number of a thermal ripplon (~ωqT

= kBT ) is
qT ≈ 4.1 × 106 cm−1. Therefore qT rB ≈ 3.1. For T=50
mK we have qT ≈ 2.5 × 108 cm−1 and qT rB ≈ 1.96).
The dephasing rate is given by the difference of the diag-
onal interaction matrix elements on the wave functions
of the excited and ground vibrational states. The overall
interaction matrix elements need to be projected on the
ground state of out-of-plane motion, that is the relevant
interaction can be written as [cf. DPS (32)]

Hφ
i =

∑

j=1,2

∑

q1,q2

vj(q1,q2)b†q1
bq2 |j, 0〉〈j, 0| (24)

with

vj(q1,q2) = (~/ρ)(q1q2/ωq1ωq2)1/2Vq1−q2

×〈j, 0| exp[i(q1 − q2)r]|j, 0〉.

A useful relation for the following calculation is Eq. (2).
For qT rB � 1 the major direct two-ripplon coupling
is the kinematic coupling, with the projection given by

Eq. (10). With account taken of DPS (32)-(33), the de-
phasing rate given by this interaction has the form

Γ(2r)
φ =

πR2

S2

∑
q1,q2

(
q1

ρω(q1)

)2

(q1q2)2gph(q1 + q2)

×n̄q1 (n̄q2 + 1) δ (ωq1 − ωq2) (25)

(S is the area). For qT � 1/ax,y, we can calculate this
expression using that |q1−q2| � q1,2 ∼ qT . The calcula-
tion is further simplified if we set ax = ay, in which case
we can average over the directions of q1,2, which leads
to the replacement gph(q)→ (3/32)(qax)4 exp(−q2a2

x/2).
We can then integrate first over q2 for given q1 by writ-
ing q2 = q′q̂1 + q′′(q̂1 × ẑ) (hat indicates a unit vector).
The inequality |q1 − q2| � q1,2 shows that |q′| � |q′′|.
To leading order in (axqT )−1 we have ωq2 ≈ ωq′ and
q1 − q2 ≈ q′′(q̂1 × ẑ). Integration over q′, q′′ then be-
comes simple, and the remaining integration over q1 is
then reduced to integration of the weighted temperature-
dependent factor n̄q1(n̄q1 + 1). The overall result is

Γ(2r)
φ ≈ (2π)1/2

192
ρR2

σ3ax
(kBT/~)3. (26)

For 100 mK this gives ∼ 1.4× 104 s−1.
For T∼ 100 mK the polarization part of the direct

two-ripplon coupling is small compared to the kinematic
part. However, its role increases with decreasing tem-
perature, since the characteristic ripplon wave number
qT decreases. For q1 ≈ q2 = q, the matrix element of
the polarization coupling −z〈1|Λz−3[2−(qz)2K2(qz)]|1〉z
changes from ≈ −0.9Rq2 to ≈ −0.6Rq2 for q increasing
from 0.3/rB to 1.2/rB . It is thus comparable with the
kinematic coupling Rq2 and has opposite sign. There-
fore the overall contribution to the dephasing rate from
direct two-ripplon coupling is significantly less than from
the kinematic coupling taken alone, which from Eq. (26)
is ∼ 1.7× 10−3 s−1 for T=50 mK.

Renormalization due to single-ripplon coupling

The kinematic and polarization single-ripplon cou-
pling taken to the second order of the perturbation the-
ory renormalizes the matrix elements of the direct two-
ripplon coupling. For q1,2rB � 1 it reduces these matrix
elements by a factor ∼ 1/q1,2rB [? ]. This leads to a sig-
nificant reduction of the dephasing rate for T=100 mK,
since qT rB ≈ 3 for such temperature. On the other
hand, for lower temperatures down to T=50 mK, where
qT rB ≈ 1.96, the compensation is not strong, but the
dephasing rate is already small here. The effect of the
pressing field E⊥ remains smaller than from the polar-
ization single-ripplon coupling for E⊥ � 103 V/cm.
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Dephasing summary

Ideally pure dephasing would be limited by the in-
teraction of the electron motion with thermal ripplons.
This would set a dephasing time of Tφ ≈ 0.5 ms even for
T=100 mK. This value would be very sensitive to temper-
ature and could be reduced significantly at temperatures
lower than 50 mK, giving it a distinctive signature. It
is possible, perhaps likely, that initial experiments will
be dominated by anomalously high contributions from
outside sources such as helium level fluctuations due to
vibrations or spurious noise on the bias line, but given the
analysis presented here it appears that it will be possible
to eventually reduce these to acceptable levels.

SPIN DECOHERENCE

In the absence of the enhanced spin-orbit interaction
the lifetime of electron spin states is expected to ex-
ceed seconds[2]. When the spin is coupled to the mo-
tion, it will also inherit the orbital decoherence mecha-
nisms studied above with a matrix element reduced by
∝ µB∂xBzax/~ωx. These mechanisms can be reduced
by turning off the gradient field or changing the spin-
motion detuning, to reduce the coupling. In addition
to decoherence felt through the spin-orbit coupling, the
electron spin can be dephased by fluctuating magnetic
fields. One source of magnetic field noise is Johnson (cur-
rent) noise in the trap electrodes, a white noise given by
SI = 4kT∆ω/Re Z, where ∆ω is the bandwidth of in-
terest, and the real part of the impedance is typically
Re Z ∼ 50 Ω. The field created at the electron by a
current in the wire is B = 4× 103 mG/mA, correspond-
ing to a frequency shift of δωL = 3.50 × 107s−1/mA.
The Johnson noise is extremely small 100 pA/Hz1/2, giv-
ing a coherence time Tφ,I ∼ 20 s. Another possible
source of magnetic field noise is 1/f flux noise[22]. of-
ten seen in SQUID experiments with magnitudes of or-
der Sφ,Φ = 10−6 Φ0/Hz1/2. The trap geometry con-
tains no superconducting loops or Josephson junctions so
this mechanism may not cause decoherence for an elec-
tron on helium. If present it is reasonable to assume
the flux would be distributed evenly over the trap area
(∼ 500×500 nm2). Even in this conservative scenario the
dephasing rate would be Γφ,Φ ∼ 200 s−1, allowing many
coherent operations.
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